]> cvs.zerfleddert.de Git - proxmark3-svn/blobdiff - client/cmdlfem4x.c
Merge pull request #227 from pwpiwi/client_fixes
[proxmark3-svn] / client / cmdlfem4x.c
index f29da8e0735be59f3f1edb2c2899f9777880f913..f9103126ea99863931b8b943e8ea0dbafef4acfd 100644 (file)
 #include <stdio.h>
 #include <string.h>
 #include <inttypes.h>
 #include <stdio.h>
 #include <string.h>
 #include <inttypes.h>
-//#include "proxusb.h"
 #include "proxmark3.h"
 #include "ui.h"
 #include "proxmark3.h"
 #include "ui.h"
+#include "util.h"
 #include "graph.h"
 #include "cmdparser.h"
 #include "cmddata.h"
 #include "cmdlf.h"
 #include "graph.h"
 #include "cmdparser.h"
 #include "cmddata.h"
 #include "cmdlf.h"
+#include "cmdmain.h"
 #include "cmdlfem4x.h"
 #include "cmdlfem4x.h"
+#include "lfdemod.h"
 
 
-static int CmdHelp(const char *Cmd);
-
+char *global_em410xId;
 
 
+static int CmdHelp(const char *Cmd);
 
 int CmdEMdemodASK(const char *Cmd)
 {
 
 int CmdEMdemodASK(const char *Cmd)
 {
-  int findone=0;
-  UsbCommand c={CMD_EM410X_DEMOD};
-  if(Cmd[0]=='1') findone=1;
-  c.arg[0]=findone;
-  SendCommand(&c);
-  return 0;
+       char cmdp = param_getchar(Cmd, 0);
+       int findone = (cmdp == '1') ? 1 : 0;
+       UsbCommand c={CMD_EM410X_DEMOD};
+       c.arg[0]=findone;
+       SendCommand(&c);
+       return 0;
 }
 
 }
 
-
-
 /* Read the ID of an EM410x tag.
  * Format:
  *   1111 1111 1           <-- standard non-repeatable header
 /* Read the ID of an EM410x tag.
  * Format:
  *   1111 1111 1           <-- standard non-repeatable header
@@ -46,393 +46,144 @@ int CmdEMdemodASK(const char *Cmd)
  */
 int CmdEM410xRead(const char *Cmd)
 {
  */
 int CmdEM410xRead(const char *Cmd)
 {
-  int i, j, clock, header, rows, bit, hithigh, hitlow, first, bit2idx, high, low;
-  int parity[4];
-  char id[11];
-  char id2[11];
-  int retested = 0;
-  uint8_t BitStream[MAX_GRAPH_TRACE_LEN];
-  high = low = 0;
-
-  /* Detect high and lows and clock */
-  for (i = 0; i < GraphTraceLen; i++)
-  {
-    if (GraphBuffer[i] > high)
-      high = GraphBuffer[i];
-    else if (GraphBuffer[i] < low)
-      low = GraphBuffer[i];
-  }
-
-  /* get clock */
-  clock = GetClock(Cmd, high, 0);
-
-  /* parity for our 4 columns */
-  parity[0] = parity[1] = parity[2] = parity[3] = 0;
-  header = rows = 0;
-
-  /* manchester demodulate */
-  bit = bit2idx = 0;
-  for (i = 0; i < (int)(GraphTraceLen / clock); i++)
-  {
-    hithigh = 0;
-    hitlow = 0;
-    first = 1;
-
-    /* Find out if we hit both high and low peaks */
-    for (j = 0; j < clock; j++)
-    {
-      if (GraphBuffer[(i * clock) + j] == high)
-        hithigh = 1;
-      else if (GraphBuffer[(i * clock) + j] == low)
-        hitlow = 1;
-
-      /* it doesn't count if it's the first part of our read
-       because it's really just trailing from the last sequence */
-      if (first && (hithigh || hitlow))
-        hithigh = hitlow = 0;
-      else
-        first = 0;
-
-      if (hithigh && hitlow)
-        break;
-    }
-
-    /* If we didn't hit both high and low peaks, we had a bit transition */
-    if (!hithigh || !hitlow)
-      bit ^= 1;
-
-    BitStream[bit2idx++] = bit;
-  }
-
-retest:
-  /* We go till 5 before the graph ends because we'll get that far below */
-  for (i = 1; i < bit2idx - 5; i++)
-  {
-    /* Step 2: We have our header but need our tag ID */
-    if (header == 9 && rows < 10)
-    {
-      /* Confirm parity is correct */
-      if ((BitStream[i] ^ BitStream[i+1] ^ BitStream[i+2] ^ BitStream[i+3]) == BitStream[i+4])
-      {
-        /* Read another byte! */
-        sprintf(id+rows, "%x", (8 * BitStream[i]) + (4 * BitStream[i+1]) + (2 * BitStream[i+2]) + (1 * BitStream[i+3]));
-        sprintf(id2+rows, "%x", (8 * BitStream[i+3]) + (4 * BitStream[i+2]) + (2 * BitStream[i+1]) + (1 * BitStream[i]));
-        rows++;
-
-        /* Keep parity info */
-        parity[0] ^= BitStream[i];
-        parity[1] ^= BitStream[i+1];
-        parity[2] ^= BitStream[i+2];
-        parity[3] ^= BitStream[i+3];
-
-        /* Move 4 bits ahead */
-        i += 4;
-      }
-
-      /* Damn, something wrong! reset */
-      else
-      {
-        PrintAndLog("Thought we had a valid tag but failed at word %d (i=%d)", rows + 1, i);
-
-        /* Start back rows * 5 + 9 header bits, -1 to not start at same place */
-        i -= 9 + (5 * rows) - 5;
-
-        rows = header = 0;
-      }
-    }
-
-    /* Step 3: Got our 40 bits! confirm column parity */
-    else if (rows == 10)
-    {
-      /* We need to make sure our 4 bits of parity are correct and we have a stop bit */
-      if (BitStream[i] == parity[0] && BitStream[i+1] == parity[1] &&
-        BitStream[i+2] == parity[2] && BitStream[i+3] == parity[3] &&
-        BitStream[i+4] == 0)
-      {
-        /* Sweet! */
-        PrintAndLog("EM410x Tag ID: %s", id);
-        PrintAndLog("Unique Tag ID: %s", id2);
-
-        /* Stop any loops */
-        return 1;
-      }
-
-      /* Crap! Incorrect parity or no stop bit, start all over */
-      else
-      {
-        rows = header = 0;
-
-        /* Go back 59 bits (9 header bits + 10 rows at 4+1 parity) */
-        i -= 59;
-      }
-    }
-
-    /* Step 1: get our header */
-    else if (header < 9)
-    {
-      /* Need 9 consecutive 1's */
-      if (BitStream[i] == 1)
-        header++;
-
-      /* We don't have a header, not enough consecutive 1 bits */
-      else
-        header = 0;
-    }
-  }
-
-  /* if we've already retested after flipping bits, return */
-  if (retested++)
-    return 0;
-
-  /* if this didn't work, try flipping bits */
-  for (i = 0; i < bit2idx; i++)
-    BitStream[i] ^= 1;
-
-  goto retest;
+       uint32_t hi=0;
+       uint64_t lo=0;
+
+       if(!AskEm410xDemod("", &hi, &lo, false)) return 0;
+       PrintAndLog("EM410x pattern found: ");
+       printEM410x(hi, lo);
+       if (hi){
+               PrintAndLog ("EM410x XL pattern found");
+               return 0;
+       }
+       char id[12] = {0x00};
+       sprintf(id, "%010"PRIx64,lo);
+       
+       global_em410xId = id;
+       return 1;
 }
 
 }
 
-/* emulate an EM410X tag
- * Format:
- *   1111 1111 1           <-- standard non-repeatable header
- *   XXXX [row parity bit] <-- 10 rows of 5 bits for our 40 bit tag ID
- *   ....
- *   CCCC                  <-- each bit here is parity for the 10 bits above in corresponding column
- *   0                     <-- stop bit, end of tag
- */
+int usage_lf_em410x_sim(void) {
+       PrintAndLog("Simulating EM410x tag");
+       PrintAndLog("");
+       PrintAndLog("Usage:  lf em 410xsim [h] <uid> <clock>");
+       PrintAndLog("Options:");
+       PrintAndLog("       h         - this help");
+       PrintAndLog("       uid       - uid (10 HEX symbols)");
+       PrintAndLog("       clock     - clock (32|64) (optional)");
+       PrintAndLog("samples:");
+       PrintAndLog("      lf em 410xsim 0F0368568B");
+       PrintAndLog("      lf em 410xsim 0F0368568B 32");
+       return 0;
+}
+
+// emulate an EM410X tag
 int CmdEM410xSim(const char *Cmd)
 {
 int CmdEM410xSim(const char *Cmd)
 {
-  int i, n, j, h, binary[4], parity[4];
-
-  /* clock is 64 in EM410x tags */
-  int clock = 64;
-
-  /* clear our graph */
-  ClearGraph(0);
-
-  /* write it out a few times */
-  for (h = 0; h < 4; h++)
-  {
-    /* write 9 start bits */
-    for (i = 0; i < 9; i++)
-      AppendGraph(0, clock, 1);
-
-    /* for each hex char */
-    parity[0] = parity[1] = parity[2] = parity[3] = 0;
-    for (i = 0; i < 10; i++)
-    {
-      /* read each hex char */
-      sscanf(&Cmd[i], "%1x", &n);
-      for (j = 3; j >= 0; j--, n/= 2)
-        binary[j] = n % 2;
-
-      /* append each bit */
-      AppendGraph(0, clock, binary[0]);
-      AppendGraph(0, clock, binary[1]);
-      AppendGraph(0, clock, binary[2]);
-      AppendGraph(0, clock, binary[3]);
-
-      /* append parity bit */
-      AppendGraph(0, clock, binary[0] ^ binary[1] ^ binary[2] ^ binary[3]);
-
-      /* keep track of column parity */
-      parity[0] ^= binary[0];
-      parity[1] ^= binary[1];
-      parity[2] ^= binary[2];
-      parity[3] ^= binary[3];
-    }
-
-    /* parity columns */
-    AppendGraph(0, clock, parity[0]);
-    AppendGraph(0, clock, parity[1]);
-    AppendGraph(0, clock, parity[2]);
-    AppendGraph(0, clock, parity[3]);
-
-    /* stop bit */
-    AppendGraph(0, clock, 0);
-  }
-
-  /* modulate that biatch */
-  CmdManchesterMod("");
-
-  /* booyah! */
-  RepaintGraphWindow();
-  
-  CmdLFSim("");
-  return 0;
+       int i, n, j, binary[4], parity[4];
+
+       char cmdp = param_getchar(Cmd, 0);
+       uint8_t uid[5] = {0x00};
+
+       if (cmdp == 'h' || cmdp == 'H') return usage_lf_em410x_sim();
+       /* clock is 64 in EM410x tags */
+       uint8_t clock = 64;
+
+       if (param_gethex(Cmd, 0, uid, 10)) {
+               PrintAndLog("UID must include 10 HEX symbols");
+               return 0;
+       }
+       param_getdec(Cmd,1, &clock);
+
+       PrintAndLog("Starting simulating UID %02X%02X%02X%02X%02X  clock: %d", uid[0],uid[1],uid[2],uid[3],uid[4],clock);
+       PrintAndLog("Press pm3-button to about simulation");
+
+
+       /* clear our graph */
+       ClearGraph(0);
+
+               /* write 9 start bits */
+               for (i = 0; i < 9; i++)
+                       AppendGraph(0, clock, 1);
+
+               /* for each hex char */
+               parity[0] = parity[1] = parity[2] = parity[3] = 0;
+               for (i = 0; i < 10; i++)
+               {
+                       /* read each hex char */
+                       sscanf(&Cmd[i], "%1x", &n);
+                       for (j = 3; j >= 0; j--, n/= 2)
+                               binary[j] = n % 2;
+
+                       /* append each bit */
+                       AppendGraph(0, clock, binary[0]);
+                       AppendGraph(0, clock, binary[1]);
+                       AppendGraph(0, clock, binary[2]);
+                       AppendGraph(0, clock, binary[3]);
+
+                       /* append parity bit */
+                       AppendGraph(0, clock, binary[0] ^ binary[1] ^ binary[2] ^ binary[3]);
+
+                       /* keep track of column parity */
+                       parity[0] ^= binary[0];
+                       parity[1] ^= binary[1];
+                       parity[2] ^= binary[2];
+                       parity[3] ^= binary[3];
+               }
+
+               /* parity columns */
+               AppendGraph(0, clock, parity[0]);
+               AppendGraph(0, clock, parity[1]);
+               AppendGraph(0, clock, parity[2]);
+               AppendGraph(0, clock, parity[3]);
+
+               /* stop bit */
+       AppendGraph(1, clock, 0);
+       CmdLFSim("0"); //240 start_gap.
+       return 0;
 }
 
 }
 
-/* Function is equivalent of loread + losamples + em410xread
- * looped until an EM410x tag is detected */
+/* Function is equivalent of lf read + data samples + em410xread
+ * looped until an EM410x tag is detected 
+ * 
+ * Why is CmdSamples("16000")?
+ *  TBD: Auto-grow sample size based on detected sample rate.  IE: If the
+ *       rate gets lower, then grow the number of samples
+ *  Changed by martin, 4000 x 4 = 16000, 
+ *  see http://www.proxmark.org/forum/viewtopic.php?pid=7235#p7235
+*/
 int CmdEM410xWatch(const char *Cmd)
 {
 int CmdEM410xWatch(const char *Cmd)
 {
-  int read_h = (*Cmd == 'h');
-  do
-  {
-    CmdLFRead(read_h ? "h" : "");
-    // 2000 samples is OK for clock=64, but not clock=32.  Probably want
-               //   8000 for clock=16.  Don't want to go too high since old HID driver
-               //   is very slow
-               // TBD: Auto-grow sample size based on detected sample rate.  IE: If the
-               //   rate gets lower, then grow the number of samples
-
-    // Changed by martin, 4000 x 4 = 16000, 
-    // see http://www.proxmark.org/forum/viewtopic.php?pid=7235#p7235
-               CmdSamples("16000");
- } while ( ! CmdEM410xRead(""));
-  return 0;
+       do {
+               if (ukbhit()) {
+                       printf("\naborted via keyboard!\n");
+                       break;
+               }
+               
+               CmdLFRead("s");
+               getSamples("8201",true); //capture enough to get 2 complete preambles (4096*2+9)        
+       } while (!CmdEM410xRead(""));
+
+       return 0;
 }
 
 }
 
-/* Read the transmitted data of an EM4x50 tag
- * Format:
- *
- *  XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
- *  XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
- *  XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
- *  XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
- *  CCCCCCCC                         <- column parity bits
- *  0                                <- stop bit
- *  LW                               <- Listen Window
- *
- * This pattern repeats for every block of data being transmitted.
- * Transmission starts with two Listen Windows (LW - a modulated
- * pattern of 320 cycles each (32/32/128/64/64)).
- *
- * Note that this data may or may not be the UID. It is whatever data
- * is stored in the blocks defined in the control word First and Last
- * Word Read values. UID is stored in block 32.
- */
-int CmdEM4x50Read(const char *Cmd)
+//currently only supports manchester modulations
+int CmdEM410xWatchnSpoof(const char *Cmd)
 {
 {
-  int i, j, startblock, skip, block, start, end, low, high;
-  bool complete= false;
-  int tmpbuff[MAX_GRAPH_TRACE_LEN / 64];
-  char tmp[6];
-
-  high= low= 0;
-  memset(tmpbuff, 0, MAX_GRAPH_TRACE_LEN / 64);
-
-  /* first get high and low values */
-  for (i = 0; i < GraphTraceLen; i++)
-  {
-    if (GraphBuffer[i] > high)
-      high = GraphBuffer[i];
-    else if (GraphBuffer[i] < low)
-      low = GraphBuffer[i];
-  }
-
-  /* populate a buffer with pulse lengths */
-  i= 0;
-  j= 0;
-  while (i < GraphTraceLen)
-  {
-    // measure from low to low
-    while ((GraphBuffer[i] > low) && (i<GraphTraceLen))
-      ++i;
-    start= i;
-    while ((GraphBuffer[i] < high) && (i<GraphTraceLen))
-      ++i;
-    while ((GraphBuffer[i] > low) && (i<GraphTraceLen))
-      ++i;
-    if (j>=(MAX_GRAPH_TRACE_LEN/64)) {
-      break;
-    }
-    tmpbuff[j++]= i - start;
-  }
-
-  /* look for data start - should be 2 pairs of LW (pulses of 192,128) */
-  start= -1;
-  skip= 0;
-  for (i= 0; i < j - 4 ; ++i)
-  {
-    skip += tmpbuff[i];
-    if (tmpbuff[i] >= 190 && tmpbuff[i] <= 194)
-      if (tmpbuff[i+1] >= 126 && tmpbuff[i+1] <= 130)
-        if (tmpbuff[i+2] >= 190 && tmpbuff[i+2] <= 194)
-          if (tmpbuff[i+3] >= 126 && tmpbuff[i+3] <= 130)
-          {
-            start= i + 3;
-            break;
-          }
-  }
-  startblock= i + 3;
-
-  /* skip over the remainder of the LW */
-  skip += tmpbuff[i+1]+tmpbuff[i+2];
-  while (skip < MAX_GRAPH_TRACE_LEN && GraphBuffer[skip] > low)
-    ++skip;
-  skip += 8;
-
-  /* now do it again to find the end */
-  end= start;
-  for (i += 3; i < j - 4 ; ++i)
-  {
-    end += tmpbuff[i];
-    if (tmpbuff[i] >= 190 && tmpbuff[i] <= 194)
-      if (tmpbuff[i+1] >= 126 && tmpbuff[i+1] <= 130)
-        if (tmpbuff[i+2] >= 190 && tmpbuff[i+2] <= 194)
-          if (tmpbuff[i+3] >= 126 && tmpbuff[i+3] <= 130)
-          {
-            complete= true;
-            break;
-          }
-  }
-
-  if (start >= 0)
-    PrintAndLog("Found data at sample: %i",skip);
-  else
-  {
-    PrintAndLog("No data found!");
-    PrintAndLog("Try again with more samples.");
-    return 0;
-  }
-
-  if (!complete)
-  {
-    PrintAndLog("*** Warning!");
-    PrintAndLog("Partial data - no end found!");
-    PrintAndLog("Try again with more samples.");
-  }
-
-  /* get rid of leading crap */
-  sprintf(tmp,"%i",skip);
-  CmdLtrim(tmp);
-
-  /* now work through remaining buffer printing out data blocks */
-  block= 0;
-  i= startblock;
-  while (block < 6)
-  {
-    PrintAndLog("Block %i:", block);
-    // mandemod routine needs to be split so we can call it for data
-    // just print for now for debugging
-    CmdManchesterDemod("i 64");
-    skip= 0;
-    /* look for LW before start of next block */
-    for ( ; i < j - 4 ; ++i)
-    {
-      skip += tmpbuff[i];
-      if (tmpbuff[i] >= 190 && tmpbuff[i] <= 194)
-        if (tmpbuff[i+1] >= 126 && tmpbuff[i+1] <= 130)
-          break;
-    }
-    while (GraphBuffer[skip] > low)
-      ++skip;
-    skip += 8;
-    sprintf(tmp,"%i",skip);
-    CmdLtrim(tmp);
-    start += skip;
-    block++;
-  }
-  return 0;
+       CmdEM410xWatch(Cmd);
+       PrintAndLog("# Replaying captured ID: %s",global_em410xId);
+       CmdLFaskSim("");
+       return 0;
 }
 
 int CmdEM410xWrite(const char *Cmd)
 {
 }
 
 int CmdEM410xWrite(const char *Cmd)
 {
-  uint64_t id = 0xFFFFFFFFFFFFFFFF; // invalid id value
-  int card = 0xFF; // invalid card value
+       uint64_t id = 0xFFFFFFFFFFFFFFFF; // invalid id value
+       int card = 0xFF; // invalid card value
        unsigned int clock = 0; // invalid clock value
 
        unsigned int clock = 0; // invalid clock value
 
-       sscanf(Cmd, "%" PRIx64 " %d %d", &id, &card, &clock);
+       sscanf(Cmd, "%" SCNx64 " %d %d", &id, &card, &clock);
 
        // Check ID
        if (id == 0xFFFFFFFFFFFFFFFF) {
 
        // Check ID
        if (id == 0xFFFFFFFFFFFFFFFF) {
@@ -455,21 +206,13 @@ int CmdEM410xWrite(const char *Cmd)
        }
 
        // Check Clock
        }
 
        // Check Clock
-       if (card == 1)
-       {
-               // Default: 64
-               if (clock == 0)
-                       clock = 64;
-
-               // Allowed clock rates: 16, 32 and 64
-               if ((clock != 16) && (clock != 32) && (clock != 64)) {
-                       PrintAndLog("Error! Clock rate %d not valid. Supported clock rates are 16, 32 and 64.\n", clock);
-                       return 0;
-               }
-       }
-       else if (clock != 0)
-       {
-               PrintAndLog("Error! Clock rate is only supported on T55x7 tags.\n");
+       // Default: 64
+       if (clock == 0)
+               clock = 64;
+
+       // Allowed clock rates: 16, 32, 40 and 64
+       if ((clock != 16) && (clock != 32) && (clock != 64) && (clock != 40)) {
+               PrintAndLog("Error! Clock rate %d not valid. Supported clock rates are 16, 32, 40 and 64.\n", clock);
                return 0;
        }
 
                return 0;
        }
 
@@ -479,143 +222,795 @@ int CmdEM410xWrite(const char *Cmd)
                //   provide for backwards-compatibility for older firmware, and to avoid
                //   having to add another argument to CMD_EM410X_WRITE_TAG, we just store
                //   the clock rate in bits 8-15 of the card value
                //   provide for backwards-compatibility for older firmware, and to avoid
                //   having to add another argument to CMD_EM410X_WRITE_TAG, we just store
                //   the clock rate in bits 8-15 of the card value
-               card = (card & 0xFF) | (((uint64_t)clock << 8) & 0xFF00);
-       }
-       else if (card == 0)
+               card = (card & 0xFF) | ((clock << 8) & 0xFF00);
+       }       else if (card == 0) {
                PrintAndLog("Writing %s tag with UID 0x%010" PRIx64, "T5555", id, clock);
                PrintAndLog("Writing %s tag with UID 0x%010" PRIx64, "T5555", id, clock);
-       else {
+               card = (card & 0xFF) | ((clock << 8) & 0xFF00);
+       } else {
                PrintAndLog("Error! Bad card type selected.\n");
                return 0;
        }
 
                PrintAndLog("Error! Bad card type selected.\n");
                return 0;
        }
 
-  UsbCommand c = {CMD_EM410X_WRITE_TAG, {card, (uint32_t)(id >> 32), (uint32_t)id}};
-  SendCommand(&c);
+       UsbCommand c = {CMD_EM410X_WRITE_TAG, {card, (uint32_t)(id >> 32), (uint32_t)id}};
+       SendCommand(&c);
 
 
-  return 0;
+       return 0;
 }
 
 }
 
-int CmdReadWord(const char *Cmd)
+//**************** Start of EM4x50 Code ************************
+bool EM_EndParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType)
 {
 {
-  int Word = 16; //default to invalid word
-  UsbCommand c;
-  
-  sscanf(Cmd, "%d", &Word);
-  
-  if (Word > 15) {
-    PrintAndLog("Word must be between 0 and 15");
-    return 1;
-  }
-  
-  PrintAndLog("Reading word %d", Word);
-  
-  c.cmd = CMD_EM4X_READ_WORD;
-  c.d.asBytes[0] = 0x0; //Normal mode
-  c.arg[0] = 0;
-  c.arg[1] = Word;
-  c.arg[2] = 0;
-  SendCommand(&c);
-  return 0;
+       if (rows*cols>size) return false;
+       uint8_t colP=0;
+       //assume last col is a parity and do not test
+       for (uint8_t colNum = 0; colNum < cols-1; colNum++) {
+               for (uint8_t rowNum = 0; rowNum < rows; rowNum++) {
+                       colP ^= BitStream[(rowNum*cols)+colNum];
+               }
+               if (colP != pType) return false;
+       }
+       return true;
 }
 
 }
 
-int CmdReadWordPWD(const char *Cmd)
+bool EM_ByteParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType)
 {
 {
-  int Word = 16; //default to invalid word
-  int Password = 0xFFFFFFFF; //default to blank password
-  UsbCommand c;
-  
-  sscanf(Cmd, "%d %x", &Word, &Password);
-  
-  if (Word > 15) {
-    PrintAndLog("Word must be between 0 and 15");
-    return 1;
-  }
-  
-  PrintAndLog("Reading word %d with password %08X", Word, Password);
-  
-  c.cmd = CMD_EM4X_READ_WORD;
-  c.d.asBytes[0] = 0x1; //Password mode
-  c.arg[0] = 0;
-  c.arg[1] = Word;
-  c.arg[2] = Password;
-  SendCommand(&c);
-  return 0;
+       if (rows*cols>size) return false;
+       uint8_t rowP=0;
+       //assume last row is a parity row and do not test
+       for (uint8_t rowNum = 0; rowNum < rows-1; rowNum++) {
+               for (uint8_t colNum = 0; colNum < cols; colNum++) {
+                       rowP ^= BitStream[(rowNum*cols)+colNum];
+               }
+               if (rowP != pType) return false;
+       }
+       return true;
 }
 
 }
 
-int CmdWriteWord(const char *Cmd)
+uint32_t OutputEM4x50_Block(uint8_t *BitStream, size_t size, bool verbose, bool pTest)
+{
+       if (size<45) return 0;
+       uint32_t code = bytebits_to_byte(BitStream,8);
+       code = code<<8 | bytebits_to_byte(BitStream+9,8);
+       code = code<<8 | bytebits_to_byte(BitStream+18,8);
+       code = code<<8 | bytebits_to_byte(BitStream+27,8);
+       if (verbose || g_debugMode){
+               for (uint8_t i = 0; i<5; i++){
+                       if (i == 4) PrintAndLog(""); //parity byte spacer
+                       PrintAndLog("%d%d%d%d%d%d%d%d %d -> 0x%02x",
+                           BitStream[i*9],
+                           BitStream[i*9+1],
+                           BitStream[i*9+2],
+                           BitStream[i*9+3],
+                           BitStream[i*9+4],
+                           BitStream[i*9+5],
+                           BitStream[i*9+6],
+                           BitStream[i*9+7],
+                           BitStream[i*9+8],
+                           bytebits_to_byte(BitStream+i*9,8)
+                       );
+               }
+               if (pTest)
+                       PrintAndLog("Parity Passed");
+               else
+                       PrintAndLog("Parity Failed");
+       }
+       return code;
+}
+/* Read the transmitted data of an EM4x50 tag from the graphbuffer
+ * Format:
+ *
+ *  XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
+ *  XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
+ *  XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
+ *  XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
+ *  CCCCCCCC                         <- column parity bits
+ *  0                                <- stop bit
+ *  LW                               <- Listen Window
+ *
+ * This pattern repeats for every block of data being transmitted.
+ * Transmission starts with two Listen Windows (LW - a modulated
+ * pattern of 320 cycles each (32/32/128/64/64)).
+ *
+ * Note that this data may or may not be the UID. It is whatever data
+ * is stored in the blocks defined in the control word First and Last
+ * Word Read values. UID is stored in block 32.
+ */
+ //completed by Marshmellow
+int EM4x50Read(const char *Cmd, bool verbose)
 {
 {
-  int Word = 16; //default to invalid block
-  int Data = 0xFFFFFFFF; //default to blank data
-  UsbCommand c;
-  
-  sscanf(Cmd, "%x %d", &Data, &Word);
-  
-  if (Word > 15) {
-    PrintAndLog("Word must be between 0 and 15");
-    return 1;
-  }
-  
-  PrintAndLog("Writting word %d with data %08X", Word, Data);
-  
-  c.cmd = CMD_EM4X_WRITE_WORD;
-  c.d.asBytes[0] = 0x0; //Normal mode
-  c.arg[0] = Data;
-  c.arg[1] = Word;
-  c.arg[2] = 0;
-  SendCommand(&c);
-  return 0;
+       uint8_t fndClk[] = {8,16,32,40,50,64,128};
+       int clk = 0; 
+       int invert = 0;
+       int tol = 0;
+       int i, j, startblock, skip, block, start, end, low, high, minClk;
+       bool complete = false;
+       int tmpbuff[MAX_GRAPH_TRACE_LEN / 64];
+       uint32_t Code[6];
+       char tmp[6];
+       char tmp2[20];
+       int phaseoff;
+       high = low = 0;
+       memset(tmpbuff, 0, MAX_GRAPH_TRACE_LEN / 64);
+
+       // get user entry if any
+       sscanf(Cmd, "%i %i", &clk, &invert);
+       
+       // save GraphBuffer - to restore it later       
+       save_restoreGB(1);
+
+       // first get high and low values
+       for (i = 0; i < GraphTraceLen; i++) {
+               if (GraphBuffer[i] > high)
+                       high = GraphBuffer[i];
+               else if (GraphBuffer[i] < low)
+                       low = GraphBuffer[i];
+       }
+
+       i = 0;
+       j = 0;
+       minClk = 255;
+       // get to first full low to prime loop and skip incomplete first pulse
+       while ((GraphBuffer[i] < high) && (i < GraphTraceLen))
+               ++i;
+       while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
+               ++i;
+       skip = i;
+
+       // populate tmpbuff buffer with pulse lengths
+       while (i < GraphTraceLen) {
+               // measure from low to low
+               while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
+                       ++i;
+               start= i;
+               while ((GraphBuffer[i] < high) && (i < GraphTraceLen))
+                       ++i;
+               while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
+                       ++i;
+               if (j>=(MAX_GRAPH_TRACE_LEN/64)) {
+                       break;
+               }
+               tmpbuff[j++]= i - start;
+               if (i-start < minClk && i < GraphTraceLen) {
+                       minClk = i - start;
+               }
+       }
+       // set clock
+       if (!clk) {
+               for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) {
+                       tol = fndClk[clkCnt]/8;
+                       if (minClk >= fndClk[clkCnt]-tol && minClk <= fndClk[clkCnt]+1) { 
+                               clk=fndClk[clkCnt];
+                               break;
+                       }
+               }
+               if (!clk) return 0;
+       } else tol = clk/8;
+
+       // look for data start - should be 2 pairs of LW (pulses of clk*3,clk*2)
+       start = -1;
+       for (i= 0; i < j - 4 ; ++i) {
+               skip += tmpbuff[i];
+               if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol)  //3 clocks
+                       if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol)  //2 clocks
+                               if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks
+                                       if (tmpbuff[i+3] >= clk-tol)  //1.5 to 2 clocks - depends on bit following
+                                       {
+                                               start= i + 4;
+                                               break;
+                                       }
+       }
+       startblock = i + 4;
+
+       // skip over the remainder of LW
+       skip += tmpbuff[i+1] + tmpbuff[i+2] + clk;
+       if (tmpbuff[i+3]>clk) 
+               phaseoff = tmpbuff[i+3]-clk;
+       else
+               phaseoff = 0;
+       // now do it again to find the end
+       end = skip;
+       for (i += 3; i < j - 4 ; ++i) {
+               end += tmpbuff[i];
+               if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol)  //3 clocks
+                       if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol)  //2 clocks
+                               if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks
+                                       if (tmpbuff[i+3] >= clk-tol)  //1.5 to 2 clocks - depends on bit following
+                                       {
+                                               complete= true;
+                                               break;
+                                       }
+       }
+       end = i;
+       // report back
+       if (verbose || g_debugMode) {
+               if (start >= 0) {
+                       PrintAndLog("\nNote: one block = 50 bits (32 data, 12 parity, 6 marker)");
+               }       else {
+                       PrintAndLog("No data found!, clock tried:%d",clk);
+                       PrintAndLog("Try again with more samples.");
+                       PrintAndLog("  or after a 'data askedge' command to clean up the read");
+                       return 0;
+               }
+       } else if (start < 0) return 0;
+       start = skip;
+       snprintf(tmp2, sizeof(tmp2),"%d %d 1000 %d", clk, invert, clk*47);
+       // get rid of leading crap 
+       snprintf(tmp, sizeof(tmp), "%i", skip);
+       CmdLtrim(tmp);
+       bool pTest;
+       bool AllPTest = true;
+       // now work through remaining buffer printing out data blocks
+       block = 0;
+       i = startblock;
+       while (block < 6) {
+               if (verbose || g_debugMode) PrintAndLog("\nBlock %i:", block);
+               skip = phaseoff;
+               
+               // look for LW before start of next block
+               for ( ; i < j - 4 ; ++i) {
+                       skip += tmpbuff[i];
+                       if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol)
+                               if (tmpbuff[i+1] >= clk-tol)
+                                       break;
+               }
+               if (i >= j-4) break; //next LW not found
+               skip += clk;
+               if (tmpbuff[i+1]>clk)
+                       phaseoff = tmpbuff[i+1]-clk;
+               else
+                       phaseoff = 0;
+               i += 2;
+               if (ASKDemod(tmp2, false, false, 1) < 1) {
+                       save_restoreGB(0);
+                       return 0;
+               }
+               //set DemodBufferLen to just one block
+               DemodBufferLen = skip/clk;
+               //test parities
+               pTest = EM_ByteParityTest(DemodBuffer,DemodBufferLen,5,9,0);    
+               pTest &= EM_EndParityTest(DemodBuffer,DemodBufferLen,5,9,0);
+               AllPTest &= pTest;
+               //get output
+               Code[block] = OutputEM4x50_Block(DemodBuffer,DemodBufferLen,verbose, pTest);
+               if (g_debugMode) PrintAndLog("\nskipping %d samples, bits:%d", skip, skip/clk);
+               //skip to start of next block
+               snprintf(tmp,sizeof(tmp),"%i",skip);
+               CmdLtrim(tmp);
+               block++;
+               if (i >= end) break; //in case chip doesn't output 6 blocks
+       }
+       //print full code:
+       if (verbose || g_debugMode || AllPTest){
+               if (!complete) {
+                       PrintAndLog("*** Warning!");
+                       PrintAndLog("Partial data - no end found!");
+                       PrintAndLog("Try again with more samples.");
+               }
+               PrintAndLog("Found data at sample: %i - using clock: %i", start, clk);    
+               end = block;
+               for (block=0; block < end; block++){
+                       PrintAndLog("Block %d: %08x",block,Code[block]);
+               }
+               if (AllPTest) {
+                       PrintAndLog("Parities Passed");
+               } else {
+                       PrintAndLog("Parities Failed");
+                       PrintAndLog("Try cleaning the read samples with 'data askedge'");
+               }
+       }
+
+       //restore GraphBuffer
+       save_restoreGB(0);
+       return (int)AllPTest;
 }
 
 }
 
-int CmdWriteWordPWD(const char *Cmd)
+int CmdEM4x50Read(const char *Cmd)
 {
 {
-  int Word = 8; //default to invalid word
-  int Data = 0xFFFFFFFF; //default to blank data
-  int Password = 0xFFFFFFFF; //default to blank password
-  UsbCommand c;
-  
-  sscanf(Cmd, "%x %d %x", &Data, &Word, &Password);
-  
-  if (Word > 15) {
-    PrintAndLog("Word must be between 0 and 15");
-    return 1;
-  }
-  
-  PrintAndLog("Writting word %d with data %08X and password %08X", Word, Data, Password);
-  
-  c.cmd = CMD_EM4X_WRITE_WORD;
-  c.d.asBytes[0] = 0x1; //Password mode
-  c.arg[0] = Data;
-  c.arg[1] = Word;
-  c.arg[2] = Password;
-  SendCommand(&c);
-  return 0;
+       return EM4x50Read(Cmd, true);
 }
 
 }
 
+//**************** Start of EM4x05/EM4x69 Code ************************
+int usage_lf_em_read(void) {
+       PrintAndLog("Read EM4x05/EM4x69.  Tag must be on antenna. ");
+       PrintAndLog("");
+       PrintAndLog("Usage:  lf em 4x05readword [h] <address> <pwd>");
+       PrintAndLog("Options:");
+       PrintAndLog("       h         - this help");
+       PrintAndLog("       address   - memory address to read. (0-15)");
+       PrintAndLog("       pwd       - password (hex) (optional)");
+       PrintAndLog("samples:");
+       PrintAndLog("      lf em 4x05readword 1");
+       PrintAndLog("      lf em 4x05readword 1 11223344");
+       return 0;
+}
+
+// for command responses from em4x05 or em4x69
+// download samples from device and copy them to the Graphbuffer
+bool downloadSamplesEM() {
+       // 8 bit preamble + 32 bit word response (max clock (128) * 40bits = 5120 samples)
+       uint8_t got[6000]; 
+       GetFromBigBuf(got, sizeof(got), 0);
+       if ( !WaitForResponseTimeout(CMD_ACK, NULL, 4000) ) {
+               PrintAndLog("command execution time out");
+               return false;
+       }
+       setGraphBuf(got, sizeof(got));
+       return true;
+}
+
+bool EM4x05testDemodReadData(uint32_t *word, bool readCmd) {
+       // em4x05/em4x69 command response preamble is 00001010
+       // skip first two 0 bits as they might have been missed in the demod
+       uint8_t preamble[] = {0,0,1,0,1,0};
+       size_t startIdx = 0;
+
+       // set size to 20 to only test first 14 positions for the preamble or less if not a read command
+       size_t size = (readCmd) ? 20 : 11;
+       // sanity check
+       size = (size > DemodBufferLen) ? DemodBufferLen : size;
+       // test preamble
+       if ( !preambleSearchEx(DemodBuffer, preamble, sizeof(preamble), &size, &startIdx, true) ) {
+               if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305 preamble not found :: %d", startIdx);
+               return false;
+       }
+       // if this is a readword command, get the read bytes and test the parities
+       if (readCmd) {
+               if (!EM_EndParityTest(DemodBuffer + startIdx + sizeof(preamble), 45, 5, 9, 0)) {
+                       if (g_debugMode) PrintAndLog("DEBUG: Error - End Parity check failed");
+                       return false;
+               }
+               // test for even parity bits and remove them. (leave out the end row of parities so 36 bits)
+               if ( removeParity(DemodBuffer, startIdx + sizeof(preamble),9,0,36) == 0 ) {             
+                       if (g_debugMode) PrintAndLog("DEBUG: Error - Parity not detected");
+                       return false;
+               }
+
+               setDemodBuf(DemodBuffer, 32, 0);
+               *word = bytebits_to_byteLSBF(DemodBuffer, 32);
+       }
+       return true;
+}
+
+// FSK, PSK, ASK/MANCHESTER, ASK/BIPHASE, ASK/DIPHASE 
+// should cover 90% of known used configs
+// the rest will need to be manually demoded for now...
+int demodEM4x05resp(uint32_t *word, bool readCmd) {
+       int ans = 0;
+
+       // test for FSK wave (easiest to 99% ID)
+       if (GetFskClock("", false, false)) {
+               //valid fsk clocks found
+               ans = FSKrawDemod("0 0", false);
+               if (!ans) {
+                       if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: FSK Demod failed, ans: %d", ans);
+               } else {
+                       if (EM4x05testDemodReadData(word, readCmd)) {
+                               return 1;
+                       }
+               }
+       }
+       // PSK clocks should be easy to detect ( but difficult to demod a non-repeating pattern... )
+       ans = GetPskClock("", false, false);
+       if (ans>0) {
+               //try psk1
+               ans = PSKDemod("0 0 6", false);
+               if (!ans) {
+                       if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: PSK1 Demod failed, ans: %d", ans);
+               } else {
+                       if (EM4x05testDemodReadData(word, readCmd)) {
+                               return 1;
+                       } else {
+                               //try psk2
+                               psk1TOpsk2(DemodBuffer, DemodBufferLen);
+                               if (EM4x05testDemodReadData(word, readCmd)) {
+                                       return 1;
+                               }
+                       }
+                       //try psk1 inverted
+                       ans = PSKDemod("0 1 6", false);
+                       if (!ans) {
+                               if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: PSK1 Demod failed, ans: %d", ans);
+                       } else {
+                               if (EM4x05testDemodReadData(word, readCmd)) {
+                                       return 1;
+                               } else {
+                                       //try psk2
+                                       psk1TOpsk2(DemodBuffer, DemodBufferLen);
+                                       if (EM4x05testDemodReadData(word, readCmd)) {
+                                               return 1;
+                                       }
+                               }
+                       }
+               }
+       }
+
+       // manchester is more common than biphase... try first
+       bool stcheck = false;
+       // try manchester - NOTE: ST only applies to T55x7 tags.
+       ans = ASKDemod_ext("0,0,1", false, false, 1, &stcheck);
+       if (!ans) {
+               if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: ASK/Manchester Demod failed, ans: %d", ans);
+       } else {
+               if (EM4x05testDemodReadData(word, readCmd)) {
+                       return 1;
+               }
+       }
+
+       //try biphase
+       ans = ASKbiphaseDemod("0 0 1", false);
+       if (!ans) { 
+               if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: ASK/biphase Demod failed, ans: %d", ans);
+       } else {
+               if (EM4x05testDemodReadData(word, readCmd)) {
+                       return 1;
+               }
+       }
+
+       //try diphase (differential biphase or inverted)
+       ans = ASKbiphaseDemod("0 1 1", false);
+       if (!ans) { 
+               if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: ASK/biphase Demod failed, ans: %d", ans);
+       } else {
+               if (EM4x05testDemodReadData(word, readCmd)) {
+                       return 1;
+               }
+       }
+
+       return -1;
+}
+
+int EM4x05ReadWord_ext(uint8_t addr, uint32_t pwd, bool usePwd, uint32_t *wordData) {
+       UsbCommand c = {CMD_EM4X_READ_WORD, {addr, pwd, usePwd}};
+       clearCommandBuffer();
+       SendCommand(&c);
+       UsbCommand resp;        
+       if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)){
+               PrintAndLog("Command timed out");
+               return -1;
+       }
+       if ( !downloadSamplesEM() ) {
+               return -1;
+       }
+       int testLen = (GraphTraceLen < 1000) ? GraphTraceLen : 1000;
+       if (graphJustNoise(GraphBuffer, testLen)) {
+               PrintAndLog("no tag not found");
+               return -1;
+       }
+       //attempt demod:
+       return demodEM4x05resp(wordData, true);
+}
+
+int EM4x05ReadWord(uint8_t addr, uint32_t pwd, bool usePwd) {
+       uint32_t wordData = 0;
+       int success = EM4x05ReadWord_ext(addr, pwd, usePwd, &wordData);
+       if (success == 1)
+               PrintAndLog("%s Address %02d | %08X", (addr>13) ? "Lock":" Got",addr,wordData);
+       else
+               PrintAndLog("Read Address %02d | failed",addr);
+
+       return success;
+}
+
+int CmdEM4x05ReadWord(const char *Cmd) {
+       uint8_t addr;
+       uint32_t pwd;
+       bool usePwd = false;
+       uint8_t ctmp = param_getchar(Cmd, 0);
+       if ( strlen(Cmd) == 0 || ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_read();
+
+       addr = param_get8ex(Cmd, 0, 50, 10);
+       // for now use default input of 1 as invalid (unlikely 1 will be a valid password...)
+       pwd =  param_get32ex(Cmd, 1, 1, 16);
+       
+       if ( (addr > 15) ) {
+               PrintAndLog("Address must be between 0 and 15");
+               return 1;
+       }
+       if ( pwd == 1 ) {
+               PrintAndLog("Reading address %02u", addr);
+       }       else {
+               usePwd = true;
+               PrintAndLog("Reading address %02u | password %08X", addr, pwd);
+       }
+
+       return EM4x05ReadWord(addr, pwd, usePwd);
+}
+
+int usage_lf_em_dump(void) {
+       PrintAndLog("Dump EM4x05/EM4x69.  Tag must be on antenna. ");
+       PrintAndLog("");
+       PrintAndLog("Usage:  lf em 4x05dump [h] <pwd>");
+       PrintAndLog("Options:");
+       PrintAndLog("       h         - this help");
+       PrintAndLog("       pwd       - password (hex) (optional)");
+       PrintAndLog("samples:");
+       PrintAndLog("      lf em 4x05dump");
+       PrintAndLog("      lf em 4x05dump 11223344");
+       return 0;
+}
+
+int CmdEM4x05dump(const char *Cmd) {
+       uint8_t addr = 0;
+       uint32_t pwd;
+       bool usePwd = false;
+       uint8_t ctmp = param_getchar(Cmd, 0);
+       if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_dump();
+
+       // for now use default input of 1 as invalid (unlikely 1 will be a valid password...)
+       pwd = param_get32ex(Cmd, 0, 1, 16);
+       
+       if ( pwd != 1 ) {
+               usePwd = true;
+       }
+       int success = 1;
+       for (; addr < 16; addr++) {
+               if (addr == 2) {
+                       if (usePwd) {
+                               PrintAndLog(" PWD Address %02u | %08X",addr,pwd);
+                       } else {
+                               PrintAndLog(" PWD Address 02 | cannot read");
+                       }
+               } else {
+                       success &= EM4x05ReadWord(addr, pwd, usePwd);
+               }
+       }
+
+       return success;
+}
+
+
+int usage_lf_em_write(void) {
+       PrintAndLog("Write EM4x05/EM4x69.  Tag must be on antenna. ");
+       PrintAndLog("");
+       PrintAndLog("Usage:  lf em 4x05writeword [h] <address> <data> <pwd>");
+       PrintAndLog("Options:");
+       PrintAndLog("       h         - this help");
+       PrintAndLog("       address   - memory address to write to. (0-15)");
+       PrintAndLog("       data      - data to write (hex)");  
+       PrintAndLog("       pwd       - password (hex) (optional)");
+       PrintAndLog("samples:");
+       PrintAndLog("      lf em 4x05writeword 1");
+       PrintAndLog("      lf em 4x05writeword 1 deadc0de 11223344");
+       return 0;
+}
+
+int CmdEM4x05WriteWord(const char *Cmd) {
+       uint8_t ctmp = param_getchar(Cmd, 0);
+       if ( strlen(Cmd) == 0 || ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_write();
+       
+       bool usePwd = false;
+               
+       uint8_t addr = 16; // default to invalid address
+       uint32_t data = 0xFFFFFFFF; // default to blank data
+       uint32_t pwd = 0xFFFFFFFF; // default to blank password
+       
+       addr = param_get8ex(Cmd, 0, 16, 10);
+       data = param_get32ex(Cmd, 1, 0, 16);
+       pwd =  param_get32ex(Cmd, 2, 1, 16);
+       
+       
+       if ( (addr > 15) ) {
+               PrintAndLog("Address must be between 0 and 15");
+               return 1;
+       }
+       if ( pwd == 1 )
+               PrintAndLog("Writing address %d data %08X", addr, data);        
+       else {
+               usePwd = true;
+               PrintAndLog("Writing address %d data %08X using password %08X", addr, data, pwd);               
+       }
+       
+       uint16_t flag = (addr << 8 ) | usePwd;
+       
+       UsbCommand c = {CMD_EM4X_WRITE_WORD, {flag, data, pwd}};
+       clearCommandBuffer();
+       SendCommand(&c);
+       UsbCommand resp;        
+       if (!WaitForResponseTimeout(CMD_ACK, &resp, 2000)){
+               PrintAndLog("Error occurred, device did not respond during write operation.");
+               return -1;
+       }
+       if ( !downloadSamplesEM() ) {
+               return -1;
+       }
+       //check response for 00001010 for write confirmation!   
+       //attempt demod:
+       uint32_t dummy = 0;
+       int result = demodEM4x05resp(&dummy,false);
+       if (result == 1) {
+               PrintAndLog("Write Verified");
+       } else {
+               PrintAndLog("Write could not be verified");
+       }
+       return result;
+}
+
+void printEM4x05config(uint32_t wordData) {
+       uint16_t datarate = (((wordData & 0x3F)+1)*2);
+       uint8_t encoder = ((wordData >> 6) & 0xF);
+       char enc[14];
+       memset(enc,0,sizeof(enc));
+
+       uint8_t PSKcf = (wordData >> 10) & 0x3;
+       char cf[10];
+       memset(cf,0,sizeof(cf));
+       uint8_t delay = (wordData >> 12) & 0x3;
+       char cdelay[33];
+       memset(cdelay,0,sizeof(cdelay));
+       uint8_t LWR = (wordData >> 14) & 0xF; //last word read
+
+       switch (encoder) {
+               case 0: snprintf(enc,sizeof(enc),"NRZ"); break;
+               case 1: snprintf(enc,sizeof(enc),"Manchester"); break;
+               case 2: snprintf(enc,sizeof(enc),"Biphase"); break;
+               case 3: snprintf(enc,sizeof(enc),"Miller"); break;
+               case 4: snprintf(enc,sizeof(enc),"PSK1"); break;
+               case 5: snprintf(enc,sizeof(enc),"PSK2"); break;
+               case 6: snprintf(enc,sizeof(enc),"PSK3"); break;
+               case 7: snprintf(enc,sizeof(enc),"Unknown"); break;
+               case 8: snprintf(enc,sizeof(enc),"FSK1"); break;
+               case 9: snprintf(enc,sizeof(enc),"FSK2"); break;
+               default: snprintf(enc,sizeof(enc),"Unknown"); break;
+       }
+
+       switch (PSKcf) {
+               case 0: snprintf(cf,sizeof(cf),"RF/2"); break;
+               case 1: snprintf(cf,sizeof(cf),"RF/8"); break;
+               case 2: snprintf(cf,sizeof(cf),"RF/4"); break;
+               case 3: snprintf(cf,sizeof(cf),"unknown"); break;
+       }
+
+       switch (delay) {
+               case 0: snprintf(cdelay, sizeof(cdelay),"no delay"); break;
+               case 1: snprintf(cdelay, sizeof(cdelay),"BP/8 or 1/8th bit period delay"); break;
+               case 2: snprintf(cdelay, sizeof(cdelay),"BP/4 or 1/4th bit period delay"); break;
+               case 3: snprintf(cdelay, sizeof(cdelay),"no delay"); break;
+       }
+       PrintAndLog("ConfigWord: %08X (Word 4)\n", wordData);
+       PrintAndLog("Config Breakdown:", wordData);
+       PrintAndLog(" Data Rate:  %02u | RF/%u", wordData & 0x3F, datarate);
+       PrintAndLog("   Encoder:   %u | %s", encoder, enc);
+       PrintAndLog("    PSK CF:   %u | %s", PSKcf, cf);
+       PrintAndLog("     Delay:   %u | %s", delay, cdelay);
+       PrintAndLog(" LastWordR:  %02u | Address of last word for default read", LWR);
+       PrintAndLog(" ReadLogin:   %u | Read Login is %s", (wordData & 0x40000)>>18, (wordData & 0x40000) ? "Required" : "Not Required");       
+       PrintAndLog("   ReadHKL:   %u | Read Housekeeping Words Login is %s", (wordData & 0x80000)>>19, (wordData & 0x80000) ? "Required" : "Not Required");    
+       PrintAndLog("WriteLogin:   %u | Write Login is %s", (wordData & 0x100000)>>20, (wordData & 0x100000) ? "Required" : "Not Required");    
+       PrintAndLog("  WriteHKL:   %u | Write Housekeeping Words Login is %s", (wordData & 0x200000)>>21, (wordData & 0x200000) ? "Required" : "Not Required"); 
+       PrintAndLog("    R.A.W.:   %u | Read After Write is %s", (wordData & 0x400000)>>22, (wordData & 0x400000) ? "On" : "Off");
+       PrintAndLog("   Disable:   %u | Disable Command is %s", (wordData & 0x800000)>>23, (wordData & 0x800000) ? "Accepted" : "Not Accepted");
+       PrintAndLog("    R.T.F.:   %u | Reader Talk First is %s", (wordData & 0x1000000)>>24, (wordData & 0x1000000) ? "Enabled" : "Disabled");
+       PrintAndLog("    Pigeon:   %u | Pigeon Mode is %s\n", (wordData & 0x4000000)>>26, (wordData & 0x4000000) ? "Enabled" : "Disabled");
+}
+
+void printEM4x05info(uint8_t chipType, uint8_t cap, uint16_t custCode, uint32_t serial) {
+       switch (chipType) {
+               case 9: PrintAndLog("\n Chip Type:   %u | EM4305", chipType); break;
+               case 4: PrintAndLog(" Chip Type:   %u | Unknown", chipType); break;
+               case 2: PrintAndLog(" Chip Type:   %u | EM4469", chipType); break;
+               //add more here when known
+               default: PrintAndLog(" Chip Type:   %u Unknown", chipType); break;
+       }
+
+       switch (cap) {
+               case 3: PrintAndLog("  Cap Type:   %u | 330pF",cap); break;
+               case 2: PrintAndLog("  Cap Type:   %u | %spF",cap, (chipType==2)? "75":"210"); break;
+               case 1: PrintAndLog("  Cap Type:   %u | 250pF",cap); break;
+               case 0: PrintAndLog("  Cap Type:   %u | no resonant capacitor",cap); break;
+               default: PrintAndLog("  Cap Type:   %u | unknown",cap); break;
+       }
+
+       PrintAndLog(" Cust Code: %03u | %s", custCode, (custCode == 0x200) ? "Default": "Unknown");
+       if (serial != 0) {
+               PrintAndLog("\n  Serial #: %08X\n", serial);
+       }
+}
+
+void printEM4x05ProtectionBits(uint32_t wordData) {
+       for (uint8_t i = 0; i < 15; i++) {
+               PrintAndLog("      Word:  %02u | %s", i, (((1 << i) & wordData ) || i < 2) ? "Is Write Locked" : "Is Not Write Locked");
+               if (i==14) {
+                       PrintAndLog("      Word:  %02u | %s", i+1, (((1 << i) & wordData ) || i < 2) ? "Is Write Locked" : "Is Not Write Locked");
+               }
+       }
+}
+
+//quick test for EM4x05/EM4x69 tag
+bool EM4x05Block0Test(uint32_t *wordData) {
+       if (EM4x05ReadWord_ext(0,0,false,wordData) == 1) {
+               return true;
+       }
+       return false;
+}
+
+int CmdEM4x05info(const char *Cmd) {
+       //uint8_t addr = 0;
+       uint32_t pwd;
+       uint32_t wordData = 0;
+       bool usePwd = false;
+       uint8_t ctmp = param_getchar(Cmd, 0);
+       if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_dump();
+
+       // for now use default input of 1 as invalid (unlikely 1 will be a valid password...)
+       pwd = param_get32ex(Cmd, 0, 1, 16);
+       
+       if ( pwd != 1 ) {
+               usePwd = true;
+       }
+
+       // read word 0 (chip info)
+       // block 0 can be read even without a password.
+       if ( !EM4x05Block0Test(&wordData) ) 
+               return -1;
+       
+       uint8_t chipType = (wordData >> 1) & 0xF;
+       uint8_t cap = (wordData >> 5) & 3;
+       uint16_t custCode = (wordData >> 9) & 0x3FF;
+       
+       // read word 1 (serial #) doesn't need pwd
+       wordData = 0;
+       if (EM4x05ReadWord_ext(1, 0, false, &wordData) != 1) {
+               //failed, but continue anyway...
+       }
+       printEM4x05info(chipType, cap, custCode, wordData);
+
+       // read word 4 (config block) 
+       // needs password if one is set
+       wordData = 0;
+       if ( EM4x05ReadWord_ext(4, pwd, usePwd, &wordData) != 1 ) {
+               //failed
+               return 0;
+       }
+       printEM4x05config(wordData);
+
+       // read word 14 and 15 to see which is being used for the protection bits
+       wordData = 0;
+       if ( EM4x05ReadWord_ext(14, pwd, usePwd, &wordData) != 1 ) {
+               //failed
+               return 0;
+       }
+       // if status bit says this is not the used protection word
+       if (!(wordData & 0x8000)) {
+               if ( EM4x05ReadWord_ext(15, pwd, usePwd, &wordData) != 1 ) {
+                       //failed
+                       return 0;
+               }
+       }
+       if (!(wordData & 0x8000)) {
+               //something went wrong
+               return 0;
+       }
+       printEM4x05ProtectionBits(wordData);
+
+       return 1;
+}
 
 
 static command_t CommandTable[] =
 {
 
 
 static command_t CommandTable[] =
 {
-  {"help", CmdHelp, 1, "This help"},
-  {"em410xdemod", CmdEMdemodASK, 0, "[findone] -- Extract ID from EM410x tag (option 0 for continuous loop, 1 for only 1 tag)"},  
-  {"em410xread", CmdEM410xRead, 1, "[clock rate] -- Extract ID from EM410x tag"},
-  {"em410xsim", CmdEM410xSim, 0, "<UID> -- Simulate EM410x tag"},
-  {"em410xwatch", CmdEM410xWatch, 0, "['h'] -- Watches for EM410x 125/134 kHz tags (option 'h' for 134)"},
-  {"em410xwrite", CmdEM410xWrite, 1, "<UID> <'0' T5555> <'1' T55x7> [clock rate] -- Write EM410x UID to T5555(Q5) or T55x7 tag, optionally setting clock rate"},
-  {"em4x50read", CmdEM4x50Read, 1, "Extract data from EM4x50 tag"},
-  {"readword", CmdReadWord, 1, "<Word> -- Read EM4xxx word data"},
-  {"readwordPWD", CmdReadWordPWD, 1, "<Word> <Password> -- Read EM4xxx word data in password mode"},
-  {"writeword", CmdWriteWord, 1, "<Data> <Word> -- Write EM4xxx word data"},
-  {"writewordPWD", CmdWriteWordPWD, 1, "<Data> <Word> <Password> -- Write EM4xxx word data in password mode"},
-  {NULL, NULL, 0, NULL}
+       {"help", CmdHelp, 1, "This help"},
+       {"410xdemod", CmdEMdemodASK, 0, "[findone] -- Extract ID from EM410x tag (option 0 for continuous loop, 1 for only 1 tag)"},  
+       {"410xread", CmdEM410xRead, 1, "[clock rate] -- Extract ID from EM410x tag in GraphBuffer"},
+       {"410xsim", CmdEM410xSim, 0, "<UID> [clock rate] -- Simulate EM410x tag"},
+       {"410xwatch", CmdEM410xWatch, 0, "['h'] -- Watches for EM410x 125/134 kHz tags (option 'h' for 134)"},
+       {"410xspoof", CmdEM410xWatchnSpoof, 0, "['h'] --- Watches for EM410x 125/134 kHz tags, and replays them. (option 'h' for 134)" },
+       {"410xwrite", CmdEM410xWrite, 0, "<UID> <'0' T5555> <'1' T55x7> [clock rate] -- Write EM410x UID to T5555(Q5) or T55x7 tag, optionally setting clock rate"},
+       {"4x05dump", CmdEM4x05dump, 0, "(pwd) -- Read EM4x05/EM4x69 all word data"},
+       {"4x05info", CmdEM4x05info, 0, "(pwd) -- Get info from EM4x05/EM4x69 tag"},
+       {"4x05readword", CmdEM4x05ReadWord, 0, "<Word> (pwd) -- Read EM4x05/EM4x69 word data"},
+       {"4x05writeword", CmdEM4x05WriteWord, 0, "<Word> <data> (pwd) -- Write EM4x05/EM4x69 word data"},
+       {"4x50read", CmdEM4x50Read, 1, "demod data from EM4x50 tag from the graph buffer"},
+       {NULL, NULL, 0, NULL}
 };
 
 int CmdLFEM4X(const char *Cmd)
 {
 };
 
 int CmdLFEM4X(const char *Cmd)
 {
-  CmdsParse(CommandTable, Cmd);
-  return 0;
+       CmdsParse(CommandTable, Cmd);
+       return 0;
 }
 
 int CmdHelp(const char *Cmd)
 {
 }
 
 int CmdHelp(const char *Cmd)
 {
-  CmdsHelp(CommandTable);
-  return 0;
+       CmdsHelp(CommandTable);
+       return 0;
 }
 }
Impressum, Datenschutz