// Routines to support ISO 14443 type A.
//-----------------------------------------------------------------------------
-#include "proxmark3.h"
+#include "../include/proxmark3.h"
#include "apps.h"
#include "util.h"
#include "string.h"
-#include "cmd.h"
-
-#include "iso14443crc.h"
+#include "../common/cmd.h"
+#include "../common/iso14443crc.h"
#include "iso14443a.h"
#include "crapto1.h"
#include "mifareutil.h"
//variables used for timing purposes:
//these are in ssp_clk cycles:
-uint32_t NextTransferTime;
-uint32_t LastTimeProxToAirStart;
-uint32_t LastProxToAirDuration;
+static uint32_t NextTransferTime;
+static uint32_t LastTimeProxToAirStart;
+static uint32_t LastProxToAirDuration;
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
};
-
void iso14a_set_trigger(bool enable) {
trigger = enable;
}
return OddByteParity[bt];
}
-uint32_t GetParity(const uint8_t * pbtCmd, int iLen)
+void GetParity(const uint8_t * pbtCmd, uint16_t iLen, uint8_t *par)
{
- int i;
- uint32_t dwPar = 0;
-
- // Generate the parity bits
- for (i = 0; i < iLen; i++) {
- // and save them to a 32Bit word
- dwPar |= ((OddByteParity[pbtCmd[i]]) << i);
+ uint16_t paritybit_cnt = 0;
+ uint16_t paritybyte_cnt = 0;
+ uint8_t parityBits = 0;
+
+ for (uint16_t i = 0; i < iLen; i++) {
+ // Generate the parity bits
+ parityBits |= ((OddByteParity[pbtCmd[i]]) << (7-paritybit_cnt));
+ if (paritybit_cnt == 7) {
+ par[paritybyte_cnt] = parityBits; // save 8 Bits parity
+ parityBits = 0; // and advance to next Parity Byte
+ paritybyte_cnt++;
+ paritybit_cnt = 0;
+ } else {
+ paritybit_cnt++;
+ }
}
- return dwPar;
+
+ // save remaining parity bits
+ par[paritybyte_cnt] = parityBits;
+
}
void AppendCrc14443a(uint8_t* data, int len)
}
// The function LogTrace() is also used by the iClass implementation in iClass.c
-bool RAMFUNC LogTrace(const uint8_t * btBytes, uint8_t iLen, uint32_t timestamp, uint32_t dwParity, bool readerToTag)
+bool RAMFUNC LogTrace(const uint8_t *btBytes, uint16_t iLen, uint32_t timestamp_start, uint32_t timestamp_end, uint8_t *parity, bool readerToTag)
{
if (!tracing) return FALSE;
+
+ uint16_t num_paritybytes = (iLen-1)/8 + 1; // number of valid paritybytes in *parity
+ uint16_t duration = timestamp_end - timestamp_start;
+
// Return when trace is full
- if (traceLen + sizeof(timestamp) + sizeof(dwParity) + iLen >= TRACE_SIZE) {
+ if (traceLen + sizeof(iLen) + sizeof(timestamp_start) + sizeof(duration) + num_paritybytes + iLen >= TRACE_SIZE) {
tracing = FALSE; // don't trace any more
return FALSE;
}
- // Trace the random, i'm curious
- trace[traceLen++] = ((timestamp >> 0) & 0xff);
- trace[traceLen++] = ((timestamp >> 8) & 0xff);
- trace[traceLen++] = ((timestamp >> 16) & 0xff);
- trace[traceLen++] = ((timestamp >> 24) & 0xff);
-
+ // Traceformat:
+ // 32 bits timestamp (little endian)
+ // 16 bits duration (little endian)
+ // 16 bits data length (little endian, Highest Bit used as readerToTag flag)
+ // y Bytes data
+ // x Bytes parity (one byte per 8 bytes data)
+
+ // timestamp (start)
+ trace[traceLen++] = ((timestamp_start >> 0) & 0xff);
+ trace[traceLen++] = ((timestamp_start >> 8) & 0xff);
+ trace[traceLen++] = ((timestamp_start >> 16) & 0xff);
+ trace[traceLen++] = ((timestamp_start >> 24) & 0xff);
+
+ // duration
+ trace[traceLen++] = ((duration >> 0) & 0xff);
+ trace[traceLen++] = ((duration >> 8) & 0xff);
+
+ // data length
+ trace[traceLen++] = ((iLen >> 0) & 0xff);
+ trace[traceLen++] = ((iLen >> 8) & 0xff);
+
+ // readerToTag flag
if (!readerToTag) {
trace[traceLen - 1] |= 0x80;
- }
- trace[traceLen++] = ((dwParity >> 0) & 0xff);
- trace[traceLen++] = ((dwParity >> 8) & 0xff);
- trace[traceLen++] = ((dwParity >> 16) & 0xff);
- trace[traceLen++] = ((dwParity >> 24) & 0xff);
- trace[traceLen++] = iLen;
+ }
+
+ // data bytes
if (btBytes != NULL && iLen != 0) {
memcpy(trace + traceLen, btBytes, iLen);
}
- traceLen += iLen;
+ traceLen += iLen;
+
+ // parity bytes
+ if (parity != NULL && iLen != 0) {
+ memcpy(trace + traceLen, parity, num_paritybytes);
+ }
+ traceLen += num_paritybytes;
+
return TRUE;
}
Uart.state = STATE_UNSYNCD;
Uart.bitCount = 0;
Uart.len = 0; // number of decoded data bytes
+ Uart.parityLen = 0; // number of decoded parity bytes
Uart.shiftReg = 0; // shiftreg to hold decoded data bits
- Uart.parityBits = 0; //
+ Uart.parityBits = 0; // holds 8 parity bits
Uart.twoBits = 0x0000; // buffer for 2 Bits
Uart.highCnt = 0;
Uart.startTime = 0;
Uart.endTime = 0;
}
+void UartInit(uint8_t *data, uint8_t *parity)
+{
+ Uart.output = data;
+ Uart.parity = parity;
+ UartReset();
+}
// use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
Uart.twoBits = (Uart.twoBits << 8) | bit;
- if (Uart.state == STATE_UNSYNCD) { // not yet synced
+ if (Uart.state == STATE_UNSYNCD) { // not yet synced
+
if (Uart.highCnt < 7) { // wait for a stable unmodulated signal
if (Uart.twoBits == 0xffff) {
Uart.highCnt++;
} else {
Uart.highCnt = 0;
}
- } else {
+ } else {
Uart.syncBit = 0xFFFF; // not set
// look for 00xx1111 (the start bit)
if ((Uart.twoBits & 0x6780) == 0x0780) Uart.syncBit = 7;
Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
Uart.bitCount = 0;
Uart.shiftReg = 0;
+ if((Uart.len & 0x0007) == 0) { // every 8 data bytes
+ Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
+ Uart.parityBits = 0;
+ }
}
}
}
Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
Uart.bitCount = 0;
Uart.shiftReg = 0;
+ if ((Uart.len & 0x0007) == 0) { // every 8 data bytes
+ Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
+ Uart.parityBits = 0;
+ }
}
} else { // no modulation in both halves - Sequence Y
if (Uart.state == STATE_MILLER_Z || Uart.state == STATE_MILLER_Y) { // Y after logic "0" - End of Communication
Uart.state = STATE_UNSYNCD;
- if(Uart.len == 0 && Uart.bitCount > 0) { // if we decoded some bits
- Uart.shiftReg >>= (9 - Uart.bitCount); // add them to the output
- Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
- Uart.parityBits <<= 1; // no parity bit - add "0"
- Uart.bitCount--; // last "0" was part of the EOC sequence
- }
+ Uart.bitCount--; // last "0" was part of EOC sequence
+ Uart.shiftReg <<= 1; // drop it
+ if(Uart.bitCount > 0) { // if we decoded some bits
+ Uart.shiftReg >>= (9 - Uart.bitCount); // right align them
+ Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); // add last byte to the output
+ Uart.parityBits <<= 1; // add a (void) parity bit
+ Uart.parityBits <<= (8 - (Uart.len & 0x0007)); // left align parity bits
+ Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store it
return TRUE;
+ } else if (Uart.len & 0x0007) { // there are some parity bits to store
+ Uart.parityBits <<= (8 - (Uart.len & 0x0007)); // left align remaining parity bits
+ Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store them
+ }
+ if ( Uart.len) {
+ return TRUE; // we are finished with decoding the raw data sequence
+ } else {
+ UartReset(); // Nothing receiver - start over
+ }
}
if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC
UartReset();
Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
Uart.bitCount = 0;
Uart.shiftReg = 0;
+ if ((Uart.len & 0x0007) == 0) { // every 8 data bytes
+ Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
+ Uart.parityBits = 0;
+ }
}
}
}
}
- }
+ }
return FALSE; // not finished yet, need more data
}
{
Demod.state = DEMOD_UNSYNCD;
Demod.len = 0; // number of decoded data bytes
+ Demod.parityLen = 0;
Demod.shiftReg = 0; // shiftreg to hold decoded data bits
Demod.parityBits = 0; //
Demod.collisionPos = 0; // Position of collision bit
Demod.endTime = 0;
}
+void DemodInit(uint8_t *data, uint8_t *parity)
+{
+ Demod.output = data;
+ Demod.parity = parity;
+ DemodReset();
+}
+
// use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time)
{
Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
Demod.bitCount = 0;
Demod.shiftReg = 0;
+ if((Demod.len & 0x0007) == 0) { // every 8 data bytes
+ Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits
+ Demod.parityBits = 0;
+ }
}
Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1) - 4;
} else { // no modulation in first half
Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
Demod.bitCount = 0;
Demod.shiftReg = 0;
+ if ((Demod.len & 0x0007) == 0) { // every 8 data bytes
+ Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits1
+ Demod.parityBits = 0;
+ }
}
Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1);
} else { // no modulation in both halves - End of communication
- if (Demod.len > 0 || Demod.bitCount > 0) { // received something
- if(Demod.bitCount > 0) { // if we decoded bits
- Demod.shiftReg >>= (9 - Demod.bitCount); // add the remaining decoded bits to the output
- Demod.output[Demod.len++] = Demod.shiftReg & 0xff;
- // No parity bit, so just shift a 0
- Demod.parityBits <<= 1;
+ if(Demod.bitCount > 0) { // there are some remaining data bits
+ Demod.shiftReg >>= (9 - Demod.bitCount); // right align the decoded bits
+ Demod.output[Demod.len++] = Demod.shiftReg & 0xff; // and add them to the output
+ Demod.parityBits <<= 1; // add a (void) parity bit
+ Demod.parityBits <<= (8 - (Demod.len & 0x0007)); // left align remaining parity bits
+ Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
+ return TRUE;
+ } else if (Demod.len & 0x0007) { // there are some parity bits to store
+ Demod.parityBits <<= (8 - (Demod.len & 0x0007)); // left align remaining parity bits
+ Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
}
- return TRUE; // we are finished with decoding the raw data sequence
+ if (Demod.len) {
+ return TRUE; // we are finished with decoding the raw data sequence
} else { // nothing received. Start over
DemodReset();
}
LEDsoff();
// init trace buffer
iso14a_clear_trace();
+ iso14a_set_tracing(TRUE);
// We won't start recording the frames that we acquire until we trigger;
// a good trigger condition to get started is probably when we see a
// The command (reader -> tag) that we're receiving.
// The length of a received command will in most cases be no more than 18 bytes.
// So 32 should be enough!
- uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
+ uint8_t *receivedCmd = ((uint8_t *)BigBuf) + RECV_CMD_OFFSET;
+ uint8_t *receivedCmdPar = ((uint8_t *)BigBuf) + RECV_CMD_PAR_OFFSET;
+
// The response (tag -> reader) that we're receiving.
- uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET);
-
+ uint8_t *receivedResponse = ((uint8_t *)BigBuf) + RECV_RESP_OFFSET;
+ uint8_t *receivedResponsePar = ((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET;
+
// As we receive stuff, we copy it from receivedCmd or receivedResponse
// into trace, along with its length and other annotations.
//uint8_t *trace = (uint8_t *)BigBuf;
iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
// Set up the demodulator for tag -> reader responses.
- Demod.output = receivedResponse;
+ DemodInit(receivedResponse, receivedResponsePar);
// Set up the demodulator for the reader -> tag commands
- Uart.output = receivedCmd;
+ UartInit(receivedCmd, receivedCmdPar);
// Setup and start DMA.
FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) triggered = TRUE;
if(triggered) {
- if (!LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, Uart.parityBits, TRUE)) break;
- if (!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, TRUE)) break;
+ if (!LogTrace(receivedCmd,
+ Uart.len,
+ Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
+ Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
+ Uart.parity,
+ TRUE)) break;
}
/* And ready to receive another command. */
UartReset();
if(ManchesterDecoding(tagdata, 0, (rsamples-1)*4)) {
LED_B_ON();
- if (!LogTrace(receivedResponse, Demod.len, Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER, Demod.parityBits, FALSE)) break;
- if (!LogTrace(NULL, 0, Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER, 0, FALSE)) break;
+ if (!LogTrace(receivedResponse,
+ Demod.len,
+ Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
+ Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
+ Demod.parity,
+ FALSE)) break;
if ((!triggered) && (param & 0x01)) triggered = TRUE;
//-----------------------------------------------------------------------------
// Prepare tag messages
//-----------------------------------------------------------------------------
-static void CodeIso14443aAsTagPar(const uint8_t *cmd, int len, uint32_t dwParity)
+static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *parity)
{
- int i;
-
ToSendReset();
// Correction bit, might be removed when not needed
ToSend[++ToSendMax] = SEC_D;
LastProxToAirDuration = 8 * ToSendMax - 4;
- for(i = 0; i < len; i++) {
- int j;
+ for( uint16_t i = 0; i < len; i++) {
uint8_t b = cmd[i];
// Data bits
- for(j = 0; j < 8; j++) {
+ for(uint16_t j = 0; j < 8; j++) {
if(b & 1) {
ToSend[++ToSendMax] = SEC_D;
} else {
}
// Get the parity bit
- if ((dwParity >> i) & 0x01) {
+ if (parity[i>>3] & (0x80>>(i&0x0007))) {
ToSend[++ToSendMax] = SEC_D;
LastProxToAirDuration = 8 * ToSendMax - 4;
} else {
ToSendMax++;
}
-static void CodeIso14443aAsTag(const uint8_t *cmd, int len){
- CodeIso14443aAsTagPar(cmd, len, GetParity(cmd, len));
+static void CodeIso14443aAsTag(const uint8_t *cmd, uint16_t len)
+{
+ uint8_t par[MAX_PARITY_SIZE];
+
+ GetParity(cmd, len, par);
+ CodeIso14443aAsTagPar(cmd, len, par);
}
// Stop when button is pressed
// Or return TRUE when command is captured
//-----------------------------------------------------------------------------
-static int GetIso14443aCommandFromReader(uint8_t *received, int *len, int maxLen)
+static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int *len)
{
// Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
// only, since we are receiving, not transmitting).
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
// Now run a `software UART' on the stream of incoming samples.
- UartReset();
- Uart.output = received;
+ UartInit(received, parity);
// clear RXRDY:
uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
}
}
-static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, bool correctionNeeded);
+static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
int EmSend4bitEx(uint8_t resp, bool correctionNeeded);
int EmSend4bit(uint8_t resp);
-int EmSendCmdExPar(uint8_t *resp, int respLen, bool correctionNeeded, uint32_t par);
-int EmSendCmdExPar(uint8_t *resp, int respLen, bool correctionNeeded, uint32_t par);
-int EmSendCmdEx(uint8_t *resp, int respLen, bool correctionNeeded);
-int EmSendCmd(uint8_t *resp, int respLen);
-int EmSendCmdPar(uint8_t *resp, int respLen, uint32_t par);
-bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint32_t reader_Parity,
- uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint32_t tag_Parity);
+int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par);
+int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
+int EmSendCmd(uint8_t *resp, uint16_t respLen);
+int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par);
+bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
+ uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity);
static uint8_t* free_buffer_pointer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
response_info->modulation = free_buffer_pointer;
// Determine the maximum size we can use from our buffer
- size_t max_buffer_size = (((uint8_t *)BigBuf)+FREE_BUFFER_OFFSET+FREE_BUFFER_SIZE)-free_buffer_pointer;
+ size_t max_buffer_size = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + FREE_BUFFER_SIZE) - free_buffer_pointer;
// Forward the prepare tag modulation function to the inner function
if (prepare_tag_modulation(response_info,max_buffer_size)) {
response1[1] = 0x00;
sak = 0x28;
} break;
+ case 5: { // MIFARE TNP3XXX
+ // Says: I am a toy
+ response1[0] = 0x01;
+ response1[1] = 0x0f;
+ sak = 0x01;
+ } break;
default: {
Dbprintf("Error: unkown tagtype (%d)",tagType);
return;
ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
- uint8_t response6[] = { 0x04, 0x58, 0x00, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS
+ uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS:
+ // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present,
+ // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
+ // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
+ // TC(1) = 0x02: CID supported, NAD not supported
ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]);
#define TAG_RESPONSE_COUNT 7
prepare_allocated_tag_modulation(&responses[i]);
}
- uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
int len = 0;
// To control where we are in the protocol
// We need to listen to the high-frequency, peak-detected path.
iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
+ // buffers used on software Uart:
+ uint8_t *receivedCmd = ((uint8_t *)BigBuf) + RECV_CMD_OFFSET;
+ uint8_t *receivedCmdPar = ((uint8_t *)BigBuf) + RECV_CMD_PAR_OFFSET;
+
cmdsRecvd = 0;
tag_response_info_t* p_response;
for(;;) {
// Clean receive command buffer
- if(!GetIso14443aCommandFromReader(receivedCmd, &len, RECV_CMD_SIZE)) {
+ if(!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)) {
DbpString("Button press");
- break;
+ break;
}
p_response = NULL;
- // doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated
// Okay, look at the command now.
lastorder = order;
if(receivedCmd[0] == 0x26) { // Received a REQUEST
p_response = &responses[0]; order = 6;
} else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // Received request for UID (cascade 1)
p_response = &responses[1]; order = 2;
- } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2)
+ } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2)
p_response = &responses[2]; order = 20;
} else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) { // Received a SELECT (cascade 1)
p_response = &responses[3]; order = 3;
} else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2)
p_response = &responses[4]; order = 30;
} else if(receivedCmd[0] == 0x30) { // Received a (plain) READ
- EmSendCmdEx(data+(4*receivedCmd[0]),16,false);
+ EmSendCmdEx(data+(4*receivedCmd[1]),16,false);
// Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
// We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
p_response = NULL;
} else if(receivedCmd[0] == 0x50) { // Received a HALT
-// DbpString("Reader requested we HALT!:");
+
if (tracing) {
- LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
- LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+ LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
}
p_response = NULL;
} else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request
} else {
p_response = &responses[6]; order = 70;
}
- } else if (order == 7 && len == 8) { // Received authentication request
+ } else if (order == 7 && len == 8) { // Received {nr] and {ar} (part of authentication)
if (tracing) {
- LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
- LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+ LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
}
uint32_t nr = bytes_to_num(receivedCmd,4);
uint32_t ar = bytes_to_num(receivedCmd+4,4);
default: {
// Never seen this command before
if (tracing) {
- LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
- LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+ LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
}
Dbprintf("Received unknown command (len=%d):",len);
Dbhexdump(len,receivedCmd,false);
if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) {
Dbprintf("Error preparing tag response");
if (tracing) {
- LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
- LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+ LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
}
break;
}
if (p_response != NULL) {
EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52);
// do the tracing for the previous reader request and this tag answer:
+ uint8_t par[MAX_PARITY_SIZE];
+ GetParity(p_response->response, p_response->response_n, par);
+
EmLogTrace(Uart.output,
Uart.len,
Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
- Uart.parityBits,
+ Uart.parity,
p_response->response,
p_response->response_n,
LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
(LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
- SwapBits(GetParity(p_response->response, p_response->response_n), p_response->response_n));
+ par);
}
if (!tracing) {
// if == 0: transfer immediately and return time of transfer
// if != 0: delay transfer until time specified
//-------------------------------------------------------------------------------------
-static void TransmitFor14443a(const uint8_t *cmd, int len, uint32_t *timing)
+static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing)
{
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
// clear TXRDY
AT91C_BASE_SSC->SSC_THR = SEC_Y;
- // for(uint16_t c = 0; c < 10;) { // standard delay for each transfer (allow tag to be ready after last transmission)
- // if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
- // AT91C_BASE_SSC->SSC_THR = SEC_Y;
- // c++;
- // }
- // }
-
uint16_t c = 0;
for(;;) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
}
}
- NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME);
-
+ NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME);
}
//-----------------------------------------------------------------------------
// Prepare reader command (in bits, support short frames) to send to FPGA
//-----------------------------------------------------------------------------
-void CodeIso14443aBitsAsReaderPar(const uint8_t * cmd, int bits, uint32_t dwParity)
+void CodeIso14443aBitsAsReaderPar(const uint8_t * cmd, uint16_t bits, const uint8_t *parity)
{
int i, j;
int last;
b >>= 1;
}
- // Only transmit (last) parity bit if we transmitted a complete byte
+ // Only transmit parity bit if we transmitted a complete byte
if (j == 8) {
// Get the parity bit
- if ((dwParity >> i) & 0x01) {
+ if (parity[i>>3] & (0x80 >> (i&0x0007))) {
// Sequence X
ToSend[++ToSendMax] = SEC_X;
LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
//-----------------------------------------------------------------------------
// Prepare reader command to send to FPGA
//-----------------------------------------------------------------------------
-void CodeIso14443aAsReaderPar(const uint8_t * cmd, int len, uint32_t dwParity)
+void CodeIso14443aAsReaderPar(const uint8_t * cmd, uint16_t len, const uint8_t *parity)
{
- CodeIso14443aBitsAsReaderPar(cmd,len*8,dwParity);
+ CodeIso14443aBitsAsReaderPar(cmd, len*8, parity);
}
//-----------------------------------------------------------------------------
// Stop when button is pressed (return 1) or field was gone (return 2)
// Or return 0 when command is captured
//-----------------------------------------------------------------------------
-static int EmGetCmd(uint8_t *received, int *len)
+static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
{
*len = 0;
AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
// Now run a 'software UART' on the stream of incoming samples.
- UartReset();
- Uart.output = received;
+ UartInit(received, parity);
// Clear RXRDY:
uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
}
-static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, bool correctionNeeded)
+static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded)
{
uint8_t b;
uint16_t i = 0;
Code4bitAnswerAsTag(resp);
int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
// do the tracing for the previous reader request and this tag answer:
+ uint8_t par[1];
+ GetParity(&resp, 1, par);
EmLogTrace(Uart.output,
Uart.len,
Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
- Uart.parityBits,
+ Uart.parity,
&resp,
1,
LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
(LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
- SwapBits(GetParity(&resp, 1), 1));
+ par);
return res;
}
return EmSend4bitEx(resp, false);
}
-int EmSendCmdExPar(uint8_t *resp, int respLen, bool correctionNeeded, uint32_t par){
+int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par){
CodeIso14443aAsTagPar(resp, respLen, par);
int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
// do the tracing for the previous reader request and this tag answer:
Uart.len,
Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
- Uart.parityBits,
+ Uart.parity,
resp,
respLen,
LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
(LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
- SwapBits(GetParity(resp, respLen), respLen));
+ par);
return res;
}
-int EmSendCmdEx(uint8_t *resp, int respLen, bool correctionNeeded){
- return EmSendCmdExPar(resp, respLen, correctionNeeded, GetParity(resp, respLen));
+int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded){
+ uint8_t par[MAX_PARITY_SIZE];
+ GetParity(resp, respLen, par);
+ return EmSendCmdExPar(resp, respLen, correctionNeeded, par);
}
-
-int EmSendCmd(uint8_t *resp, int respLen){
- return EmSendCmdExPar(resp, respLen, false, GetParity(resp, respLen));
+
+int EmSendCmd(uint8_t *resp, uint16_t respLen){
+ uint8_t par[MAX_PARITY_SIZE];
+ GetParity(resp, respLen, par);
+ return EmSendCmdExPar(resp, respLen, false, par);
}
-int EmSendCmdPar(uint8_t *resp, int respLen, uint32_t par){
+int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par){
return EmSendCmdExPar(resp, respLen, false, par);
}
-bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint32_t reader_Parity,
- uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint32_t tag_Parity)
+bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
+ uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity)
{
if (tracing) {
- // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
- // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
- // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
- uint16_t reader_modlen = reader_EndTime - reader_StartTime;
- uint16_t approx_fdt = tag_StartTime - reader_EndTime;
- uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20;
- reader_EndTime = tag_StartTime - exact_fdt;
- reader_StartTime = reader_EndTime - reader_modlen;
- if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_Parity, TRUE)) {
- return FALSE;
- } else if (!LogTrace(NULL, 0, reader_EndTime, 0, TRUE)) {
- return FALSE;
- } else if (!LogTrace(tag_data, tag_len, tag_StartTime, tag_Parity, FALSE)) {
- return FALSE;
- } else {
- return (!LogTrace(NULL, 0, tag_EndTime, 0, FALSE));
- }
+ // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
+ // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
+ // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
+ uint16_t reader_modlen = reader_EndTime - reader_StartTime;
+ uint16_t approx_fdt = tag_StartTime - reader_EndTime;
+ uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20;
+ reader_EndTime = tag_StartTime - exact_fdt;
+ reader_StartTime = reader_EndTime - reader_modlen;
+ if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, TRUE)) {
+ return FALSE;
+ } else return(!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, FALSE));
} else {
return TRUE;
}
// If a response is captured return TRUE
// If it takes too long return FALSE
//-----------------------------------------------------------------------------
-static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint16_t offset, int maxLen)
+static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset)
{
- uint16_t c;
+ uint32_t c;
// Set FPGA mode to "reader listen mode", no modulation (listen
// only, since we are receiving, not transmitting).
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
// Now get the answer from the card
- DemodReset();
- Demod.output = receivedResponse;
-
+ DemodInit(receivedResponse, receivedResponsePar);
+
// clear RXRDY:
uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
if(ManchesterDecoding(b, offset, 0)) {
NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD);
return TRUE;
- } else if(c++ > iso14a_timeout) {
+ } else if (c++ > iso14a_timeout) {
return FALSE;
}
}
}
}
-void ReaderTransmitBitsPar(uint8_t* frame, int bits, uint32_t par, uint32_t *timing)
+void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing)
{
-
- CodeIso14443aBitsAsReaderPar(frame,bits,par);
+ CodeIso14443aBitsAsReaderPar(frame, bits, par);
// Send command to tag
TransmitFor14443a(ToSend, ToSendMax, timing);
// Log reader command in trace buffer
if (tracing) {
- LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, par, TRUE);
- LogTrace(NULL, 0, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, 0, TRUE);
+ LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, TRUE);
}
}
-void ReaderTransmitPar(uint8_t* frame, int len, uint32_t par, uint32_t *timing)
+void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing)
{
- ReaderTransmitBitsPar(frame,len*8,par, timing);
+ ReaderTransmitBitsPar(frame, len*8, par, timing);
}
-void ReaderTransmitBits(uint8_t* frame, int len, uint32_t *timing)
+void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing)
{
- // Generate parity and redirect
- ReaderTransmitBitsPar(frame,len,GetParity(frame,len/8), timing);
+ // Generate parity and redirect
+ uint8_t par[MAX_PARITY_SIZE];
+ GetParity(frame, len/8, par);
+ ReaderTransmitBitsPar(frame, len, par, timing);
}
-void ReaderTransmit(uint8_t* frame, int len, uint32_t *timing)
+void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing)
{
- // Generate parity and redirect
- ReaderTransmitBitsPar(frame,len*8,GetParity(frame,len), timing);
+ // Generate parity and redirect
+ uint8_t par[MAX_PARITY_SIZE];
+ GetParity(frame, len, par);
+ ReaderTransmitBitsPar(frame, len*8, par, timing);
}
-int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset)
+int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity)
{
- if (!GetIso14443aAnswerFromTag(receivedAnswer,offset,160)) return FALSE;
+ if (!GetIso14443aAnswerFromTag(receivedAnswer,parity,offset)) return FALSE;
if (tracing) {
- LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.parityBits, FALSE);
- LogTrace(NULL, 0, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, 0, FALSE);
+ LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
}
return Demod.len;
}
-int ReaderReceive(uint8_t* receivedAnswer)
-{
- return ReaderReceiveOffset(receivedAnswer, 0);
-}
-
-int ReaderReceivePar(uint8_t *receivedAnswer, uint32_t *parptr)
+int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity)
{
- if (!GetIso14443aAnswerFromTag(receivedAnswer,0,160)) return FALSE;
+ if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) return FALSE;
if (tracing) {
- LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.parityBits, FALSE);
- LogTrace(NULL, 0, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, 0, FALSE);
+ LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
}
- *parptr = Demod.parityBits;
return Demod.len;
}
* fills the uid pointer unless NULL
* fills resp_data unless NULL */
int iso14443a_select_card(byte_t* uid_ptr, iso14a_card_select_t* p_hi14a_card, uint32_t* cuid_ptr) {
- uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
- uint8_t sel_all[] = { 0x93,0x20 };
- uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
- uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
- uint8_t* resp = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET); // was 3560 - tied to other size changes
- byte_t uid_resp[4];
- size_t uid_resp_len;
-
- uint8_t sak = 0x04; // cascade uid
- int cascade_level = 0;
- int len;
-
- // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
- ReaderTransmitBitsPar(wupa,7,0, NULL);
- // Receive the ATQA
- if(!ReaderReceive(resp)) return 0;
- // Dbprintf("atqa: %02x %02x",resp[0],resp[1]);
-
- if(p_hi14a_card) {
- memcpy(p_hi14a_card->atqa, resp, 2);
- p_hi14a_card->uidlen = 0;
- memset(p_hi14a_card->uid,0,10);
- }
+ //uint8_t deselect[] = {0xc2}; //DESELECT
+ //uint8_t halt[] = { 0x50, 0x00, 0x57, 0xCD }; // HALT
+ uint8_t wupa[] = { 0x52 }; // WAKE-UP
+ //uint8_t reqa[] = { 0x26 }; // REQUEST A
+ uint8_t sel_all[] = { 0x93,0x20 };
+ uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
+ uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
+ uint8_t *resp = ((uint8_t *)BigBuf) + RECV_RESP_OFFSET;
+ uint8_t *resp_par = ((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET;
+
+ byte_t uid_resp[4];
+ size_t uid_resp_len;
+ uint8_t sak = 0x04; // cascade uid
+ int cascade_level = 0;
+ int len =0;
+
+ // test for the SKYLANDERS TOY.
+ // ReaderTransmit(deselect,sizeof(deselect), NULL);
+ // len = ReaderReceive(resp, resp_par);
+
+ // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
+ ReaderTransmitBitsPar(wupa,7,0, NULL);
+
+ // Receive the ATQA
+ if(!ReaderReceive(resp, resp_par)) return 0;
+
+ if(p_hi14a_card) {
+ memcpy(p_hi14a_card->atqa, resp, 2);
+ p_hi14a_card->uidlen = 0;
+ memset(p_hi14a_card->uid,0,10);
+ }
- // clear uid
- if (uid_ptr) {
- memset(uid_ptr,0,10);
- }
+ // clear uid
+ if (uid_ptr) {
+ memset(uid_ptr,0,10);
+ }
// OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
// which case we need to make a cascade 2 request and select - this is a long UID
// SELECT_ALL
ReaderTransmit(sel_all,sizeof(sel_all), NULL);
- if (!ReaderReceive(resp)) return 0;
+ if (!ReaderReceive(resp, resp_par)) return 0;
if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit
memset(uid_resp, 0, 4);
}
collision_answer_offset = uid_resp_bits%8;
ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
- if (!ReaderReceiveOffset(resp, collision_answer_offset)) return 0;
+ if (!ReaderReceiveOffset(resp, collision_answer_offset,resp_par)) return 0;
}
// finally, add the last bits and BCC of the UID
for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
memcpy(uid_resp,resp,4);
}
uid_resp_len = 4;
- // Dbprintf("uid: %02x %02x %02x %02x",uid_resp[0],uid_resp[1],uid_resp[2],uid_resp[3]);
// calculate crypto UID. Always use last 4 Bytes.
if(cuid_ptr) {
ReaderTransmit(sel_uid,sizeof(sel_uid), NULL);
// Receive the SAK
- if (!ReaderReceive(resp)) return 0;
+ if (!ReaderReceive(resp, resp_par)) return 0;
sak = resp[0];
-
- // Test if more parts of the uid are comming
+
+ // Test if more parts of the uid are coming
if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) {
- // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
- // http://www.nxp.com/documents/application_note/AN10927.pdf
- memcpy(uid_resp, uid_resp + 1, 3);
- uid_resp_len = 3;
+ // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
+ // http://www.nxp.com/documents/application_note/AN10927.pdf
+ uid_resp[0] = uid_resp[1];
+ uid_resp[1] = uid_resp[2];
+ uid_resp[2] = uid_resp[3];
+
+ uid_resp_len = 3;
}
if(uid_ptr) {
p_hi14a_card->ats_len = 0;
}
- if( (sak & 0x20) == 0) {
- return 2; // non iso14443a compliant tag
- }
-
- // Request for answer to select
- AppendCrc14443a(rats, 2);
- ReaderTransmit(rats, sizeof(rats), NULL);
-
- if (!(len = ReaderReceive(resp))) return 0;
+ // non iso14443a compliant tag
+ if( (sak & 0x20) == 0) return 2;
+
+ // Request for answer to select
+ AppendCrc14443a(rats, 2);
+ ReaderTransmit(rats, sizeof(rats), NULL);
+
+ if (!(len = ReaderReceive(resp, resp_par))) return 0;
- if(p_hi14a_card) {
- memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats));
- p_hi14a_card->ats_len = len;
- }
+
+ if(p_hi14a_card) {
+ memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats));
+ p_hi14a_card->ats_len = len;
+ }
- // reset the PCB block number
- iso14_pcb_blocknum = 0;
- return 1;
+ // reset the PCB block number
+ iso14_pcb_blocknum = 0;
+ return 1;
}
void iso14443a_setup(uint8_t fpga_minor_mode) {
+ FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
// Set up the synchronous serial port
FpgaSetupSsc();
// connect Demodulated Signal to ADC:
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
// Signal field is on with the appropriate LED
- if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD
- || fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN) {
+ if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD || fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN) {
LED_D_ON();
} else {
LED_D_OFF();
DemodReset();
UartReset();
NextTransferTime = 2*DELAY_ARM2AIR_AS_READER;
- iso14a_set_timeout(1050); // 10ms default
+ iso14a_set_timeout(1050); // 10ms default 10*105 =
}
-int iso14_apdu(uint8_t * cmd, size_t cmd_len, void * data) {
+int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) {
+ uint8_t parity[MAX_PARITY_SIZE];
uint8_t real_cmd[cmd_len+4];
real_cmd[0] = 0x0a; //I-Block
// put block number into the PCB
AppendCrc14443a(real_cmd,cmd_len+2);
ReaderTransmit(real_cmd, cmd_len+4, NULL);
- size_t len = ReaderReceive(data);
+ size_t len = ReaderReceive(data, parity);
uint8_t * data_bytes = (uint8_t *) data;
if (!len)
return 0; //DATA LINK ERROR
size_t lenbits = c->arg[2];
uint32_t arg0 = 0;
byte_t buf[USB_CMD_DATA_SIZE];
+ uint8_t par[MAX_PARITY_SIZE];
if(param & ISO14A_CONNECT) {
iso14a_clear_trace();
}
if(param & ISO14A_SET_TIMEOUT) {
- iso14a_timeout = c->arg[2];
+ iso14a_set_timeout(c->arg[2]);
}
if(param & ISO14A_APDU) {
if(param & ISO14A_APPEND_CRC) {
AppendCrc14443a(cmd,len);
len += 2;
- lenbits += 16;
+ if (lenbits) lenbits += 16;
}
- if(lenbits>0) {
-
- ReaderTransmitBitsPar(cmd,lenbits,GetParity(cmd,lenbits/8), NULL);
+ if(lenbits>0) {
+ GetParity(cmd, lenbits/8, par);
+ ReaderTransmitBitsPar(cmd, lenbits, par, NULL);
} else {
ReaderTransmit(cmd,len, NULL);
}
- arg0 = ReaderReceive(buf);
+ arg0 = ReaderReceive(buf, par);
cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
}
uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
static uint8_t mf_nr_ar3;
- uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
+ uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + RECV_RESP_OFFSET);
+ uint8_t* receivedAnswerPar = (((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET);
iso14a_clear_trace();
iso14a_set_tracing(TRUE);
byte_t nt_diff = 0;
- byte_t par = 0;
- //byte_t par_mask = 0xff;
+ uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
static byte_t par_low = 0;
bool led_on = TRUE;
- uint8_t uid[10];
+ uint8_t uid[10] ={0};
uint32_t cuid;
- uint32_t nt, previous_nt;
+ uint32_t nt = 0;
+ uint32_t previous_nt = 0;
static uint32_t nt_attacked = 0;
- byte_t par_list[8] = {0,0,0,0,0,0,0,0};
- byte_t ks_list[8] = {0,0,0,0,0,0,0,0};
+ byte_t par_list[8] = {0x00};
+ byte_t ks_list[8] = {0x00};
static uint32_t sync_time;
static uint32_t sync_cycles;
uint16_t consecutive_resyncs = 0;
int isOK = 0;
-
-
if (first_try) {
mf_nr_ar3 = 0;
iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
sync_cycles = 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
nt_attacked = 0;
nt = 0;
- par = 0;
+ par[0] = 0;
}
else {
// we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
- // nt_attacked = prng_successor(nt_attacked, 1);
mf_nr_ar3++;
mf_nr_ar[3] = mf_nr_ar3;
- par = par_low;
+ par[0] = par_low;
}
LED_A_ON();
ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
// Receive the (4 Byte) "random" nonce
- if (!ReaderReceive(receivedAnswer)) {
+ if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
continue;
}
consecutive_resyncs = 0;
// Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
- if (ReaderReceive(receivedAnswer))
+ if (ReaderReceive(receivedAnswer, receivedAnswerPar))
{
catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
if (nt_diff == 0)
{
- par_low = par & 0x07; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
+ par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
}
led_on = !led_on;
if(led_on) LED_B_ON(); else LED_B_OFF();
- par_list[nt_diff] = par;
+ par_list[nt_diff] = SwapBits(par[0], 8);
ks_list[nt_diff] = receivedAnswer[0] ^ 0x05;
// Test if the information is complete
nt_diff = (nt_diff + 1) & 0x07;
mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5);
- par = par_low;
+ par[0] = par_low;
} else {
if (nt_diff == 0 && first_try)
{
- par++;
+ par[0]++;
} else {
- par = (((par >> 3) + 1) << 3) | par_low;
+ par[0] = ((par[0] & 0x1F) + 1) | par_low;
}
}
}
int res;
uint32_t selTimer = 0;
uint32_t authTimer = 0;
- uint32_t par = 0;
- int len = 0;
+ uint16_t len = 0;
uint8_t cardWRBL = 0;
uint8_t cardAUTHSC = 0;
uint8_t cardAUTHKEY = 0xff; // no authentication
struct Crypto1State *pcs;
pcs = &mpcs;
uint32_t numReads = 0;//Counts numer of times reader read a block
- uint8_t* receivedCmd = eml_get_bigbufptr_recbuf();
- uint8_t *response = eml_get_bigbufptr_sendbuf();
+ uint8_t* receivedCmd = get_bigbufptr_recvcmdbuf();
+ uint8_t* receivedCmd_par = receivedCmd + MAX_FRAME_SIZE;
+ uint8_t* response = get_bigbufptr_recvrespbuf();
+ uint8_t* response_par = response + MAX_FRAME_SIZE;
uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
if (MF_DBGLEVEL >= 1) {
if (!_7BUID) {
- Dbprintf("4B UID: %02x%02x%02x%02x",rUIDBCC1[0] , rUIDBCC1[1] , rUIDBCC1[2] , rUIDBCC1[3]);
+ Dbprintf("4B UID: %02x%02x%02x%02x",
+ rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3]);
} else {
- Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",rUIDBCC1[0] , rUIDBCC1[1] , rUIDBCC1[2] , rUIDBCC1[3],rUIDBCC2[0],rUIDBCC2[1] ,rUIDBCC2[2] , rUIDBCC2[3]);
+ Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",
+ rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3],
+ rUIDBCC2[0], rUIDBCC2[1] ,rUIDBCC2[2], rUIDBCC2[3]);
}
}
//Now, get data
- res = EmGetCmd(receivedCmd, &len);
+ res = EmGetCmd(receivedCmd, &len, receivedCmd_par);
if (res == 2) { //Field is off!
cardSTATE = MFEMUL_NOFIELD;
LEDsoff();
case MFEMUL_NOFIELD:
case MFEMUL_HALTED:
case MFEMUL_IDLE:{
- LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
- LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+ LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
break;
}
case MFEMUL_SELECT1:{
// select card
if (len == 9 &&
(receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) {
- EmSendCmd(_7BUID?rSAK1:rSAK, sizeof(_7BUID?rSAK1:rSAK));
+ EmSendCmd(_7BUID?rSAK1:rSAK, _7BUID?sizeof(rSAK1):sizeof(rSAK));
cuid = bytes_to_num(rUIDBCC1, 4);
if (!_7BUID) {
cardSTATE = MFEMUL_WORK;
if( len != 8)
{
cardSTATE_TO_IDLE();
- LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
- LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+ LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
break;
}
uint32_t ar = bytes_to_num(receivedCmd, 4);
- uint32_t nr= bytes_to_num(&receivedCmd[4], 4);
+ uint32_t nr = bytes_to_num(&receivedCmd[4], 4);
//Collect AR/NR
if(ar_nr_collected < 2){
// test if auth OK
if (cardRr != prng_successor(nonce, 64)){
- if (MF_DBGLEVEL >= 2) Dbprintf("AUTH FAILED. cardRr=%08x, succ=%08x",cardRr, prng_successor(nonce, 64));
+ if (MF_DBGLEVEL >= 2) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
+ cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
+ cardRr, prng_successor(nonce, 64));
// Shouldn't we respond anything here?
// Right now, we don't nack or anything, which causes the
// reader to do a WUPA after a while. /Martin
+ // -- which is the correct response. /piwi
cardSTATE_TO_IDLE();
- LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
- LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+ LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
break;
}
EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
LED_C_ON();
cardSTATE = MFEMUL_WORK;
- if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED. sector=%d, key=%d time=%d", cardAUTHSC, cardAUTHKEY, GetTickCount() - authTimer);
+ if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
+ cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
+ GetTickCount() - authTimer);
break;
}
case MFEMUL_SELECT2:{
if (!len) {
- LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
- LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+ LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
break;
}
if (len == 2 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x20)) {
// i guess there is a command). go into the work state.
if (len != 4) {
- LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
- LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+ LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
break;
}
cardSTATE = MFEMUL_WORK;
case MFEMUL_WORK:{
if (len == 0) {
- LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
- LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+ LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
break;
}
crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
if (!encrypted_data) { // first authentication
- if (MF_DBGLEVEL >= 2) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
+ if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
crypto1_word(pcs, cuid ^ nonce, 0);//Update crypto state
num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce
} else { // nested authentication
- if (MF_DBGLEVEL >= 2) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
+ if (MF_DBGLEVEL >= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0);
num_to_bytes(ans, 4, rAUTH_AT);
}
}
if(len != 4) {
- LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
- LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+ LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
break;
}
if(receivedCmd[0] == 0x30 // read block
|| receivedCmd[0] == 0xA0 // write block
- || receivedCmd[0] == 0xC0
- || receivedCmd[0] == 0xC1
- || receivedCmd[0] == 0xC2 // inc dec restore
+ || receivedCmd[0] == 0xC0 // inc
+ || receivedCmd[0] == 0xC1 // dec
+ || receivedCmd[0] == 0xC2 // restore
|| receivedCmd[0] == 0xB0) { // transfer
if (receivedCmd[1] >= 16 * 4) {
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
}
// read block
if (receivedCmd[0] == 0x30) {
- if (MF_DBGLEVEL >= 2) {
+ if (MF_DBGLEVEL >= 4) {
Dbprintf("Reader reading block %d (0x%02x)",receivedCmd[1],receivedCmd[1]);
}
emlGetMem(response, receivedCmd[1], 1);
AppendCrc14443a(response, 16);
- mf_crypto1_encrypt(pcs, response, 18, &par);
- EmSendCmdPar(response, 18, par);
+ mf_crypto1_encrypt(pcs, response, 18, response_par);
+ EmSendCmdPar(response, 18, response_par);
numReads++;
if(exitAfterNReads > 0 && numReads == exitAfterNReads) {
Dbprintf("%d reads done, exiting", numReads);
}
// write block
if (receivedCmd[0] == 0xA0) {
- if (MF_DBGLEVEL >= 2) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd[1],receivedCmd[1]);
+ if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd[1],receivedCmd[1]);
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
cardSTATE = MFEMUL_WRITEBL2;
cardWRBL = receivedCmd[1];
}
// increment, decrement, restore
if (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2) {
- if (MF_DBGLEVEL >= 2) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
+ if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
if (emlCheckValBl(receivedCmd[1])) {
if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
}
// transfer
if (receivedCmd[0] == 0xB0) {
- if (MF_DBGLEVEL >= 2) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
+ if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1]))
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
else
LED_C_OFF();
cardSTATE = MFEMUL_HALTED;
if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer);
- LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
- LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+ LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
break;
}
// RATS
cardSTATE = MFEMUL_WORK;
} else {
cardSTATE_TO_IDLE();
- LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
- LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+ LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
}
break;
}
cardSTATE_TO_IDLE();
break;
}
- LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
- LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+ LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
cardINTREG = cardINTREG + ans;
cardSTATE = MFEMUL_WORK;
break;
cardSTATE_TO_IDLE();
break;
}
- LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
- LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+ LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
cardINTREG = cardINTREG - ans;
cardSTATE = MFEMUL_WORK;
break;
cardSTATE_TO_IDLE();
break;
}
- LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
- LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+ LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
cardSTATE = MFEMUL_WORK;
break;
}
// C(red) A(yellow) B(green)
LEDsoff();
// init trace buffer
- iso14a_clear_trace();
+ iso14a_clear_trace();
+ iso14a_set_tracing(TRUE);
// The command (reader -> tag) that we're receiving.
// The length of a received command will in most cases be no more than 18 bytes.
// So 32 should be enough!
uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
+ uint8_t *receivedCmdPar = ((uint8_t *)BigBuf) + RECV_CMD_PAR_OFFSET;
// The response (tag -> reader) that we're receiving.
- uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET);
-
+ uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RESP_OFFSET);
+ uint8_t *receivedResponsePar = ((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET;
+
// As we receive stuff, we copy it from receivedCmd or receivedResponse
// into trace, along with its length and other annotations.
//uint8_t *trace = (uint8_t *)BigBuf;
iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
// Set up the demodulator for tag -> reader responses.
- Demod.output = receivedResponse;
+ DemodInit(receivedResponse, receivedResponsePar);
// Set up the demodulator for the reader -> tag commands
- Uart.output = receivedCmd;
+ UartInit(receivedCmd, receivedCmdPar);
// Setup for the DMA.
FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
if(MillerDecoding(readerdata, (sniffCounter-1)*4)) {
LED_C_INV();
- if (MfSniffLogic(receivedCmd, Uart.len, Uart.parityBits, Uart.bitCount, TRUE)) break;
+ if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, TRUE)) break;
/* And ready to receive another command. */
UartReset();
if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) {
LED_C_INV();
- if (MfSniffLogic(receivedResponse, Demod.len, Demod.parityBits, Demod.bitCount, FALSE)) break;
+ if (MfSniffLogic(receivedResponse, Demod.len, Demod.parity, Demod.bitCount, FALSE)) break;
// And ready to receive another response.
DemodReset();