]> cvs.zerfleddert.de Git - proxmark3-svn/blobdiff - armsrc/lfops.c
CHG: just changed the comment.
[proxmark3-svn] / armsrc / lfops.c
index 8ea9b317fc00d6374016f6871e2ece5e9a5cf310..5931c76af9554010cdac19df4b6cea333edeae9c 100644 (file)
 #include "crc16.h"
 #include "string.h"
 #include "lfdemod.h"
+#include "lfsampling.h"
+#include "protocols.h"
+#include "usb_cdc.h" // for usb_poll_validate_length
 
+#ifndef SHORT_COIL
+# define SHORT_COIL()  LOW(GPIO_SSC_DOUT)
+#endif
+#ifndef OPEN_COIL
+# define OPEN_COIL()   HIGH(GPIO_SSC_DOUT)
+#endif
 
 /**
-* Does the sample acquisition. If threshold is specified, the actual sampling
-* is not commenced until the threshold has been reached.
-* @param trigger_threshold - the threshold
-* @param silent - is true, now outputs are made. If false, dbprints the status
-*/
-void DoAcquisition125k_internal(int trigger_threshold,bool silent)
-{
-    uint8_t *dest = (uint8_t *)BigBuf;
-    int n = sizeof(BigBuf);
-    int i;
-
-    memset(dest, 0, n);
-    i = 0;
-    for(;;) {
-        if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
-            AT91C_BASE_SSC->SSC_THR = 0x43;
-            LED_D_ON();
-        }
-        if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
-            dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
-            LED_D_OFF();
-            if (trigger_threshold != -1 && dest[i] < trigger_threshold)
-                continue;
-            else
-                trigger_threshold = -1;
-            if (++i >= n) break;
-        }
-    }
-    if(!silent)
-    {
-        Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
-                 dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]);
-
-    }
-}
-/**
-* Perform sample aquisition.
-*/
-void DoAcquisition125k(int trigger_threshold)
-{
-    DoAcquisition125k_internal(trigger_threshold, false);
-}
-
-/**
-* Setup the FPGA to listen for samples. This method downloads the FPGA bitstream
-* if not already loaded, sets divisor and starts up the antenna.
-* @param divisor : 1, 88> 255 or negative ==> 134.8 KHz
-*                                 0 or 95 ==> 125 KHz
-*
-**/
-void LFSetupFPGAForADC(int divisor, bool lf_field)
-{
-    FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
-    if ( (divisor == 1) || (divisor < 0) || (divisor > 255) )
-        FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
-    else if (divisor == 0)
-        FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-    else
-        FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor);
-
-    FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | (lf_field ? FPGA_LF_ADC_READER_FIELD : 0));
-
-    // Connect the A/D to the peak-detected low-frequency path.
-    SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
-    // Give it a bit of time for the resonant antenna to settle.
-    SpinDelay(50);
-    // Now set up the SSC to get the ADC samples that are now streaming at us.
-    FpgaSetupSsc();
-}
-/**
-* Initializes the FPGA, and acquires the samples.
-**/
-void AcquireRawAdcSamples125k(int divisor)
-{
-    LFSetupFPGAForADC(divisor, true);
-    // Now call the acquisition routine
-    DoAcquisition125k_internal(-1,false);
-}
-/**
-* Initializes the FPGA for snoop-mode, and acquires the samples.
-**/
-
-void SnoopLFRawAdcSamples(int divisor, int trigger_threshold)
-{
-    LFSetupFPGAForADC(divisor, false);
-    DoAcquisition125k(trigger_threshold);
-}
-
-void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command)
+ * Function to do a modulation and then get samples.
+ * @param delay_off
+ * @param periods  0xFFFF0000 is period_0,  0x0000FFFF is period_1
+ * @param useHighFreg
+ * @param command
+ */
+void ModThenAcquireRawAdcSamples125k(uint32_t delay_off, uint32_t periods, uint32_t useHighFreq, uint8_t *command)
 {
-
-    /* Make sure the tag is reset */
-    FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
-    FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
-    SpinDelay(2500);
-
-
-    int divisor_used = 95; // 125 KHz
-    // see if 'h' was specified
-
-    if (command[strlen((char *) command) - 1] == 'h')
-        divisor_used = 88; // 134.8 KHz
-
-
-    FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
-    FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
-    // Give it a bit of time for the resonant antenna to settle.
-    SpinDelay(50);
-
-    // And a little more time for the tag to fully power up
-    SpinDelay(2000);
-
-    // Now set up the SSC to get the ADC samples that are now streaming at us.
-    FpgaSetupSsc();
-
-    // now modulate the reader field
-    while(*command != '\0' && *command != ' ') {
-        FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
-        LED_D_OFF();
-        SpinDelayUs(delay_off);
-        FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
-
-        FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
-        LED_D_ON();
-        if(*(command++) == '0')
-            SpinDelayUs(period_0);
-        else
-            SpinDelayUs(period_1);
-    }
-    FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
-    LED_D_OFF();
-    SpinDelayUs(delay_off);
-    FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
-
-    FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
-
-    // now do the read
-    DoAcquisition125k(-1);
+       /* Make sure the tag is reset */
+       FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+       SpinDelay(200);
+
+       uint16_t period_0 =  periods >> 16;
+       uint16_t period_1 =  periods & 0xFFFF;
+       
+       // 95 == 125 KHz  88 == 124.8 KHz
+       int divisor_used = (useHighFreq) ? 88 : 95;
+       sample_config sc = { 0,0,1, divisor_used, 0};
+       setSamplingConfig(&sc);
+
+       //clear read buffer
+       BigBuf_Clear_keep_EM();
+
+       LFSetupFPGAForADC(sc.divisor, 1);
+
+       // And a little more time for the tag to fully power up
+       SpinDelay(50);
+
+       // now modulate the reader field
+       while(*command != '\0' && *command != ' ') {
+               FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+               LED_D_OFF();
+               WaitUS(delay_off);
+               FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
+
+               FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+               LED_D_ON();
+               if(*(command++) == '0')
+                       WaitUS(period_0);
+               else
+                       WaitUS(period_1);
+       }
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+       LED_D_OFF();
+       WaitUS(delay_off);
+       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+
+       // now do the read
+       DoAcquisition_config(false);
 }
 
 /* blank r/w tag data stream
@@ -169,227 +91,232 @@ void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1,
 */
 void ReadTItag(void)
 {
-    // some hardcoded initial params
-    // when we read a TI tag we sample the zerocross line at 2Mhz
-    // TI tags modulate a 1 as 16 cycles of 123.2Khz
-    // TI tags modulate a 0 as 16 cycles of 134.2Khz
- #define FSAMPLE 2000000
- #define FREQLO 123200
- #define FREQHI 134200
-
-    signed char *dest = (signed char *)BigBuf;
-    int n = sizeof(BigBuf);
-    // 128 bit shift register [shift3:shift2:shift1:shift0]
-    uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
-
-    int i, cycles=0, samples=0;
-    // how many sample points fit in 16 cycles of each frequency
-    uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
-    // when to tell if we're close enough to one freq or another
-    uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
-
-    // TI tags charge at 134.2Khz
-    FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
-    FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
-
-    // Place FPGA in passthrough mode, in this mode the CROSS_LO line
-    // connects to SSP_DIN and the SSP_DOUT logic level controls
-    // whether we're modulating the antenna (high)
-    // or listening to the antenna (low)
-    FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
-
-    // get TI tag data into the buffer
-    AcquireTiType();
-
-    FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
-
-    for (i=0; i<n-1; i++) {
-        // count cycles by looking for lo to hi zero crossings
-        if ( (dest[i]<0) && (dest[i+1]>0) ) {
-            cycles++;
-            // after 16 cycles, measure the frequency
-            if (cycles>15) {
-                cycles=0;
-                samples=i-samples; // number of samples in these 16 cycles
-
-                // TI bits are coming to us lsb first so shift them
-                // right through our 128 bit right shift register
-                shift0 = (shift0>>1) | (shift1 << 31);
-                shift1 = (shift1>>1) | (shift2 << 31);
-                shift2 = (shift2>>1) | (shift3 << 31);
-                shift3 >>= 1;
-
-                // check if the cycles fall close to the number
-                // expected for either the low or high frequency
-                if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
-                    // low frequency represents a 1
-                    shift3 |= (1<<31);
-                } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
-                    // high frequency represents a 0
-                } else {
-                    // probably detected a gay waveform or noise
-                    // use this as gaydar or discard shift register and start again
-                    shift3 = shift2 = shift1 = shift0 = 0;
-                }
-                samples = i;
-
-                // for each bit we receive, test if we've detected a valid tag
-
-                // if we see 17 zeroes followed by 6 ones, we might have a tag
-                // remember the bits are backwards
-                if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
-                    // if start and end bytes match, we have a tag so break out of the loop
-                    if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
-                        cycles = 0xF0B; //use this as a flag (ugly but whatever)
-                        break;
-                    }
-                }
-            }
-        }
-    }
-
-    // if flag is set we have a tag
-    if (cycles!=0xF0B) {
-        DbpString("Info: No valid tag detected.");
-    } else {
-        // put 64 bit data into shift1 and shift0
-        shift0 = (shift0>>24) | (shift1 << 8);
-        shift1 = (shift1>>24) | (shift2 << 8);
-
-        // align 16 bit crc into lower half of shift2
-        shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
-
-        // if r/w tag, check ident match
+       StartTicks();
+       // some hardcoded initial params
+       // when we read a TI tag we sample the zerocross line at 2Mhz
+       // TI tags modulate a 1 as 16 cycles of 123.2Khz
+       // TI tags modulate a 0 as 16 cycles of 134.2Khz
+       #define FSAMPLE 2000000
+       #define FREQLO 123200
+       #define FREQHI 134200
+
+       signed char *dest = (signed char *)BigBuf_get_addr();
+       uint16_t n = BigBuf_max_traceLen();
+       // 128 bit shift register [shift3:shift2:shift1:shift0]
+       uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
+
+       int i, cycles=0, samples=0;
+       // how many sample points fit in 16 cycles of each frequency
+       uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
+       // when to tell if we're close enough to one freq or another
+       uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
+
+       // TI tags charge at 134.2Khz
+       FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
+
+       // Place FPGA in passthrough mode, in this mode the CROSS_LO line
+       // connects to SSP_DIN and the SSP_DOUT logic level controls
+       // whether we're modulating the antenna (high)
+       // or listening to the antenna (low)
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
+
+       // get TI tag data into the buffer
+       AcquireTiType();
+
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+
+       for (i=0; i<n-1; i++) {
+               // count cycles by looking for lo to hi zero crossings
+               if ( (dest[i]<0) && (dest[i+1]>0) ) {
+                       cycles++;
+                       // after 16 cycles, measure the frequency
+                       if (cycles>15) {
+                               cycles=0;
+                               samples=i-samples; // number of samples in these 16 cycles
+
+                               // TI bits are coming to us lsb first so shift them
+                               // right through our 128 bit right shift register
+                               shift0 = (shift0>>1) | (shift1 << 31);
+                               shift1 = (shift1>>1) | (shift2 << 31);
+                               shift2 = (shift2>>1) | (shift3 << 31);
+                               shift3 >>= 1;
+
+                               // check if the cycles fall close to the number
+                               // expected for either the low or high frequency
+                               if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
+                                       // low frequency represents a 1
+                                       shift3 |= (1<<31);
+                               } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
+                                       // high frequency represents a 0
+                               } else {
+                                       // probably detected a gay waveform or noise
+                                       // use this as gaydar or discard shift register and start again
+                                       shift3 = shift2 = shift1 = shift0 = 0;
+                               }
+                               samples = i;
+
+                               // for each bit we receive, test if we've detected a valid tag
+
+                               // if we see 17 zeroes followed by 6 ones, we might have a tag
+                               // remember the bits are backwards
+                               if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
+                                       // if start and end bytes match, we have a tag so break out of the loop
+                                       if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
+                                               cycles = 0xF0B; //use this as a flag (ugly but whatever)
+                                               break;
+                                       }
+                               }
+                       }
+               }
+       }
+
+       // if flag is set we have a tag
+       if (cycles!=0xF0B) {
+               DbpString("Info: No valid tag detected.");
+       } else {
+               // put 64 bit data into shift1 and shift0
+               shift0 = (shift0>>24) | (shift1 << 8);
+               shift1 = (shift1>>24) | (shift2 << 8);
+
+               // align 16 bit crc into lower half of shift2
+               shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
+
+               // if r/w tag, check ident match
                if (shift3 & (1<<15) ) {
-            DbpString("Info: TI tag is rewriteable");
-            // only 15 bits compare, last bit of ident is not valid
+                       DbpString("Info: TI tag is rewriteable");
+                       // only 15 bits compare, last bit of ident is not valid
                        if (((shift3 >> 16) ^ shift0) & 0x7fff ) {
-                DbpString("Error: Ident mismatch!");
-            } else {
-                DbpString("Info: TI tag ident is valid");
-            }
-        } else {
-            DbpString("Info: TI tag is readonly");
-        }
-
-        // WARNING the order of the bytes in which we calc crc below needs checking
-        // i'm 99% sure the crc algorithm is correct, but it may need to eat the
-        // bytes in reverse or something
-        // calculate CRC
-        uint32_t crc=0;
-
-        crc = update_crc16(crc, (shift0)&0xff);
-        crc = update_crc16(crc, (shift0>>8)&0xff);
-        crc = update_crc16(crc, (shift0>>16)&0xff);
-        crc = update_crc16(crc, (shift0>>24)&0xff);
-        crc = update_crc16(crc, (shift1)&0xff);
-        crc = update_crc16(crc, (shift1>>8)&0xff);
-        crc = update_crc16(crc, (shift1>>16)&0xff);
-        crc = update_crc16(crc, (shift1>>24)&0xff);
-
-        Dbprintf("Info: Tag data: %x%08x, crc=%x",
-                 (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
-        if (crc != (shift2&0xffff)) {
-            Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
-        } else {
-            DbpString("Info: CRC is good");
-        }
-    }
+                               DbpString("Error: Ident mismatch!");
+                       } else {
+                               DbpString("Info: TI tag ident is valid");
+                       }
+               } else {
+                       DbpString("Info: TI tag is readonly");
+               }
+
+               // WARNING the order of the bytes in which we calc crc below needs checking
+               // i'm 99% sure the crc algorithm is correct, but it may need to eat the
+               // bytes in reverse or something
+               // calculate CRC
+               uint32_t crc=0;
+
+               crc = update_crc16(crc, (shift0)&0xff);
+               crc = update_crc16(crc, (shift0>>8)&0xff);
+               crc = update_crc16(crc, (shift0>>16)&0xff);
+               crc = update_crc16(crc, (shift0>>24)&0xff);
+               crc = update_crc16(crc, (shift1)&0xff);
+               crc = update_crc16(crc, (shift1>>8)&0xff);
+               crc = update_crc16(crc, (shift1>>16)&0xff);
+               crc = update_crc16(crc, (shift1>>24)&0xff);
+
+               Dbprintf("Info: Tag data: %x%08x, crc=%x", (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
+               if (crc != (shift2&0xffff)) {
+                       Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
+               } else {
+                       DbpString("Info: CRC is good");
+               }
+       }
+       StopTicks();
 }
 
 void WriteTIbyte(uint8_t b)
 {
-    int i = 0;
-
-    // modulate 8 bits out to the antenna
-    for (i=0; i<8; i++)
-    {
-        if (b&(1<<i)) {
-            // stop modulating antenna
-            LOW(GPIO_SSC_DOUT);
-            SpinDelayUs(1000);
-            // modulate antenna
-            HIGH(GPIO_SSC_DOUT);
-            SpinDelayUs(1000);
-        } else {
-            // stop modulating antenna
-            LOW(GPIO_SSC_DOUT);
-            SpinDelayUs(300);
-            // modulate antenna
-            HIGH(GPIO_SSC_DOUT);
-            SpinDelayUs(1700);
-        }
-    }
+       int i = 0;
+
+       // modulate 8 bits out to the antenna
+       for (i=0; i<8; i++)
+       {
+               if ( b & ( 1 << i ) ) {
+                       // stop modulating antenna 1ms
+                       LOW(GPIO_SSC_DOUT);
+                       WaitUS(1000);
+                       // modulate antenna 1ms
+                       HIGH(GPIO_SSC_DOUT); 
+                       WaitUS(1000);
+               } else {
+                       // stop modulating antenna 1ms
+                       LOW(GPIO_SSC_DOUT);
+                       WaitUS(300);
+                       // modulate antenna 1m
+                       HIGH(GPIO_SSC_DOUT);
+                       WaitUS(1700);
+               }
+       }
 }
 
 void AcquireTiType(void)
 {
-    int i, j, n;
-    // tag transmission is <20ms, sampling at 2M gives us 40K samples max
-    // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
- #define TIBUFLEN 1250
-
-    // clear buffer
-    memset(BigBuf,0,sizeof(BigBuf));
-
-    // Set up the synchronous serial port
-    AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
-    AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
-
-    // steal this pin from the SSP and use it to control the modulation
-    AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
-    AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
-
-    AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
-    AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
-
-    // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
-    // 48/2 = 24 MHz clock must be divided by 12
-    AT91C_BASE_SSC->SSC_CMR = 12;
-
-    AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
-    AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
-    AT91C_BASE_SSC->SSC_TCMR = 0;
-    AT91C_BASE_SSC->SSC_TFMR = 0;
-
-    LED_D_ON();
-
-    // modulate antenna
-    HIGH(GPIO_SSC_DOUT);
-
-    // Charge TI tag for 50ms.
-    SpinDelay(50);
-
-    // stop modulating antenna and listen
-    LOW(GPIO_SSC_DOUT);
-
-    LED_D_OFF();
-
-    i = 0;
-    for(;;) {
-        if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
-            BigBuf[i] = AT91C_BASE_SSC->SSC_RHR;       // store 32 bit values in buffer
-            i++; if(i >= TIBUFLEN) break;
-        }
-        WDT_HIT();
-    }
-
-    // return stolen pin to SSP
-    AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
-    AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
-
-    char *dest = (char *)BigBuf;
-    n = TIBUFLEN*32;
-    // unpack buffer
-    for (i=TIBUFLEN-1; i>=0; i--) {
-        for (j=0; j<32; j++) {
-            if(BigBuf[i] & (1 << j)) {
-                dest[--n] = 1;
-            } else {
-                dest[--n] = -1;
-            }
-        }
-    }
+       int i, j, n;
+       // tag transmission is <20ms, sampling at 2M gives us 40K samples max
+       // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
+       #define TIBUFLEN 1250
+
+       // clear buffer
+       uint32_t *buf = (uint32_t *)BigBuf_get_addr();
+
+       //clear buffer now so it does not interfere with timing later
+       BigBuf_Clear_ext(false);
+
+       // Set up the synchronous serial port
+       AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
+       AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
+
+       // steal this pin from the SSP and use it to control the modulation
+       AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
+       AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
+
+       AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
+       AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
+
+       // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
+       // 48/2 = 24 MHz clock must be divided by 12
+       AT91C_BASE_SSC->SSC_CMR = 12;
+
+       AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
+       AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
+       AT91C_BASE_SSC->SSC_TCMR = 0;
+       AT91C_BASE_SSC->SSC_TFMR = 0;
+       // iceman, FpgaSetupSsc() ?? the code above? can it be replaced?
+       LED_D_ON();
+
+       // modulate antenna
+       HIGH(GPIO_SSC_DOUT);
+
+       // Charge TI tag for 50ms.
+       WaitMS(50);
+
+       // stop modulating antenna and listen
+       LOW(GPIO_SSC_DOUT);
+
+       LED_D_OFF();
+
+       i = 0;
+       for(;;) {
+               if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
+                       buf[i] = AT91C_BASE_SSC->SSC_RHR;       // store 32 bit values in buffer
+                       i++; if(i >= TIBUFLEN) break;
+               }
+               WDT_HIT();
+       }
+
+       // return stolen pin to SSP
+       AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
+       AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
+
+       char *dest = (char *)BigBuf_get_addr();
+       n = TIBUFLEN * 32;
+       
+       // unpack buffer
+       for (i = TIBUFLEN-1; i >= 0; i--) {
+               for (j = 0; j < 32; j++) {
+                       if(buf[i] & (1 << j)) {
+                               dest[--n] = 1;
+                       } else {
+                               dest[--n] = -1;
+                       }
+               }
+       }
 }
 
 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
@@ -397,127 +324,130 @@ void AcquireTiType(void)
 // if not provided a valid crc will be computed from the data and written.
 void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
 {
-    FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
-    if(crc == 0) {
-        crc = update_crc16(crc, (idlo)&0xff);
-        crc = update_crc16(crc, (idlo>>8)&0xff);
-        crc = update_crc16(crc, (idlo>>16)&0xff);
-        crc = update_crc16(crc, (idlo>>24)&0xff);
-        crc = update_crc16(crc, (idhi)&0xff);
-        crc = update_crc16(crc, (idhi>>8)&0xff);
-        crc = update_crc16(crc, (idhi>>16)&0xff);
-        crc = update_crc16(crc, (idhi>>24)&0xff);
-    }
-    Dbprintf("Writing to tag: %x%08x, crc=%x",
-             (unsigned int) idhi, (unsigned int) idlo, crc);
-
-    // TI tags charge at 134.2Khz
-    FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
-    // Place FPGA in passthrough mode, in this mode the CROSS_LO line
-    // connects to SSP_DIN and the SSP_DOUT logic level controls
-    // whether we're modulating the antenna (high)
-    // or listening to the antenna (low)
-    FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
-    LED_A_ON();
-
-    // steal this pin from the SSP and use it to control the modulation
-    AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
-    AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
-
-    // writing algorithm:
-    // a high bit consists of a field off for 1ms and field on for 1ms
-    // a low bit consists of a field off for 0.3ms and field on for 1.7ms
-    // initiate a charge time of 50ms (field on) then immediately start writing bits
-    // start by writing 0xBB (keyword) and 0xEB (password)
-    // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
-    // finally end with 0x0300 (write frame)
-    // all data is sent lsb firts
-    // finish with 15ms programming time
-
-    // modulate antenna
-    HIGH(GPIO_SSC_DOUT);
-    SpinDelay(50);     // charge time
-
-    WriteTIbyte(0xbb); // keyword
-    WriteTIbyte(0xeb); // password
-    WriteTIbyte( (idlo    )&0xff );
-    WriteTIbyte( (idlo>>8 )&0xff );
-    WriteTIbyte( (idlo>>16)&0xff );
-    WriteTIbyte( (idlo>>24)&0xff );
-    WriteTIbyte( (idhi    )&0xff );
-    WriteTIbyte( (idhi>>8 )&0xff );
-    WriteTIbyte( (idhi>>16)&0xff );
-    WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
-    WriteTIbyte( (crc     )&0xff ); // crc lo
-    WriteTIbyte( (crc>>8  )&0xff ); // crc hi
-    WriteTIbyte(0x00); // write frame lo
-    WriteTIbyte(0x03); // write frame hi
-    HIGH(GPIO_SSC_DOUT);
-    SpinDelay(50);     // programming time
-
-    LED_A_OFF();
-
-    // get TI tag data into the buffer
-    AcquireTiType();
-
-    FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
-    DbpString("Now use tiread to check");
+       StartTicks();
+       FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+       if(crc == 0) {
+               crc = update_crc16(crc, (idlo)&0xff);
+               crc = update_crc16(crc, (idlo>>8)&0xff);
+               crc = update_crc16(crc, (idlo>>16)&0xff);
+               crc = update_crc16(crc, (idlo>>24)&0xff);
+               crc = update_crc16(crc, (idhi)&0xff);
+               crc = update_crc16(crc, (idhi>>8)&0xff);
+               crc = update_crc16(crc, (idhi>>16)&0xff);
+               crc = update_crc16(crc, (idhi>>24)&0xff);
+       }
+       Dbprintf("Writing to tag: %x%08x, crc=%x",      (unsigned int) idhi, (unsigned int) idlo, crc);
+
+       // TI tags charge at 134.2Khz
+       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
+       // Place FPGA in passthrough mode, in this mode the CROSS_LO line
+       // connects to SSP_DIN and the SSP_DOUT logic level controls
+       // whether we're modulating the antenna (high)
+       // or listening to the antenna (low)
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
+       LED_A_ON();
+
+       // steal this pin from the SSP and use it to control the modulation
+       AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
+       AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
+
+       // writing algorithm:
+       // a high bit consists of a field off for 1ms and field on for 1ms
+       // a low bit consists of a field off for 0.3ms and field on for 1.7ms
+       // initiate a charge time of 50ms (field on) then immediately start writing bits
+       // start by writing 0xBB (keyword) and 0xEB (password)
+       // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
+       // finally end with 0x0300 (write frame)
+       // all data is sent lsb first
+       // finish with 15ms programming time
+
+       // modulate antenna
+       HIGH(GPIO_SSC_DOUT);
+       WaitMS(50);     // charge time
+
+       WriteTIbyte(0xbb); // keyword
+       WriteTIbyte(0xeb); // password
+       WriteTIbyte( (idlo    )&0xff );
+       WriteTIbyte( (idlo>>8 )&0xff );
+       WriteTIbyte( (idlo>>16)&0xff );
+       WriteTIbyte( (idlo>>24)&0xff );
+       WriteTIbyte( (idhi    )&0xff );
+       WriteTIbyte( (idhi>>8 )&0xff );
+       WriteTIbyte( (idhi>>16)&0xff );
+       WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
+       WriteTIbyte( (crc     )&0xff ); // crc lo
+       WriteTIbyte( (crc>>8  )&0xff ); // crc hi
+       WriteTIbyte(0x00); // write frame lo
+       WriteTIbyte(0x03); // write frame hi
+       HIGH(GPIO_SSC_DOUT);
+       WaitMS(50);     // programming time
+
+       LED_A_OFF();
+
+       // get TI tag data into the buffer
+       AcquireTiType();
+
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+       DbpString("Now use `lf ti read` to check");
+       StopTicks();
 }
 
 void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
 {
-    int i;
-    uint8_t *tab = (uint8_t *)BigBuf;
-
-    FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
-    FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
-
-    AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
-
-    AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
-    AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
-
-#define SHORT_COIL()   LOW(GPIO_SSC_DOUT)
-#define OPEN_COIL()            HIGH(GPIO_SSC_DOUT)
-
-    i = 0;
-    for(;;) {
-        while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
-            if(BUTTON_PRESS()) {
-                DbpString("Stopped");
-                return;
-            }
-            WDT_HIT();
-        }
-
-        if (ledcontrol)
-            LED_D_ON();
-
-        if(tab[i])
-            OPEN_COIL();
-        else
-            SHORT_COIL();
-
-        if (ledcontrol)
-            LED_D_OFF();
-
-        while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
-            if(BUTTON_PRESS()) {
-                DbpString("Stopped");
-                return;
-            }
-            WDT_HIT();
-        }
-
-        i++;
-        if(i == period) {
-            i = 0;
-            if (gap) {
-                SHORT_COIL();
-                SpinDelayUs(gap);
-            }
-        }
-    }
+       int i = 0;
+       uint8_t *tab = BigBuf_get_addr();
+
+       StartTicks();
+
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_READER_FIELD);
+
+       AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
+       AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
+       AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
+
+       for(;;) {
+               WDT_HIT();
+
+               if (ledcontrol) LED_D_ON();
+                               
+               //wait until SSC_CLK goes HIGH
+               while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
+                       WDT_HIT();
+                       if ( usb_poll_validate_length() || BUTTON_PRESS() ) {
+                               FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+                               LED_D_OFF();
+                               return;                         
+                       }
+               }
+               
+               if(tab[i])
+                       OPEN_COIL();
+               else
+                       SHORT_COIL();
+
+               if (ledcontrol) LED_D_OFF();
+               
+               //wait until SSC_CLK goes LOW
+               while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
+                       WDT_HIT();
+                       if ( usb_poll_validate_length() || BUTTON_PRESS() ) {
+                               FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+                               LED_D_OFF();
+                               return;                         
+                       }
+               }
+
+               i++;
+               if(i == period) {
+                       i = 0;
+                       if (gap) {
+                               WDT_HIT();
+                               SHORT_COIL();
+                               WaitUS(gap);
+                       }
+               }
+       }
+       StopTicks();
 }
 
 #define DEBUG_FRAME_CONTENTS 1
@@ -525,1123 +455,1080 @@ void SimulateTagLowFrequencyBidir(int divisor, int t0)
 {
 }
 
-// compose fc/8 fc/10 waveform
-static void fc(int c, int *n) {
-    uint8_t *dest = (uint8_t *)BigBuf;
-    int idx;
-
-    // for when we want an fc8 pattern every 4 logical bits
-    if(c==0) {
-        dest[((*n)++)]=1;
-        dest[((*n)++)]=1;
-        dest[((*n)++)]=0;
-        dest[((*n)++)]=0;
-        dest[((*n)++)]=0;
-        dest[((*n)++)]=0;
-        dest[((*n)++)]=0;
-        dest[((*n)++)]=0;
-    }
-    // an fc/8  encoded bit is a bit pattern of  11000000  x6 = 48 samples
-    if(c==8) {
-        for (idx=0; idx<6; idx++) {
-            dest[((*n)++)]=1;
-            dest[((*n)++)]=1;
-            dest[((*n)++)]=0;
-            dest[((*n)++)]=0;
-            dest[((*n)++)]=0;
-            dest[((*n)++)]=0;
-            dest[((*n)++)]=0;
-            dest[((*n)++)]=0;
-        }
-    }
-
-    // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
-    if(c==10) {
-        for (idx=0; idx<5; idx++) {
-            dest[((*n)++)]=1;
-            dest[((*n)++)]=1;
-            dest[((*n)++)]=1;
-            dest[((*n)++)]=0;
-            dest[((*n)++)]=0;
-            dest[((*n)++)]=0;
-            dest[((*n)++)]=0;
-            dest[((*n)++)]=0;
-            dest[((*n)++)]=0;
-            dest[((*n)++)]=0;
-        }
-    }
+// compose fc/8 fc/10 waveform (FSK2)
+static void fc(int c, int *n)
+{
+       uint8_t *dest = BigBuf_get_addr();
+       int idx;
+
+       // for when we want an fc8 pattern every 4 logical bits
+       if(c==0) {
+               dest[((*n)++)]=1;
+               dest[((*n)++)]=1;
+               dest[((*n)++)]=1;
+               dest[((*n)++)]=1;
+               dest[((*n)++)]=0;
+               dest[((*n)++)]=0;
+               dest[((*n)++)]=0;
+               dest[((*n)++)]=0;
+       }
+
+       //      an fc/8  encoded bit is a bit pattern of  11110000  x6 = 48 samples
+       if(c==8) {
+               for (idx=0; idx<6; idx++) {
+                       dest[((*n)++)]=1;
+                       dest[((*n)++)]=1;
+                       dest[((*n)++)]=1;
+                       dest[((*n)++)]=1;
+                       dest[((*n)++)]=0;
+                       dest[((*n)++)]=0;
+                       dest[((*n)++)]=0;
+                       dest[((*n)++)]=0;
+               }
+       }
+
+       //      an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
+       if(c==10) {
+               for (idx=0; idx<5; idx++) {
+                       dest[((*n)++)]=1;
+                       dest[((*n)++)]=1;
+                       dest[((*n)++)]=1;
+                       dest[((*n)++)]=1;
+                       dest[((*n)++)]=1;
+                       dest[((*n)++)]=0;
+                       dest[((*n)++)]=0;
+                       dest[((*n)++)]=0;
+                       dest[((*n)++)]=0;
+                       dest[((*n)++)]=0;
+               }
+       }
+}
+// compose fc/X fc/Y waveform (FSKx)
+static void fcAll(uint8_t fc, int *n, uint8_t clock, uint16_t *modCnt) 
+{
+       uint8_t *dest = BigBuf_get_addr();
+       uint8_t halfFC = fc/2;
+       uint8_t wavesPerClock = clock/fc;
+       uint8_t mod = clock % fc;    //modifier
+       uint8_t modAdj = fc/mod;     //how often to apply modifier
+       bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk=TRUE;
+       // loop through clock - step field clock
+       for (uint8_t idx=0; idx < wavesPerClock; idx++){
+               // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
+               memset(dest+(*n), 0, fc-halfFC);  //in case of odd number use extra here
+               memset(dest+(*n)+(fc-halfFC), 1, halfFC);
+               *n += fc;
+       }
+       if (mod>0) (*modCnt)++;
+       if ((mod>0) && modAdjOk){  //fsk2 
+               if ((*modCnt % modAdj) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
+                       memset(dest+(*n), 0, fc-halfFC);
+                       memset(dest+(*n)+(fc-halfFC), 1, halfFC);
+                       *n += fc;
+               }
+       }
+       if (mod>0 && !modAdjOk){  //fsk1
+               memset(dest+(*n), 0, mod-(mod/2));
+               memset(dest+(*n)+(mod-(mod/2)), 1, mod/2);
+               *n += mod;
+       }
 }
 
 // prepare a waveform pattern in the buffer based on the ID given then
 // simulate a HID tag until the button is pressed
 void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
 {
-    int n=0, i=0;
-    /*
-     HID tag bitstream format
-     The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
-     A 1 bit is represented as 6 fc8 and 5 fc10 patterns
-     A 0 bit is represented as 5 fc10 and 6 fc8 patterns
-     A fc8 is inserted before every 4 bits
-     A special start of frame pattern is used consisting a0b0 where a and b are neither 0
-     nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
-    */
-
-    if (hi>0xFFF) {
-        DbpString("Tags can only have 44 bits.");
-        return;
-    }
-    fc(0,&n);
-    // special start of frame marker containing invalid bit sequences
-    fc(8,  &n);        fc(8,  &n);     // invalid
-    fc(8,  &n);        fc(10, &n); // logical 0
-    fc(10, &n);        fc(10, &n); // invalid
-    fc(8,  &n);        fc(10, &n); // logical 0
-
-    WDT_HIT();
-    // manchester encode bits 43 to 32
-    for (i=11; i>=0; i--) {
-        if ((i%4)==3) fc(0,&n);
-        if ((hi>>i)&1) {
-            fc(10, &n);        fc(8,  &n);             // low-high transition
-        } else {
-            fc(8,  &n);        fc(10, &n);             // high-low transition
-        }
-    }
-
-    WDT_HIT();
-    // manchester encode bits 31 to 0
-    for (i=31; i>=0; i--) {
-        if ((i%4)==3) fc(0,&n);
-        if ((lo>>i)&1) {
-            fc(10, &n);        fc(8,  &n);             // low-high transition
-        } else {
-            fc(8,  &n);        fc(10, &n);             // high-low transition
-        }
-    }
-
-    if (ledcontrol)
-        LED_A_ON();
-    SimulateTagLowFrequency(n, 0, ledcontrol);
-
-    if (ledcontrol)
-        LED_A_OFF();
+       FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+       set_tracing(FALSE);
+               
+       int n = 0, i = 0;
+       /*
+        HID tag bitstream format
+        The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
+        A 1 bit is represented as 6 fc8 and 5 fc10 patterns
+        A 0 bit is represented as 5 fc10 and 6 fc8 patterns
+        A fc8 is inserted before every 4 bits
+        A special start of frame pattern is used consisting a0b0 where a and b are neither 0
+        nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
+       */
+
+       if (hi > 0xFFF) {
+               DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags");
+               return;
+       }
+       fc(0,&n);
+       // special start of frame marker containing invalid bit sequences
+       fc(8,  &n);     fc(8,  &n); // invalid
+       fc(8,  &n);     fc(10, &n); // logical 0
+       fc(10, &n);     fc(10, &n); // invalid
+       fc(8,  &n);     fc(10, &n); // logical 0
+
+       WDT_HIT();
+       // manchester encode bits 43 to 32
+       for (i=11; i>=0; i--) {
+               if ((i%4)==3) fc(0,&n);
+               if ((hi>>i)&1) {
+                       fc(10, &n); fc(8,  &n);         // low-high transition
+               } else {
+                       fc(8,  &n); fc(10, &n);         // high-low transition
+               }
+       }
+
+       WDT_HIT();
+       // manchester encode bits 31 to 0
+       for (i=31; i>=0; i--) {
+               if ((i%4)==3) fc(0,&n);
+               if ((lo>>i)&1) {
+                       fc(10, &n); fc(8,  &n);         // low-high transition
+               } else {
+                       fc(8,  &n); fc(10, &n);         // high-low transition
+               }
+       }
+       WDT_HIT();
+       
+       if (ledcontrol) LED_A_ON();
+       SimulateTagLowFrequency(n, 0, ledcontrol);
+       if (ledcontrol) LED_A_OFF();
+}
+
+// prepare a waveform pattern in the buffer based on the ID given then
+// simulate a FSK tag until the button is pressed
+// arg1 contains fcHigh and fcLow, arg2 contains invert and clock
+void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
+{
+       FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+
+       // free eventually allocated BigBuf memory
+       BigBuf_free(); BigBuf_Clear_ext(false);
+       clear_trace();
+       set_tracing(FALSE);
+       
+       int ledcontrol = 1, n = 0, i = 0;
+       uint8_t fcHigh = arg1 >> 8;
+       uint8_t fcLow = arg1 & 0xFF;
+       uint16_t modCnt = 0;
+       uint8_t clk = arg2 & 0xFF;
+       uint8_t invert = (arg2 >> 8) & 1;
+
+       for (i=0; i<size; i++){
+               
+               if (BitStream[i] == invert)
+                       fcAll(fcLow, &n, clk, &modCnt);
+               else
+                       fcAll(fcHigh, &n, clk, &modCnt);
+       }
+       WDT_HIT();
+       
+       Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d", fcHigh, fcLow, clk, invert, n);
+
+       if (ledcontrol) LED_A_ON();
+       SimulateTagLowFrequency(n, 0, ledcontrol);
+       if (ledcontrol) LED_A_OFF();
+}
+
+// compose ask waveform for one bit(ASK)
+static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester)
+{
+       uint8_t *dest = BigBuf_get_addr();
+       uint8_t halfClk = clock/2;
+       // c = current bit 1 or 0
+       if (manchester==1){
+               memset(dest+(*n), c, halfClk);
+               memset(dest+(*n) + halfClk, c^1, halfClk);
+       } else {
+               memset(dest+(*n), c, clock);
+       }
+       *n += clock;
+}
+
+static void biphaseSimBit(uint8_t c, int *n, uint8_t clock, uint8_t *phase)
+{
+       uint8_t *dest = BigBuf_get_addr();
+       uint8_t halfClk = clock/2;
+       if (c){
+               memset(dest+(*n), c ^ 1 ^ *phase, halfClk);
+               memset(dest+(*n) + halfClk, c ^ *phase, halfClk);
+       } else {
+               memset(dest+(*n), c ^ *phase, clock);
+               *phase ^= 1;
+       }
+       *n += clock;
+}
+
+static void stAskSimBit(int *n, uint8_t clock) {
+       uint8_t *dest = BigBuf_get_addr();
+       uint8_t halfClk = clock/2;
+       //ST = .5 high .5 low 1.5 high .5 low 1 high    
+       memset(dest+(*n), 1, halfClk);
+       memset(dest+(*n) + halfClk, 0, halfClk);
+       memset(dest+(*n) + clock, 1, clock + halfClk);
+       memset(dest+(*n) + clock*2 + halfClk, 0, halfClk);
+       memset(dest+(*n) + clock*3, 1, clock);
+       *n += clock*4;
+}
+
+// args clock, ask/man or askraw, invert, transmission separator
+void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
+{
+       FpgaDownloadAndGo(FPGA_BITSTREAM_LF);   
+       set_tracing(FALSE);
+       
+       int ledcontrol = 1, n = 0, i = 0;
+       uint8_t clk = (arg1 >> 8) & 0xFF;
+       uint8_t encoding = arg1 & 0xFF;
+       uint8_t separator = arg2 & 1;
+       uint8_t invert = (arg2 >> 8) & 1;
+
+       if (encoding == 2){  //biphase
+               uint8_t phase = 0;
+               for (i=0; i<size; i++){
+                       biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
+               }
+               if (phase == 1) { //run a second set inverted to keep phase in check
+                       for (i=0; i<size; i++){
+                               biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
+                       }
+               }
+       } else {  // ask/manchester || ask/raw
+               for (i=0; i<size; i++){
+                       askSimBit(BitStream[i]^invert, &n, clk, encoding);
+               }
+               if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for biphase phase)
+                       for (i=0; i<size; i++){
+                               askSimBit(BitStream[i]^invert^1, &n, clk, encoding);
+                       }
+               }
+       }
+       if (separator==1 && encoding == 1)
+               stAskSimBit(&n, clk);
+       else if (separator==1)
+               Dbprintf("sorry but separator option not yet available");
+
+       WDT_HIT();
+       
+       Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk, invert, encoding, separator, n);
+
+       if (ledcontrol) LED_A_ON();
+       SimulateTagLowFrequency(n, 0, ledcontrol);
+       if (ledcontrol) LED_A_OFF();
+}
+
+//carrier can be 2,4 or 8
+static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg)
+{
+       uint8_t *dest = BigBuf_get_addr();
+       uint8_t halfWave = waveLen/2;
+       //uint8_t idx;
+       int i = 0;
+       if (phaseChg){
+               // write phase change
+               memset(dest+(*n), *curPhase^1, halfWave);
+               memset(dest+(*n) + halfWave, *curPhase, halfWave);
+               *n += waveLen;
+               *curPhase ^= 1;
+               i += waveLen;
+       }
+       //write each normal clock wave for the clock duration
+       for (; i < clk; i+=waveLen){
+               memset(dest+(*n), *curPhase, halfWave);
+               memset(dest+(*n) + halfWave, *curPhase^1, halfWave);
+               *n += waveLen;
+       }
+}
+
+// args clock, carrier, invert,
+void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
+{
+       FpgaDownloadAndGo(FPGA_BITSTREAM_LF);   
+       set_tracing(FALSE);
+       
+       int ledcontrol = 1, n = 0, i = 0;
+       uint8_t clk = arg1 >> 8;
+       uint8_t carrier = arg1 & 0xFF;
+       uint8_t invert = arg2 & 0xFF;
+       uint8_t curPhase = 0;
+       for (i=0; i<size; i++){
+               if (BitStream[i] == curPhase){
+                       pskSimBit(carrier, &n, clk, &curPhase, FALSE);
+               } else {
+                       pskSimBit(carrier, &n, clk, &curPhase, TRUE);
+               }
+       }
+       
+       WDT_HIT();
+       
+       Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n);
+                  
+       if (ledcontrol) LED_A_ON();
+       SimulateTagLowFrequency(n, 0, ledcontrol);
+       if (ledcontrol) LED_A_OFF();
 }
 
 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
 void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
 {
-    uint8_t *dest = (uint8_t *)BigBuf;
-
-    size_t size=sizeof(BigBuf), idx=0; //, found=0;
-    uint32_t hi2=0, hi=0, lo=0;
+       uint8_t *dest = BigBuf_get_addr();
+       size_t size = 0; 
+       uint32_t hi2=0, hi=0, lo=0;
+       int idx=0;
+       // Configure to go in 125Khz listen mode
+       LFSetupFPGAForADC(95, true);
 
-    // Configure to go in 125Khz listen mode
-    LFSetupFPGAForADC(95, true);
+       //clear read buffer
+       BigBuf_Clear_keep_EM();
 
-    while(!BUTTON_PRESS()) {
+       while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
 
-        WDT_HIT();
-        if (ledcontrol) LED_A_ON();
+               WDT_HIT();
+               if (ledcontrol) LED_A_ON();
 
-        DoAcquisition125k_internal(-1,true);
-        // FSK demodulator
+               DoAcquisition_default(-1,true);
+               // FSK demodulator
+               size = 50*128*2; //big enough to catch 2 sequences of largest format
                idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo);
-
-        WDT_HIT();
-
-               if (idx>0 && lo>0){
-            // final loop, go over previously decoded manchester data and decode into usable tag ID
-            // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
-            if (hi2 != 0){ //extra large HID tags
-                Dbprintf("TAG ID: %x%08x%08x (%d)",
-                         (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
-            }else {  //standard HID tags <38 bits
-                //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
-                uint8_t bitlen = 0;
-                uint32_t fc = 0;
-                uint32_t cardnum = 0;
+               
+               if (idx>0 && lo>0 && (size==96 || size==192)){
+                       // go over previously decoded manchester data and decode into usable tag ID
+                       if (hi2 != 0){ //extra large HID tags  88/192 bits
+                               Dbprintf("TAG ID: %x%08x%08x (%d)",
+                                 (unsigned int) hi2,
+                                 (unsigned int) hi,
+                                 (unsigned int) lo,
+                                 (unsigned int) (lo>>1) & 0xFFFF
+                                 );
+                       } else {  //standard HID tags 44/96 bits
+                               uint8_t bitlen = 0;
+                               uint32_t fc = 0;
+                               uint32_t cardnum = 0;
+                               
                                if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
-                    uint32_t lo2=0;
-                    lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
-                    uint8_t idx3 = 1;
+                                       uint32_t lo2=0;
+                                       lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
+                                       uint8_t idx3 = 1;
                                        while(lo2 > 1){ //find last bit set to 1 (format len bit)
                                                lo2=lo2 >> 1;
-                        idx3++;
-                    }
+                                               idx3++;
+                                       }
                                        bitlen = idx3+19;
-                    fc =0;
-                    cardnum=0;
+                                       fc =0;
+                                       cardnum=0;
                                        if(bitlen == 26){
-                        cardnum = (lo>>1)&0xFFFF;
-                        fc = (lo>>17)&0xFF;
-                    }
+                                               cardnum = (lo>>1)&0xFFFF;
+                                               fc = (lo>>17)&0xFF;
+                                       }
                                        if(bitlen == 37){
-                        cardnum = (lo>>1)&0x7FFFF;
-                        fc = ((hi&0xF)<<12)|(lo>>20);
-                    }
+                                               cardnum = (lo>>1)&0x7FFFF;
+                                               fc = ((hi&0xF)<<12)|(lo>>20);
+                                       }
                                        if(bitlen == 34){
-                        cardnum = (lo>>1)&0xFFFF;
-                        fc= ((hi&1)<<15)|(lo>>17);
-                    }
+                                               cardnum = (lo>>1)&0xFFFF;
+                                               fc= ((hi&1)<<15)|(lo>>17);
+                                       }
                                        if(bitlen == 35){
-                        cardnum = (lo>>1)&0xFFFFF;
-                        fc = ((hi&1)<<11)|(lo>>21);
-                    }
-                }
-                else { //if bit 38 is not set then 37 bit format is used
-                    bitlen= 37;
-                    fc =0;
-                    cardnum=0;
-                    if(bitlen==37){
-                        cardnum = (lo>>1)&0x7FFFF;
-                        fc = ((hi&0xF)<<12)|(lo>>20);
-                    }
-                }
-                //Dbprintf("TAG ID: %x%08x (%d)",
-                // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
-                Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
-                         (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
-                         (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
-            }
-            if (findone){
-                if (ledcontrol)        LED_A_OFF();
-                return;
-            }
-            // reset
-            hi2 = hi = lo = 0;
-        }
-        WDT_HIT();
-    }
-    DbpString("Stopped");
-    if (ledcontrol) LED_A_OFF();
+                                               cardnum = (lo>>1)&0xFFFFF;
+                                               fc = ((hi&1)<<11)|(lo>>21);
+                                       }
+                               }
+                               else { //if bit 38 is not set then 37 bit format is used
+                                       bitlen= 37;
+                                       fc =0;
+                                       cardnum=0;
+                                       if(bitlen==37){
+                                               cardnum = (lo>>1)&0x7FFFF;
+                                               fc = ((hi&0xF)<<12)|(lo>>20);
+                                       }
+                               }
+                               Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
+                                                (unsigned int) hi,
+                                                (unsigned int) lo,
+                                                (unsigned int) (lo>>1) & 0xFFFF,
+                                                (unsigned int) bitlen,
+                                                (unsigned int) fc,
+                                                (unsigned int) cardnum);
+                       }
+                       if (findone){
+                               if (ledcontrol) LED_A_OFF();
+                               *high = hi;
+                               *low = lo;
+                               return;
+                       }
+                       // reset
+               }
+               hi2 = hi = lo = idx = 0;
+               WDT_HIT();
+       }
+       DbpString("Stopped");
+       if (ledcontrol) LED_A_OFF();
+}
+
+// loop to get raw HID waveform then FSK demodulate the TAG ID from it
+void CmdAWIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
+{
+       uint8_t *dest = BigBuf_get_addr();
+       size_t size; 
+       int idx=0;
+       //clear read buffer
+       BigBuf_Clear_keep_EM();
+       // Configure to go in 125Khz listen mode
+       LFSetupFPGAForADC(95, true);
+
+       while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
+
+               WDT_HIT();
+               if (ledcontrol) LED_A_ON();
+
+               DoAcquisition_default(-1,true);
+               // FSK demodulator
+               size = 50*128*2; //big enough to catch 2 sequences of largest format
+               idx = AWIDdemodFSK(dest, &size);
+               
+               if (idx<=0 || size!=96) continue;
+               // Index map
+               // 0            10            20            30              40            50              60
+               // |            |             |             |               |             |               |
+               // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
+               // -----------------------------------------------------------------------------
+               // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
+               // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
+               //          |---26 bit---|    |-----117----||-------------142-------------|
+               // b = format bit len, o = odd parity of last 3 bits
+               // f = facility code, c = card number
+               // w = wiegand parity
+               // (26 bit format shown)
+
+               //get raw ID before removing parities
+               uint32_t rawLo = bytebits_to_byte(dest+idx+64,32);
+               uint32_t rawHi = bytebits_to_byte(dest+idx+32,32);
+               uint32_t rawHi2 = bytebits_to_byte(dest+idx,32);
+
+               size = removeParity(dest, idx+8, 4, 1, 88);
+               if (size != 66) continue;
+
+               // Index map
+               // 0           10         20        30          40        50        60
+               // |           |          |         |           |         |         |
+               // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
+               // -----------------------------------------------------------------------------
+               // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
+               // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
+               // |26 bit|   |-117--| |-----142------|
+                       //
+                       // 00110010 0 0000011111010000000000000001000100101000100001111 0 00000000 
+                       // bbbbbbbb w ffffffffffffffffccccccccccccccccccccccccccccccccc w xxxxxxxx
+                       // |50 bit|   |----4000------||-----------2248975-------------|                         
+                       //
+               // b = format bit len, o = odd parity of last 3 bits
+               // f = facility code, c = card number
+               // w = wiegand parity
+
+               uint32_t fc = 0;
+               uint32_t cardnum = 0;
+               uint32_t code1 = 0;
+               uint32_t code2 = 0;
+               uint8_t fmtLen = bytebits_to_byte(dest,8);
+                       switch(fmtLen) {
+                               case 26: 
+                                       fc = bytebits_to_byte(dest + 9, 8);
+                                       cardnum = bytebits_to_byte(dest + 17, 16);
+                                       code1 = bytebits_to_byte(dest + 8,fmtLen);
+                                       Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %u - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo);
+                                       break;
+                               case 50:
+                                       fc = bytebits_to_byte(dest + 9, 16);
+                                       cardnum = bytebits_to_byte(dest + 25, 32);
+                                       code1 = bytebits_to_byte(dest + 8, (fmtLen-32) );
+                                       code2 = bytebits_to_byte(dest + 8 + (fmtLen-32), 32);
+                                       Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %u - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, code2, rawHi2, rawHi, rawLo);
+                                       break;
+                               default:
+                                       if (fmtLen > 32 ) {
+                                               cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16);
+                                               code1 = bytebits_to_byte(dest+8,fmtLen-32);
+                                               code2 = bytebits_to_byte(dest+8+(fmtLen-32),32);
+                                               Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%u) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo);
+                                       } else {
+                                               cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16);
+                                               code1 = bytebits_to_byte(dest+8,fmtLen);
+                                               Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%u) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo);
+                                       }
+                                       break;          
+                       }
+                       if (findone){
+                               if (ledcontrol) LED_A_OFF();
+                               return;
+                       }
+               idx = 0;
+               WDT_HIT();
+       }
+       DbpString("Stopped");
+       if (ledcontrol) LED_A_OFF();
 }
 
 void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
 {
-    uint8_t *dest = (uint8_t *)BigBuf;
+       uint8_t *dest = BigBuf_get_addr();
 
        size_t size=0, idx=0;
-    int clk=0, invert=0, errCnt=0;
-    uint64_t lo=0;
-    // Configure to go in 125Khz listen mode
-    LFSetupFPGAForADC(95, true);
+       int clk=0, invert=0, errCnt=0, maxErr=20;
+       uint32_t hi=0;
+       uint64_t lo=0;
+       //clear read buffer
+       BigBuf_Clear_keep_EM();
+       // Configure to go in 125Khz listen mode
+       LFSetupFPGAForADC(95, true);
 
-    while(!BUTTON_PRESS()) {
+       while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
 
-        WDT_HIT();
-        if (ledcontrol) LED_A_ON();
+               WDT_HIT();
+               if (ledcontrol) LED_A_ON();
 
-        DoAcquisition125k_internal(-1,true);
-        size  = sizeof(BigBuf);
-        //Dbprintf("DEBUG: Buffer got");
+               DoAcquisition_default(-1,true);
+               size  = BigBuf_max_traceLen();
                //askdemod and manchester decode
-               errCnt = askmandemod(dest, &size, &clk, &invert);
-        //Dbprintf("DEBUG: ASK Got");
-        WDT_HIT();
-
-        if (errCnt>=0){
-                       lo = Em410xDecode(dest, &size, &idx);
-            //Dbprintf("DEBUG: EM GOT");
-            if (lo>0){
-                               Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
-                                   (uint32_t)(lo>>32),
-                                   (uint32_t)lo,
-                                   (uint32_t)(lo&0xFFFF),
-                                   (uint32_t)((lo>>16LL) & 0xFF),
-                                   (uint32_t)(lo & 0xFFFFFF));
-            }
-            if (findone){
-                if (ledcontrol)        LED_A_OFF();
-                return;
-            }
-        } else{
-            //Dbprintf("DEBUG: No Tag");
-        }
-        WDT_HIT();
-        lo = 0;
-        clk=0;
-        invert=0;
-        errCnt=0;
-        size=0;
-    }
-    DbpString("Stopped");
-    if (ledcontrol) LED_A_OFF();
+               if (size > 16385) size = 16385; //big enough to catch 2 sequences of largest format
+               errCnt = askdemod(dest, &size, &clk, &invert, maxErr, 0, 1);
+               WDT_HIT();
+
+               if (errCnt<0) continue;
+       
+                       errCnt = Em410xDecode(dest, &size, &idx, &hi, &lo);
+                       if (errCnt){
+                               if (size>64){
+                                       Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)",
+                                         hi,
+                                         (uint32_t)(lo>>32),
+                                         (uint32_t)lo,
+                                         (uint32_t)(lo&0xFFFF),
+                                         (uint32_t)((lo>>16LL) & 0xFF),
+                                         (uint32_t)(lo & 0xFFFFFF));
+                               } else {
+                                       Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
+                                         (uint32_t)(lo>>32),
+                                         (uint32_t)lo,
+                                         (uint32_t)(lo&0xFFFF),
+                                         (uint32_t)((lo>>16LL) & 0xFF),
+                                         (uint32_t)(lo & 0xFFFFFF));
+                               }
+
+                       if (findone){
+                               if (ledcontrol) LED_A_OFF();
+                               *high=lo>>32;
+                               *low=lo & 0xFFFFFFFF;
+                               return;
+                       }
+               }
+               WDT_HIT();
+               hi = lo = size = idx = 0;
+               clk = invert = errCnt = 0;
+       }
+       DbpString("Stopped");
+       if (ledcontrol) LED_A_OFF();
 }
 
 void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
 {
-    uint8_t *dest = (uint8_t *)BigBuf;
-    int idx=0;
-    uint32_t code=0, code2=0;
-    uint8_t version=0;
-    uint8_t facilitycode=0;
-    uint16_t number=0;
-    // Configure to go in 125Khz listen mode
-    LFSetupFPGAForADC(95, true);
-
-    while(!BUTTON_PRESS()) {
-        WDT_HIT();
-        if (ledcontrol) LED_A_ON();
-        DoAcquisition125k_internal(-1,true);
-        //fskdemod and get start index
-        WDT_HIT();
-        idx = IOdemodFSK(dest,sizeof(BigBuf));
-        if (idx>0){
-            //valid tag found
-
-            //Index map
-            //0           10          20          30          40          50          60
-            //|           |           |           |           |           |           |
-            //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
-            //-----------------------------------------------------------------------------
-            //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
-            //
-            //XSF(version)facility:codeone+codetwo
-            //Handle the data
-            if(findone){ //only print binary if we are doing one
-                Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx],   dest[idx+1],   dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
-                Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
-                Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
-                Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
-                Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
-                Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
-                Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
-            }
-            code = bytebits_to_byte(dest+idx,32);
-            code2 = bytebits_to_byte(dest+idx+32,32);
-            version = bytebits_to_byte(dest+idx+27,8); //14,4
-            facilitycode = bytebits_to_byte(dest+idx+18,8) ;
-            number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
-
-            Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2);
-            // if we're only looking for one tag
-            if (findone){
-                if (ledcontrol)        LED_A_OFF();
-                //LED_A_OFF();
-                return;
-            }
-            code=code2=0;
-            version=facilitycode=0;
-            number=0;
-            idx=0;
-        }
-        WDT_HIT();
-    }
-    DbpString("Stopped");
-    if (ledcontrol) LED_A_OFF();
+       uint8_t *dest = BigBuf_get_addr();
+       int idx=0;
+       uint32_t code=0, code2=0;
+       uint8_t version=0;
+       uint8_t facilitycode=0;
+       uint16_t number=0;
+       uint8_t crc = 0;
+       uint16_t calccrc = 0;
+
+       //clear read buffer
+       BigBuf_Clear_keep_EM();
+       
+       // Configure to go in 125Khz listen mode
+       LFSetupFPGAForADC(95, true);
+
+       while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
+               WDT_HIT();
+               if (ledcontrol) LED_A_ON();
+               DoAcquisition_default(-1,true);
+               //fskdemod and get start index
+               WDT_HIT();
+               idx = IOdemodFSK(dest, BigBuf_max_traceLen());
+               if (idx<0) continue;
+                       //valid tag found
+
+                       //Index map
+                       //0           10          20          30          40          50          60
+                       //|           |           |           |           |           |           |
+                       //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
+                       //-----------------------------------------------------------------------------
+            //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 checksum 11
+                       //
+                       //Checksum:  
+                       //00000000 0 11110000 1 11100000 1 00000001 1 00000011 1 10110110 1 01110101 11
+                       //preamble      F0         E0         01         03         B6         75
+                       // How to calc checksum,
+                       // http://www.proxmark.org/forum/viewtopic.php?id=364&p=6
+                       //   F0 + E0 + 01 + 03 + B6 = 28A
+                       //   28A & FF = 8A
+                       //   FF - 8A = 75
+                       // Checksum: 0x75
+                       //XSF(version)facility:codeone+codetwo
+                       //Handle the data
+                       if(findone){ //only print binary if we are doing one
+                               Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx],   dest[idx+1],   dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
+                               Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
+                               Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
+                               Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
+                               Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
+                               Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
+                               Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
+                       }
+                       code = bytebits_to_byte(dest+idx,32);
+                       code2 = bytebits_to_byte(dest+idx+32,32);
+                       version = bytebits_to_byte(dest+idx+27,8); //14,4
+                       facilitycode = bytebits_to_byte(dest+idx+18,8);
+                       number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
+
+                       crc = bytebits_to_byte(dest+idx+54,8);
+                       for (uint8_t i=1; i<6; ++i)
+                               calccrc += bytebits_to_byte(dest+idx+9*i,8);
+                       calccrc &= 0xff;
+                       calccrc = 0xff - calccrc;
+                       
+                       char *crcStr = (crc == calccrc) ? "ok":"!crc";
+
+            Dbprintf("IO Prox XSF(%02d)%02x:%05d (%08x%08x)  [%02x %s]",version,facilitycode,number,code,code2, crc, crcStr);
+                       // if we're only looking for one tag
+                       if (findone){
+                               if (ledcontrol) LED_A_OFF();
+                               *high=code;
+                               *low=code2;
+                               return;
+                       }
+                       code=code2=0;
+                       version=facilitycode=0;
+                       number=0;
+                       idx=0;
+
+               WDT_HIT();
+       }
+       DbpString("Stopped");
+       if (ledcontrol) LED_A_OFF();
 }
 
 /*------------------------------
- * T5555/T5557/T5567 routines
+ * T5555/T5557/T5567/T5577 routines
  *------------------------------
- */
-
-/* T55x7 configuration register definitions */
-#define T55x7_POR_DELAY                        0x00000001
-#define T55x7_ST_TERMINATOR            0x00000008
-#define T55x7_PWD                      0x00000010
-#define T55x7_MAXBLOCK_SHIFT           5
-#define T55x7_AOR                      0x00000200
-#define T55x7_PSKCF_RF_2               0
-#define T55x7_PSKCF_RF_4               0x00000400
-#define T55x7_PSKCF_RF_8               0x00000800
-#define T55x7_MODULATION_DIRECT                0
-#define T55x7_MODULATION_PSK1          0x00001000
-#define T55x7_MODULATION_PSK2          0x00002000
-#define T55x7_MODULATION_PSK3          0x00003000
-#define T55x7_MODULATION_FSK1          0x00004000
-#define T55x7_MODULATION_FSK2          0x00005000
-#define T55x7_MODULATION_FSK1a         0x00006000
-#define T55x7_MODULATION_FSK2a         0x00007000
-#define T55x7_MODULATION_MANCHESTER    0x00008000
-#define T55x7_MODULATION_BIPHASE       0x00010000
-#define T55x7_BITRATE_RF_8             0
-#define T55x7_BITRATE_RF_16            0x00040000
-#define T55x7_BITRATE_RF_32            0x00080000
-#define T55x7_BITRATE_RF_40            0x000C0000
-#define T55x7_BITRATE_RF_50            0x00100000
-#define T55x7_BITRATE_RF_64            0x00140000
-#define T55x7_BITRATE_RF_100           0x00180000
-#define T55x7_BITRATE_RF_128           0x001C0000
-
-/* T5555 (Q5) configuration register definitions */
-#define T5555_ST_TERMINATOR            0x00000001
-#define T5555_MAXBLOCK_SHIFT           0x00000001
-#define T5555_MODULATION_MANCHESTER    0
-#define T5555_MODULATION_PSK1          0x00000010
-#define T5555_MODULATION_PSK2          0x00000020
-#define T5555_MODULATION_PSK3          0x00000030
-#define T5555_MODULATION_FSK1          0x00000040
-#define T5555_MODULATION_FSK2          0x00000050
-#define T5555_MODULATION_BIPHASE       0x00000060
-#define T5555_MODULATION_DIRECT                0x00000070
-#define T5555_INVERT_OUTPUT            0x00000080
-#define T5555_PSK_RF_2                 0
-#define T5555_PSK_RF_4                 0x00000100
-#define T5555_PSK_RF_8                 0x00000200
-#define T5555_USE_PWD                  0x00000400
-#define T5555_USE_AOR                  0x00000800
-#define T5555_BITRATE_SHIFT            12
-#define T5555_FAST_WRITE               0x00004000
-#define T5555_PAGE_SELECT              0x00008000
-
-/*
- * Relevant times in microsecond
+ * NOTE: T55x7/T5555 configuration register definitions moved to protocols.h 
+ *
+ * Relevant communication times in microsecond
  * To compensate antenna falling times shorten the write times
  * and enlarge the gap ones.
+ * Q5 tags seems to have issues when these values changes. 
  */
-#define START_GAP 250
-#define WRITE_GAP 160
-#define WRITE_0   144 // 192
-#define WRITE_1   400 // 432 for T55x7; 448 for E5550
 
-// Write one bit to card
-void T55xxWriteBit(int bit)
-{
-    FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
-    FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-    FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
-    if (bit == 0)
-        SpinDelayUs(WRITE_0);
-    else
-        SpinDelayUs(WRITE_1);
-    FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
-    SpinDelayUs(WRITE_GAP);
+#define START_GAP 50*8 // was 250 // SPEC:  1*8 to 50*8 - typ 15*8 (15fc)
+#define WRITE_GAP 20*8 // was 160 // SPEC:  1*8 to 20*8 - typ 10*8 (10fc)
+#define WRITE_0   18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (24fc)
+#define WRITE_1   54*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (56fc)  432 for T55x7; 448 for E5550
+#define READ_GAP  15*8 
+
+//  VALUES TAKEN FROM EM4x function: SendForward
+//  START_GAP = 440;       (55*8) cycles at 125Khz (8us = 1cycle)
+//  WRITE_GAP = 128;       (16*8)
+//  WRITE_1   = 256 32*8;  (32*8) 
+
+//  These timings work for 4469/4269/4305 (with the 55*8 above)
+//  WRITE_0 = 23*8 , 9*8 
+
+// Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK)
+// TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
+// Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier)
+// T0 = TIMER_CLOCK1 / 125000 = 192
+// 1 Cycle = 8 microseconds(us)  == 1 field clock
+
+// new timer:
+//     = 1us = 1.5ticks
+// 1fc = 8us = 12ticks
+void TurnReadLFOn(uint32_t delay) {
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+
+       // measure antenna strength.
+       //int adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
+
+       // Give it a bit of time for the resonant antenna to settle.
+       WaitUS(delay);
 }
 
-// Write one card block in page 0, no lock
-void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
-{
-    //unsigned int i;  //enio adjustment 12/10/14
-    uint32_t i;
-
-    FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
-    FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-    FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
-
-    // Give it a bit of time for the resonant antenna to settle.
-    // And for the tag to fully power up
-    SpinDelay(150);
-
-    // Now start writting
-    FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
-    SpinDelayUs(START_GAP);
-
-    // Opcode
-    T55xxWriteBit(1);
-    T55xxWriteBit(0); //Page 0
-    if (PwdMode == 1){
-        // Pwd
-        for (i = 0x80000000; i != 0; i >>= 1)
-            T55xxWriteBit(Pwd & i);
-    }
-    // Lock bit
-    T55xxWriteBit(0);
-
-    // Data
-    for (i = 0x80000000; i != 0; i >>= 1)
-        T55xxWriteBit(Data & i);
-
-    // Block
-    for (i = 0x04; i != 0; i >>= 1)
-        T55xxWriteBit(Block & i);
-
-    // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
-    // so wait a little more)
-    FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-    FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
-    SpinDelay(20);
-    FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+// Write one bit to card
+void T55xxWriteBit(int bit) {
+       if (!bit)
+               TurnReadLFOn(WRITE_0);
+       else
+               TurnReadLFOn(WRITE_1);
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+       WaitUS(WRITE_GAP);
 }
 
-// Read one card block in page 0
-void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
-{
-    uint8_t *dest = (uint8_t *)BigBuf;
-    //int m=0, i=0; //enio adjustment 12/10/14
-    uint32_t m=0, i=0;
-    FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
-    m = sizeof(BigBuf);
-    // Clear destination buffer before sending the command
-    memset(dest, 128, m);
-    // Connect the A/D to the peak-detected low-frequency path.
-    SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
-    // Now set up the SSC to get the ADC samples that are now streaming at us.
-    FpgaSetupSsc();
-
-    LED_D_ON();
-    FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-    FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
-
-    // Give it a bit of time for the resonant antenna to settle.
-    // And for the tag to fully power up
-    SpinDelay(150);
-
-    // Now start writting
-    FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
-    SpinDelayUs(START_GAP);
-
-    // Opcode
-    T55xxWriteBit(1);
-    T55xxWriteBit(0); //Page 0
-    if (PwdMode == 1){
-        // Pwd
-        for (i = 0x80000000; i != 0; i >>= 1)
-            T55xxWriteBit(Pwd & i);
-    }
-    // Lock bit
-    T55xxWriteBit(0);
-    // Block
-    for (i = 0x04; i != 0; i >>= 1)
-        T55xxWriteBit(Block & i);
-
-    // Turn field on to read the response
-    FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-    FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
-
-    // Now do the acquisition
-    i = 0;
-    for(;;) {
-        if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
-            AT91C_BASE_SSC->SSC_THR = 0x43;
-        }
-        if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
-            dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
-            // we don't care about actual value, only if it's more or less than a
-            // threshold essentially we capture zero crossings for later analysis
-            //                 if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
-            i++;
-            if (i >= m) break;
-        }
-    }
-
-    FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
-    LED_D_OFF();
-    DbpString("DONE!");
-}
+// Send T5577 reset command then read stream (see if we can identify the start of the stream)
+void T55xxResetRead(void) {
+       LED_A_ON();
+       //clear buffer now so it does not interfere with timing later
+       BigBuf_Clear_keep_EM();
 
-// Read card traceability data (page 1)
-void T55xxReadTrace(void){
-    uint8_t *dest = (uint8_t *)BigBuf;
-    int m=0, i=0;
-
-    FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
-    m = sizeof(BigBuf);
-    // Clear destination buffer before sending the command
-    memset(dest, 128, m);
-    // Connect the A/D to the peak-detected low-frequency path.
-    SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
-    // Now set up the SSC to get the ADC samples that are now streaming at us.
-    FpgaSetupSsc();
-
-    LED_D_ON();
-    FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-    FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
-
-    // Give it a bit of time for the resonant antenna to settle.
-    // And for the tag to fully power up
-    SpinDelay(150);
-
-    // Now start writting
-    FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
-    SpinDelayUs(START_GAP);
-
-    // Opcode
-    T55xxWriteBit(1);
-    T55xxWriteBit(1); //Page 1
-
-    // Turn field on to read the response
-    FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-    FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
-
-    // Now do the acquisition
-    i = 0;
-    for(;;) {
-        if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
-            AT91C_BASE_SSC->SSC_THR = 0x43;
-        }
-        if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
-            dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
-            i++;
-            if (i >= m) break;
-        }
-    }
-
-    FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
-    LED_D_OFF();
-    DbpString("DONE!");
-}
+       // Set up FPGA, 125kHz
+       LFSetupFPGAForADC(95, true);
 
-/*-------------- Cloning routines -----------*/
-// Copy HID id to card and setup block 0 config
-void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT)
-{
-    int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format
-    int last_block = 0;
-
-    if (longFMT){
-        // Ensure no more than 84 bits supplied
-        if (hi2>0xFFFFF) {
-            DbpString("Tags can only have 84 bits.");
-            return;
-        }
-        // Build the 6 data blocks for supplied 84bit ID
-        last_block = 6;
-        data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
-        for (int i=0;i<4;i++) {
-            if (hi2 & (1<<(19-i)))
-                data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10
-            else
-                data1 |= (1<<((3-i)*2)); // 0 -> 01
-        }
-
-        data2 = 0;
-        for (int i=0;i<16;i++) {
-            if (hi2 & (1<<(15-i)))
-                data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
-            else
-                data2 |= (1<<((15-i)*2)); // 0 -> 01
-        }
-
-        data3 = 0;
-        for (int i=0;i<16;i++) {
-            if (hi & (1<<(31-i)))
-                data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
-            else
-                data3 |= (1<<((15-i)*2)); // 0 -> 01
-        }
-
-        data4 = 0;
-        for (int i=0;i<16;i++) {
-            if (hi & (1<<(15-i)))
-                data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10
-            else
-                data4 |= (1<<((15-i)*2)); // 0 -> 01
-        }
-
-        data5 = 0;
-        for (int i=0;i<16;i++) {
-            if (lo & (1<<(31-i)))
-                data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10
-            else
-                data5 |= (1<<((15-i)*2)); // 0 -> 01
-        }
-
-        data6 = 0;
-        for (int i=0;i<16;i++) {
-            if (lo & (1<<(15-i)))
-                data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10
-            else
-                data6 |= (1<<((15-i)*2)); // 0 -> 01
-        }
-    }
-    else {
-        // Ensure no more than 44 bits supplied
-        if (hi>0xFFF) {
-            DbpString("Tags can only have 44 bits.");
-            return;
-        }
-
-        // Build the 3 data blocks for supplied 44bit ID
-        last_block = 3;
-
-        data1 = 0x1D000000; // load preamble
-
-        for (int i=0;i<12;i++) {
-            if (hi & (1<<(11-i)))
-                data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10
-            else
-                data1 |= (1<<((11-i)*2)); // 0 -> 01
-        }
-
-        data2 = 0;
-        for (int i=0;i<16;i++) {
-            if (lo & (1<<(31-i)))
-                data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
-            else
-                data2 |= (1<<((15-i)*2)); // 0 -> 01
-        }
-
-        data3 = 0;
-        for (int i=0;i<16;i++) {
-            if (lo & (1<<(15-i)))
-                data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
-            else
-                data3 |= (1<<((15-i)*2)); // 0 -> 01
-        }
-    }
-
-    LED_D_ON();
-    // Program the data blocks for supplied ID
-    // and the block 0 for HID format
-    T55xxWriteBlock(data1,1,0,0);
-    T55xxWriteBlock(data2,2,0,0);
-    T55xxWriteBlock(data3,3,0,0);
-
-    if (longFMT) { // if long format there are 6 blocks
-        T55xxWriteBlock(data4,4,0,0);
-        T55xxWriteBlock(data5,5,0,0);
-        T55xxWriteBlock(data6,6,0,0);
-    }
-
-    // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
-    T55xxWriteBlock(T55x7_BITRATE_RF_50    |
-                    T55x7_MODULATION_FSK2a |
-                    last_block << T55x7_MAXBLOCK_SHIFT,
-                    0,0,0);
-
-    LED_D_OFF();
-
-    DbpString("DONE!");
-}
+       // Trigger T55x7 in mode.
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+       WaitUS(START_GAP);
 
-void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT)
-{
-    int data1=0, data2=0; //up to six blocks for long format
+       // reset tag - op code 00
+       T55xxWriteBit(0);
+       T55xxWriteBit(0);
 
-    data1 = hi;  // load preamble
-    data2 = lo;
+       // Turn field on to read the response
+       TurnReadLFOn(READ_GAP);
 
-    LED_D_ON();
-    // Program the data blocks for supplied ID
-    // and the block 0 for HID format
-    T55xxWriteBlock(data1,1,0,0);
-    T55xxWriteBlock(data2,2,0,0);
+       // Acquisition
+       doT55x7Acquisition(BigBuf_max_traceLen());
 
-    //Config Block
-    T55xxWriteBlock(0x00147040,0,0,0);
-    LED_D_OFF();
-
-    DbpString("DONE!");
+       // Turn the field off
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+       cmd_send(CMD_ACK,0,0,0,0,0);    
+       LED_A_OFF();
 }
 
-// Define 9bit header for EM410x tags
-#define EM410X_HEADER          0x1FF
-#define EM410X_ID_LENGTH       40
-
-void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo)
-{
-    int i, id_bit;
-    uint64_t id = EM410X_HEADER;
-    uint64_t rev_id = 0;       // reversed ID
-    int c_parity[4];   // column parity
-    int r_parity = 0;  // row parity
-    uint32_t clock = 0;
-
-    // Reverse ID bits given as parameter (for simpler operations)
-    for (i = 0; i < EM410X_ID_LENGTH; ++i) {
-        if (i < 32) {
-            rev_id = (rev_id << 1) | (id_lo & 1);
-            id_lo >>= 1;
-        } else {
-            rev_id = (rev_id << 1) | (id_hi & 1);
-            id_hi >>= 1;
-        }
-    }
-
-    for (i = 0; i < EM410X_ID_LENGTH; ++i) {
-        id_bit = rev_id & 1;
-
-        if (i % 4 == 0) {
-            // Don't write row parity bit at start of parsing
-            if (i)
-                id = (id << 1) | r_parity;
-            // Start counting parity for new row
-            r_parity = id_bit;
-        } else {
-            // Count row parity
-            r_parity ^= id_bit;
-        }
-
-        // First elements in column?
-        if (i < 4)
-            // Fill out first elements
-            c_parity[i] = id_bit;
-        else
-            // Count column parity
-            c_parity[i % 4] ^= id_bit;
-
-        // Insert ID bit
-        id = (id << 1) | id_bit;
-        rev_id >>= 1;
-    }
-
-    // Insert parity bit of last row
-    id = (id << 1) | r_parity;
-
-    // Fill out column parity at the end of tag
-    for (i = 0; i < 4; ++i)
-        id = (id << 1) | c_parity[i];
-
-    // Add stop bit
-    id <<= 1;
-
-    Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
-    LED_D_ON();
-
-    // Write EM410x ID
-    T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0);
-    T55xxWriteBlock((uint32_t)id, 2, 0, 0);
-
-    // Config for EM410x (RF/64, Manchester, Maxblock=2)
-    if (card) {
-        // Clock rate is stored in bits 8-15 of the card value
-        clock = (card & 0xFF00) >> 8;
-        Dbprintf("Clock rate: %d", clock);
-        switch (clock)
-        {
-        case 32:
-            clock = T55x7_BITRATE_RF_32;
-            break;
-        case 16:
-            clock = T55x7_BITRATE_RF_16;
-            break;
-        case 0:
-            // A value of 0 is assumed to be 64 for backwards-compatibility
-            // Fall through...
-        case 64:
-            clock = T55x7_BITRATE_RF_64;
-            break;
-        default:
-            Dbprintf("Invalid clock rate: %d", clock);
-            return;
-        }
-
-        // Writing configuration for T55x7 tag
-        T55xxWriteBlock(clock      |
-                        T55x7_MODULATION_MANCHESTER |
-                        2 << T55x7_MAXBLOCK_SHIFT,
-                        0, 0, 0);
-    }
-    else
-        // Writing configuration for T5555(Q5) tag
-        T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT |
-                        T5555_MODULATION_MANCHESTER   |
-                        2 << T5555_MAXBLOCK_SHIFT,
-                        0, 0, 0);
-
-    LED_D_OFF();
-    Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
-             (uint32_t)(id >> 32), (uint32_t)id);
+// Write one card block in page 0, no lock
+void T55xxWriteBlockExt(uint32_t Data, uint8_t Block, uint32_t Pwd, uint8_t arg) {
+       LED_A_ON();
+       bool PwdMode = arg & 0x1;
+       uint8_t Page = (arg & 0x2)>>1;
+       uint32_t i = 0;
+
+       // Set up FPGA, 125kHz
+       LFSetupFPGAForADC(95, true);
+       
+       // Trigger T55x7 in mode.
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+       WaitUS(START_GAP);
+
+       // Opcode 10
+       T55xxWriteBit(1);
+       T55xxWriteBit(Page); //Page 0
+       if (PwdMode){
+               // Send Pwd
+               for (i = 0x80000000; i != 0; i >>= 1)
+                       T55xxWriteBit(Pwd & i);
+       }
+       // Send Lock bit
+       T55xxWriteBit(0);
+
+       // Send Data
+       for (i = 0x80000000; i != 0; i >>= 1)
+               T55xxWriteBit(Data & i);
+
+       // Send Block number
+       for (i = 0x04; i != 0; i >>= 1)
+               T55xxWriteBit(Block & i);
+
+       // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
+       // so wait a little more)
+       TurnReadLFOn(20 * 1000);
+       
+       //could attempt to do a read to confirm write took
+       // as the tag should repeat back the new block 
+       // until it is reset, but to confirm it we would 
+       // need to know the current block 0 config mode
+       
+       // turn field off
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+       LED_A_OFF();
 }
 
-// Clone Indala 64-bit tag by UID to T55x7
-void CopyIndala64toT55x7(int hi, int lo)
-{
-
-    //Program the 2 data blocks for supplied 64bit UID
-    // and the block 0 for Indala64 format
-    T55xxWriteBlock(hi,1,0,0);
-    T55xxWriteBlock(lo,2,0,0);
-    //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
-    T55xxWriteBlock(T55x7_BITRATE_RF_32    |
-                    T55x7_MODULATION_PSK1 |
-                    2 << T55x7_MAXBLOCK_SHIFT,
-                    0, 0, 0);
-    //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
-    // T5567WriteBlock(0x603E1042,0);
-
-    DbpString("DONE!");
-
+// Write one card block in page 0, no lock
+void T55xxWriteBlock(uint32_t Data, uint8_t Block, uint32_t Pwd, uint8_t arg) {
+       T55xxWriteBlockExt(Data, Block, Pwd, arg);
+       cmd_send(CMD_ACK,0,0,0,0,0);
 }
 
-void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7)
-{
-
-    //Program the 7 data blocks for supplied 224bit UID
-    // and the block 0 for Indala224 format
-    T55xxWriteBlock(uid1,1,0,0);
-    T55xxWriteBlock(uid2,2,0,0);
-    T55xxWriteBlock(uid3,3,0,0);
-    T55xxWriteBlock(uid4,4,0,0);
-    T55xxWriteBlock(uid5,5,0,0);
-    T55xxWriteBlock(uid6,6,0,0);
-    T55xxWriteBlock(uid7,7,0,0);
-    //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
-    T55xxWriteBlock(T55x7_BITRATE_RF_32    |
-                    T55x7_MODULATION_PSK1 |
-                    7 << T55x7_MAXBLOCK_SHIFT,
-                    0,0,0);
-    //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
-    // T5567WriteBlock(0x603E10E2,0);
-
-    DbpString("DONE!");
-
+// Read one card block in page [page]
+void T55xxReadBlock(uint16_t arg0, uint8_t Block, uint32_t Pwd) {
+       LED_A_ON();
+       bool PwdMode = arg0 & 0x1;
+       uint8_t Page = (arg0 & 0x2) >> 1;
+       uint32_t i = 0;
+       bool RegReadMode = (Block == 0xFF);
+       
+       //clear buffer now so it does not interfere with timing later
+       BigBuf_Clear_keep_EM();
+
+       //make sure block is at max 7
+       Block &= 0x7;
+
+       // Set up FPGA, 125kHz to power up the tag
+       LFSetupFPGAForADC(95, true);
+       SpinDelay(3);
+       
+       // Trigger T55x7 Direct Access Mode with start gap
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+       WaitUS(START_GAP);
+       
+       // Opcode 1[page]
+       T55xxWriteBit(1);
+       T55xxWriteBit(Page); //Page 0
+
+       if (PwdMode){
+               // Send Pwd
+               for (i = 0x80000000; i != 0; i >>= 1)
+                       T55xxWriteBit(Pwd & i);
+       }
+       // Send a zero bit separation
+       T55xxWriteBit(0);
+       
+       // Send Block number (if direct access mode)
+       if (!RegReadMode)
+               for (i = 0x04; i != 0; i >>= 1)
+                       T55xxWriteBit(Block & i);
+
+       // Turn field on to read the response
+       TurnReadLFOn(READ_GAP);
+       
+       // Acquisition
+       doT55x7Acquisition(12000);
+       
+       // Turn the field off
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+       cmd_send(CMD_ACK,0,0,0,0,0);    
+       LED_A_OFF();
 }
 
-
-#define abs(x) ( ((x)<0) ? -(x) : (x) )
-#define max(x,y) ( x<y ? y:x)
-
-int DemodPCF7931(uint8_t **outBlocks) {
-    uint8_t BitStream[256];
-    uint8_t Blocks[8][16];
-    uint8_t *GraphBuffer = (uint8_t *)BigBuf;
-    int GraphTraceLen = sizeof(BigBuf);
-    int i, j, lastval, bitidx, half_switch;
-    int clock = 64;
-    int tolerance = clock / 8;
-    int pmc, block_done;
-    int lc, warnings = 0;
-    int num_blocks = 0;
-    int lmin=128, lmax=128;
-    uint8_t dir;
-
-    AcquireRawAdcSamples125k(0);
-
-    lmin = 64;
-    lmax = 192;
-
-    i = 2;
-
-    /* Find first local max/min */
-    if(GraphBuffer[1] > GraphBuffer[0]) {
-        while(i < GraphTraceLen) {
-            if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax)
-                break;
-            i++;
-        }
-        dir = 0;
-    }
-    else {
-        while(i < GraphTraceLen) {
-            if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin)
-                break;
-            i++;
-        }
-        dir = 1;
-    }
-
-    lastval = i++;
-    half_switch = 0;
-    pmc = 0;
-    block_done = 0;
-
-    for (bitidx = 0; i < GraphTraceLen; i++)
-    {
-        if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin))
-        {
-            lc = i - lastval;
-            lastval = i;
-
-            // Switch depending on lc length:
-            // Tolerance is 1/8 of clock rate (arbitrary)
-            if (abs(lc-clock/4) < tolerance) {
-                // 16T0
-                if((i - pmc) == lc) { /* 16T0 was previous one */
-                    /* It's a PMC ! */
-                    i += (128+127+16+32+33+16)-1;
-                    lastval = i;
-                    pmc = 0;
-                    block_done = 1;
-                }
-                else {
-                    pmc = i;
-                }
-            } else if (abs(lc-clock/2) < tolerance) {
-                // 32TO
-                if((i - pmc) == lc) { /* 16T0 was previous one */
-                    /* It's a PMC ! */
-                    i += (128+127+16+32+33)-1;
-                    lastval = i;
-                    pmc = 0;
-                    block_done = 1;
-                }
-                else if(half_switch == 1) {
-                    BitStream[bitidx++] = 0;
-                    half_switch = 0;
-                }
-                else
-                    half_switch++;
-            } else if (abs(lc-clock) < tolerance) {
-                // 64TO
-                BitStream[bitidx++] = 1;
-            } else {
-                // Error
-                warnings++;
-                if (warnings > 10)
-                {
-                    Dbprintf("Error: too many detection errors, aborting.");
-                    return 0;
-                }
-            }
-
-            if(block_done == 1) {
-                if(bitidx == 128) {
-                    for(j=0; j<16; j++) {
-                        Blocks[num_blocks][j] = 128*BitStream[j*8+7]+
-                                64*BitStream[j*8+6]+
-                                32*BitStream[j*8+5]+
-                                16*BitStream[j*8+4]+
-                                8*BitStream[j*8+3]+
-                                4*BitStream[j*8+2]+
-                                2*BitStream[j*8+1]+
-                                BitStream[j*8];
-                    }
-                    num_blocks++;
-                }
-                bitidx = 0;
-                block_done = 0;
-                half_switch = 0;
-            }
-            if(i < GraphTraceLen)
-            {
-                if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0;
-                else dir = 1;
-            }
-        }
-        if(bitidx==255)
-            bitidx=0;
-        warnings = 0;
-        if(num_blocks == 4) break;
-    }
-    memcpy(outBlocks, Blocks, 16*num_blocks);
-    return num_blocks;
+void T55xxWakeUp(uint32_t Pwd){
+       LED_B_ON();
+       uint32_t i = 0;
+       
+       // Set up FPGA, 125kHz
+       LFSetupFPGAForADC(95, true);
+       
+       // Trigger T55x7 Direct Access Mode
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+       WaitUS(START_GAP);
+       
+       // Opcode 10
+       T55xxWriteBit(1);
+       T55xxWriteBit(0); //Page 0
+
+       // Send Pwd
+       for (i = 0x80000000; i != 0; i >>= 1)
+               T55xxWriteBit(Pwd & i);
+
+       // Turn and leave field on to let the begin repeating transmission
+       TurnReadLFOn(20*1000);
 }
 
-int IsBlock0PCF7931(uint8_t *Block) {
-    // Assume RFU means 0 :)
-    if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
-        return 1;
-    if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ?
-        return 1;
-    return 0;
+/*-------------- Cloning routines -----------*/
+void WriteT55xx(uint32_t *blockdata, uint8_t startblock, uint8_t numblocks) {
+       // write last block first and config block last (if included)
+       for (uint8_t i = numblocks+startblock; i > startblock; i--)
+               T55xxWriteBlockExt(blockdata[i-1], i-1, 0, 0);
 }
 
-int IsBlock1PCF7931(uint8_t *Block) {
-    // Assume RFU means 0 :)
-    if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0)
-        if((Block[14] & 0x7f) <= 9 && Block[15] <= 9)
-            return 1;
+// Copy HID id to card and setup block 0 config
+void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) {
+       uint32_t data[] = {0,0,0,0,0,0,0};
+       uint8_t last_block = 0;
+
+       if (longFMT){
+               // Ensure no more than 84 bits supplied
+               if (hi2 > 0xFFFFF) {
+                       DbpString("Tags can only have 84 bits.");
+                       return;
+               }
+               // Build the 6 data blocks for supplied 84bit ID
+               last_block = 6;
+               // load preamble (1D) & long format identifier (9E manchester encoded)
+               data[1] = 0x1D96A900 | (manchesterEncode2Bytes((hi2 >> 16) & 0xF) & 0xFF);
+               // load raw id from hi2, hi, lo to data blocks (manchester encoded)
+               data[2] = manchesterEncode2Bytes(hi2 & 0xFFFF);
+               data[3] = manchesterEncode2Bytes(hi >> 16);
+               data[4] = manchesterEncode2Bytes(hi & 0xFFFF);
+               data[5] = manchesterEncode2Bytes(lo >> 16);
+               data[6] = manchesterEncode2Bytes(lo & 0xFFFF);
+       }       else {
+               // Ensure no more than 44 bits supplied
+               if (hi > 0xFFF) {
+                       DbpString("Tags can only have 44 bits.");
+                       return;
+               }
+               // Build the 3 data blocks for supplied 44bit ID
+               last_block = 3;
+               // load preamble
+               data[1] = 0x1D000000 | (manchesterEncode2Bytes(hi) & 0xFFFFFF);
+               data[2] = manchesterEncode2Bytes(lo >> 16);
+               data[3] = manchesterEncode2Bytes(lo & 0xFFFF);
+       }
+       // load chip config block
+       data[0] = T55x7_BITRATE_RF_50 | T55x7_MODULATION_FSK2a | last_block << T55x7_MAXBLOCK_SHIFT;
+
+       //TODO add selection of chip for Q5 or T55x7
+       // data[0] = (((50-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT;
+
+       LED_D_ON();
+       // Program the data blocks for supplied ID
+       // and the block 0 for HID format
+       WriteT55xx(data, 0, last_block+1);
+
+       LED_D_OFF();
+
+       DbpString("DONE!");
+}
 
-    return 0;
+void CopyIOtoT55x7(uint32_t hi, uint32_t lo) {
+       uint32_t data[] = {T55x7_BITRATE_RF_64 | T55x7_MODULATION_FSK2a | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
+       //TODO add selection of chip for Q5 or T55x7
+       //t5555 (Q5) BITRATE = (RF-2)/2 (iceman)
+       // data[0] = (64 << T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | 2 << T5555_MAXBLOCK_SHIFT;
+
+       LED_D_ON();
+       // Program the data blocks for supplied ID
+       // and the block 0 config
+       WriteT55xx(data, 0, 3);
+       LED_D_OFF();
+       DbpString("DONE!");
 }
 
-#define ALLOC 16
-
-void ReadPCF7931() {
-    uint8_t Blocks[8][17];
-    uint8_t tmpBlocks[4][16];
-    int i, j, ind, ind2, n;
-    int num_blocks = 0;
-    int max_blocks = 8;
-    int ident = 0;
-    int error = 0;
-    int tries = 0;
-
-    memset(Blocks, 0, 8*17*sizeof(uint8_t));
-
-    do {
-        memset(tmpBlocks, 0, 4*16*sizeof(uint8_t));
-        n = DemodPCF7931((uint8_t**)tmpBlocks);
-        if(!n)
-            error++;
-        if(error==10 && num_blocks == 0) {
-            Dbprintf("Error, no tag or bad tag");
-            return;
-        }
-        else if (tries==20 || error==10) {
-            Dbprintf("Error reading the tag");
-            Dbprintf("Here is the partial content");
-            goto end;
-        }
-
-        for(i=0; i<n; i++)
-            Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
-                     tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7],
-                    tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]);
-        if(!ident) {
-            for(i=0; i<n; i++) {
-                if(IsBlock0PCF7931(tmpBlocks[i])) {
-                    // Found block 0 ?
-                    if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) {
-                        // Found block 1!
-                        // \o/
-                        ident = 1;
-                        memcpy(Blocks[0], tmpBlocks[i], 16);
-                        Blocks[0][ALLOC] = 1;
-                        memcpy(Blocks[1], tmpBlocks[i+1], 16);
-                        Blocks[1][ALLOC] = 1;
-                        max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1;
-                        // Debug print
-                        Dbprintf("(dbg) Max blocks: %d", max_blocks);
-                        num_blocks = 2;
-                        // Handle following blocks
-                        for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) {
-                            if(j==n) j=0;
-                            if(j==i) break;
-                            memcpy(Blocks[ind2], tmpBlocks[j], 16);
-                            Blocks[ind2][ALLOC] = 1;
-                        }
-                        break;
-                    }
-                }
-            }
-        }
-        else {
-            for(i=0; i<n; i++) { // Look for identical block in known blocks
-                if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
-                    for(j=0; j<max_blocks; j++) {
-                        if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) {
-                            // Found an identical block
-                            for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) {
-                                if(ind2 < 0)
-                                    ind2 = max_blocks;
-                                if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
-                                    // Dbprintf("Tmp %d -> Block %d", ind, ind2);
-                                    memcpy(Blocks[ind2], tmpBlocks[ind], 16);
-                                    Blocks[ind2][ALLOC] = 1;
-                                    num_blocks++;
-                                    if(num_blocks == max_blocks) goto end;
-                                }
-                            }
-                            for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) {
-                                if(ind2 > max_blocks)
-                                    ind2 = 0;
-                                if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
-                                    // Dbprintf("Tmp %d -> Block %d", ind, ind2);
-                                    memcpy(Blocks[ind2], tmpBlocks[ind], 16);
-                                    Blocks[ind2][ALLOC] = 1;
-                                    num_blocks++;
-                                    if(num_blocks == max_blocks) goto end;
-                                }
-                            }
-                        }
-                    }
-                }
-            }
-        }
-        tries++;
-        if (BUTTON_PRESS()) return;
-    } while (num_blocks != max_blocks);
-end:
-    Dbprintf("-----------------------------------------");
-    Dbprintf("Memory content:");
-    Dbprintf("-----------------------------------------");
-    for(i=0; i<max_blocks; i++) {
-        if(Blocks[i][ALLOC]==1)
-            Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
-                     Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7],
-                    Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]);
-        else
-            Dbprintf("<missing block %d>", i);
-    }
-    Dbprintf("-----------------------------------------");
-
-    return ;
+// Clone Indala 64-bit tag by UID to T55x7
+void CopyIndala64toT55x7(uint32_t hi, uint32_t lo) {
+       //Program the 2 data blocks for supplied 64bit UID
+       // and the Config for Indala 64 format (RF/32;PSK1 with RF/2;Maxblock=2)
+       uint32_t data[] = { T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
+       //TODO add selection of chip for Q5 or T55x7
+       // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 2 << T5555_MAXBLOCK_SHIFT;
+
+       WriteT55xx(data, 0, 3);
+       //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
+       //      T5567WriteBlock(0x603E1042,0);
+       DbpString("DONE!");
+}
+// Clone Indala 224-bit tag by UID to T55x7
+void CopyIndala224toT55x7(uint32_t uid1, uint32_t uid2, uint32_t uid3, uint32_t uid4, uint32_t uid5, uint32_t uid6, uint32_t uid7) {
+       //Program the 7 data blocks for supplied 224bit UID
+       uint32_t data[] = {0, uid1, uid2, uid3, uid4, uid5, uid6, uid7};
+       // and the block 0 for Indala224 format 
+       //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
+       data[0] = T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (7 << T55x7_MAXBLOCK_SHIFT);
+       //TODO add selection of chip for Q5 or T55x7
+       // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 7 << T5555_MAXBLOCK_SHIFT;
+       WriteT55xx(data, 0, 8);
+       //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
+       //      T5567WriteBlock(0x603E10E2,0);
+       DbpString("DONE!");
+}
+// clone viking tag to T55xx
+void CopyVikingtoT55xx(uint32_t block1, uint32_t block2, uint8_t Q5) {
+       uint32_t data[] = {T55x7_BITRATE_RF_32 | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT), block1, block2};
+       //t5555 (Q5) BITRATE = (RF-2)/2 (iceman)
+       if (Q5) data[0] = (32 << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | 2 << T5555_MAXBLOCK_SHIFT;
+       // Program the data blocks for supplied ID and the block 0 config
+       WriteT55xx(data, 0, 3);
+       LED_D_OFF();
+       cmd_send(CMD_ACK,0,0,0,0,0);
 }
 
+// Define 9bit header for EM410x tags
+#define EM410X_HEADER          0x1FF
+#define EM410X_ID_LENGTH       40
+
+void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) {
+       int i, id_bit;
+       uint64_t id = EM410X_HEADER;
+       uint64_t rev_id = 0;    // reversed ID
+       int c_parity[4];        // column parity
+       int r_parity = 0;       // row parity
+       uint32_t clock = 0;
+
+       // Reverse ID bits given as parameter (for simpler operations)
+       for (i = 0; i < EM410X_ID_LENGTH; ++i) {
+               if (i < 32) {
+                       rev_id = (rev_id << 1) | (id_lo & 1);
+                       id_lo >>= 1;
+               } else {
+                       rev_id = (rev_id << 1) | (id_hi & 1);
+                       id_hi >>= 1;
+               }
+       }
+
+       for (i = 0; i < EM410X_ID_LENGTH; ++i) {
+               id_bit = rev_id & 1;
+
+               if (i % 4 == 0) {
+                       // Don't write row parity bit at start of parsing
+                       if (i)
+                               id = (id << 1) | r_parity;
+                       // Start counting parity for new row
+                       r_parity = id_bit;
+               } else {
+                       // Count row parity
+                       r_parity ^= id_bit;
+               }
+
+               // First elements in column?
+               if (i < 4)
+                       // Fill out first elements
+                       c_parity[i] = id_bit;
+               else
+                       // Count column parity
+                       c_parity[i % 4] ^= id_bit;
+
+               // Insert ID bit
+               id = (id << 1) | id_bit;
+               rev_id >>= 1;
+       }
+
+       // Insert parity bit of last row
+       id = (id << 1) | r_parity;
+
+       // Fill out column parity at the end of tag
+       for (i = 0; i < 4; ++i)
+               id = (id << 1) | c_parity[i];
+
+       // Add stop bit
+       id <<= 1;
+
+       Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
+       LED_D_ON();
+
+       // Write EM410x ID
+       uint32_t data[] = {0, (uint32_t)(id>>32), (uint32_t)(id & 0xFFFFFFFF)};
+
+       clock = (card & 0xFF00) >> 8;
+       clock = (clock == 0) ? 64 : clock;
+       Dbprintf("Clock rate: %d", clock);
+       if (card & 0xFF) { //t55x7
+               clock = GetT55xxClockBit(clock);
+               if (clock == 0) {
+                       Dbprintf("Invalid clock rate: %d", clock);
+                       return;
+               }
+               data[0] = clock | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT);
+       } else { //t5555 (Q5)
+               clock = (clock-2)>>1;  //n = (RF-2)/2
+               data[0] = (clock << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | (2 << T5555_MAXBLOCK_SHIFT);
+       }
+       WriteT55xx(data, 0, 3);
+
+       LED_D_OFF();
+       Dbprintf("Tag %s written with 0x%08x%08x\n",
+                       card ? "T55x7":"T5555",
+                       (uint32_t)(id >> 32),
+                       (uint32_t)id);
+}
 
 //-----------------------------------
 // EM4469 / EM4305 routines
 //-----------------------------------
-#define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
-#define FWD_CMD_WRITE 0xA
-#define FWD_CMD_READ 0x9
+#define FWD_CMD_LOGIN   0xC //including the even parity, binary mirrored
+#define FWD_CMD_WRITE   0xA
+#define FWD_CMD_READ    0x9
 #define FWD_CMD_DISABLE 0x5
 
-
 uint8_t forwardLink_data[64]; //array of forwarded bits
 uint8_t * forward_ptr; //ptr for forward message preparation
 uint8_t fwd_bit_sz; //forwardlink bit counter
@@ -1652,84 +1539,85 @@ uint8_t * fwd_write_ptr; //forwardlink bit pointer
 // see EM4469 spec
 //====================================================================
 //--------------------------------------------------------------------
+//  VALUES TAKEN FROM EM4x function: SendForward
+//  START_GAP = 440;       (55*8) cycles at 125Khz (8us = 1cycle)
+//  WRITE_GAP = 128;       (16*8)
+//  WRITE_1   = 256 32*8;  (32*8) 
+
+//  These timings work for 4469/4269/4305 (with the 55*8 above)
+//  WRITE_0 = 23*8 , 9*8
+
 uint8_t Prepare_Cmd( uint8_t cmd ) {
-    //--------------------------------------------------------------------
 
-    *forward_ptr++ = 0; //start bit
-    *forward_ptr++ = 0; //second pause for 4050 code
+       *forward_ptr++ = 0; //start bit
+       *forward_ptr++ = 0; //second pause for 4050 code
 
-    *forward_ptr++ = cmd;
-    cmd >>= 1;
-    *forward_ptr++ = cmd;
-    cmd >>= 1;
-    *forward_ptr++ = cmd;
-    cmd >>= 1;
-    *forward_ptr++ = cmd;
+       *forward_ptr++ = cmd;
+       cmd >>= 1;
+       *forward_ptr++ = cmd;
+       cmd >>= 1;
+       *forward_ptr++ = cmd;
+       cmd >>= 1;
+       *forward_ptr++ = cmd;
 
-    return 6; //return number of emited bits
+       return 6; //return number of emited bits
 }
 
 //====================================================================
 // prepares address bits
 // see EM4469 spec
 //====================================================================
-
-//--------------------------------------------------------------------
 uint8_t Prepare_Addr( uint8_t addr ) {
-    //--------------------------------------------------------------------
 
-    register uint8_t line_parity;
+       register uint8_t line_parity;
 
-    uint8_t i;
-    line_parity = 0;
-    for(i=0;i<6;i++) {
-        *forward_ptr++ = addr;
-        line_parity ^= addr;
-        addr >>= 1;
-    }
+       uint8_t i;
+       line_parity = 0;
+       for(i=0;i<6;i++) {
+               *forward_ptr++ = addr;
+               line_parity ^= addr;
+               addr >>= 1;
+       }
 
-    *forward_ptr++ = (line_parity & 1);
+       *forward_ptr++ = (line_parity & 1);
 
-    return 7; //return number of emited bits
+       return 7; //return number of emited bits
 }
 
 //====================================================================
 // prepares data bits intreleaved with parity bits
 // see EM4469 spec
 //====================================================================
-
-//--------------------------------------------------------------------
 uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
-    //--------------------------------------------------------------------
-
-    register uint8_t line_parity;
-    register uint8_t column_parity;
-    register uint8_t i, j;
-    register uint16_t data;
-
-    data = data_low;
-    column_parity = 0;
-
-    for(i=0; i<4; i++) {
-        line_parity = 0;
-        for(j=0; j<8; j++) {
-            line_parity ^= data;
-            column_parity ^= (data & 1) << j;
-            *forward_ptr++ = data;
-            data >>= 1;
-        }
-        *forward_ptr++ = line_parity;
-        if(i == 1)
-            data = data_hi;
-    }
-
-    for(j=0; j<8; j++) {
-        *forward_ptr++ = column_parity;
-        column_parity >>= 1;
-    }
-    *forward_ptr = 0;
-
-    return 45; //return number of emited bits
+
+       register uint8_t line_parity;
+       register uint8_t column_parity;
+       register uint8_t i, j;
+       register uint16_t data;
+
+       data = data_low;
+       column_parity = 0;
+
+       for(i=0; i<4; i++) {
+               line_parity = 0;
+               for(j=0; j<8; j++) {
+                       line_parity ^= data;
+                       column_parity ^= (data & 1) << j;
+                       *forward_ptr++ = data;
+                       data >>= 1;
+               }
+               *forward_ptr++ = line_parity;
+               if(i == 1)
+                       data = data_hi;
+       }
+
+       for(j=0; j<8; j++) {
+               *forward_ptr++ = column_parity;
+               column_parity >>= 1;
+       }
+       *forward_ptr = 0;
+
+       return 45; //return number of emited bits
 }
 
 //====================================================================
@@ -1739,114 +1627,102 @@ uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
 //====================================================================
 void SendForward(uint8_t fwd_bit_count) {
 
-    fwd_write_ptr = forwardLink_data;
-    fwd_bit_sz = fwd_bit_count;
-
-    LED_D_ON();
-
-    //Field on
-    FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
-    FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-    FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
-
-    // Give it a bit of time for the resonant antenna to settle.
-    // And for the tag to fully power up
-    SpinDelay(150);
-
-    // force 1st mod pulse (start gap must be longer for 4305)
-    fwd_bit_sz--; //prepare next bit modulation
-    fwd_write_ptr++;
-    FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
-    SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
-    FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-    FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
-    SpinDelayUs(16*8); //16 cycles on (8us each)
-
-    // now start writting
-    while(fwd_bit_sz-- > 0) { //prepare next bit modulation
-        if(((*fwd_write_ptr++) & 1) == 1)
-            SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
-        else {
-            //These timings work for 4469/4269/4305 (with the 55*8 above)
-            FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
-            SpinDelayUs(23*8); //16-4 cycles off (8us each)
-            FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-            FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
-            SpinDelayUs(9*8); //16 cycles on (8us each)
-        }
-    }
+       fwd_write_ptr = forwardLink_data;
+       fwd_bit_sz = fwd_bit_count;
+
+       LED_D_ON();
+
+       // Set up FPGA, 125kHz
+       LFSetupFPGAForADC(95, true);
+       
+       // force 1st mod pulse (start gap must be longer for 4305)
+       fwd_bit_sz--; //prepare next bit modulation
+       fwd_write_ptr++;
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+       WaitUS(55*8); //55 cycles off (8us each)for 4305        // ICEMAN:  problem with (us) clock is  21.3us increments
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
+       WaitUS(16*8); //16 cycles on (8us each) // ICEMAN:  problem with (us) clock is  21.3us increments
+
+       // now start writting
+       while(fwd_bit_sz-- > 0) { //prepare next bit modulation
+               if(((*fwd_write_ptr++) & 1) == 1)
+                       WaitUS(32*8); //32 cycles at 125Khz (8us each)  // ICEMAN:  problem with (us) clock is  21.3us increments
+               else {
+                       //These timings work for 4469/4269/4305 (with the 55*8 above)
+                       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+                       WaitUS(16*8); //16-4 cycles off (8us each)      // ICEMAN:  problem with (us) clock is  21.3us increments
+                       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
+                       WaitUS(16*8); //16 cycles on (8us each) // ICEMAN:  problem with (us) clock is  21.3us increments
+               }
+       }
 }
 
 void EM4xLogin(uint32_t Password) {
 
-    uint8_t fwd_bit_count;
-
-    forward_ptr = forwardLink_data;
-    fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
-    fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
-
-    SendForward(fwd_bit_count);
-
-    //Wait for command to complete
-    SpinDelay(20);
+       uint8_t fwd_bit_count;
+       forward_ptr = forwardLink_data;
+       fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
+       fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
+       SendForward(fwd_bit_count);
 
+       //Wait for command to complete
+       WaitMS(20);
 }
 
 void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
 
-    uint8_t fwd_bit_count;
-    uint8_t *dest = (uint8_t *)BigBuf;
-    int m=0, i=0;
-
-    //If password mode do login
-    if (PwdMode == 1) EM4xLogin(Pwd);
-
-    forward_ptr = forwardLink_data;
-    fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
-    fwd_bit_count += Prepare_Addr( Address );
-
-    m = sizeof(BigBuf);
-    // Clear destination buffer before sending the command
-    memset(dest, 128, m);
-    // Connect the A/D to the peak-detected low-frequency path.
-    SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
-    // Now set up the SSC to get the ADC samples that are now streaming at us.
-    FpgaSetupSsc();
-
-    SendForward(fwd_bit_count);
-
-    // Now do the acquisition
-    i = 0;
-    for(;;) {
-        if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
-            AT91C_BASE_SSC->SSC_THR = 0x43;
-        }
-        if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
-            dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
-            i++;
-            if (i >= m) break;
-        }
-    }
-    FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
-    LED_D_OFF();
+       uint8_t fwd_bit_count;
+       uint8_t *dest = BigBuf_get_addr();
+       uint16_t bufsize = BigBuf_max_traceLen();  // ICEMAN: this tries to fill up all tracelog space
+       uint32_t i = 0;
+
+       // Clear destination buffer before sending the command
+       BigBuf_Clear_ext(false);
+       
+       //If password mode do login
+       if (PwdMode == 1) EM4xLogin(Pwd);
+
+       forward_ptr = forwardLink_data;
+       fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
+       fwd_bit_count += Prepare_Addr( Address );
+
+       SendForward(fwd_bit_count);
+
+       // Now do the acquisition
+       // ICEMAN, change to the one in lfsampling.c
+       i = 0;
+       for(;;) {
+               if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
+                       AT91C_BASE_SSC->SSC_THR = 0x43;
+               }
+               if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
+                       dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+                       ++i;
+                       if (i >= bufsize) break;
+               }
+       }
+
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off    
+       cmd_send(CMD_ACK,0,0,0,0,0);
+       LED_D_OFF();
 }
 
 void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
 
-    uint8_t fwd_bit_count;
+       uint8_t fwd_bit_count;
 
-    //If password mode do login
-    if (PwdMode == 1) EM4xLogin(Pwd);
+       //If password mode do login
+       if (PwdMode == 1) EM4xLogin(Pwd);
 
-    forward_ptr = forwardLink_data;
-    fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
-    fwd_bit_count += Prepare_Addr( Address );
-    fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
+       forward_ptr = forwardLink_data;
+       fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
+       fwd_bit_count += Prepare_Addr( Address );
+       fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
 
-    SendForward(fwd_bit_count);
+       SendForward(fwd_bit_count);
 
-    //Wait for write to complete
-    SpinDelay(20);
-    FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
-    LED_D_OFF();
+       //Wait for write to complete
+       WaitMS(20);
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+       LED_D_OFF();
 }
Impressum, Datenschutz