-//-----------------------------------------------------------------------------\r
-// Routines to load the FPGA image, and then to configure the FPGA's major\r
-// mode once it is configured.\r
-//\r
-// Jonathan Westhues, April 2006\r
-//-----------------------------------------------------------------------------\r
-#include <proxmark3.h>\r
-#include "apps.h"\r
-\r
-//-----------------------------------------------------------------------------\r
-// Set up the Serial Peripheral Interface as master\r
-// Used to write the FPGA config word\r
-// May also be used to write to other SPI attached devices like an LCD\r
-//-----------------------------------------------------------------------------\r
-void SetupSpi(int mode)\r
-{\r
- // PA10 -> SPI_NCS2 chip select (LCD)\r
- // PA11 -> SPI_NCS0 chip select (FPGA)\r
- // PA12 -> SPI_MISO Master-In Slave-Out\r
- // PA13 -> SPI_MOSI Master-Out Slave-In\r
- // PA14 -> SPI_SPCK Serial Clock\r
-\r
- // Disable PIO control of the following pins, allows use by the SPI peripheral\r
- PIO_DISABLE = (1 << GPIO_NCS0) |\r
- (1 << GPIO_NCS2) |\r
- (1 << GPIO_MISO) |\r
- (1 << GPIO_MOSI) |\r
- (1 << GPIO_SPCK);\r
-\r
- PIO_PERIPHERAL_A_SEL = (1 << GPIO_NCS0) |\r
- (1 << GPIO_MISO) |\r
- (1 << GPIO_MOSI) |\r
- (1 << GPIO_SPCK);\r
-\r
- PIO_PERIPHERAL_B_SEL = (1 << GPIO_NCS2);\r
-\r
- //enable the SPI Peripheral clock\r
- PMC_PERIPHERAL_CLK_ENABLE = (1<<PERIPH_SPI);\r
- // Enable SPI\r
- SPI_CONTROL = SPI_CONTROL_ENABLE;\r
-\r
- switch (mode) {\r
- case SPI_FPGA_MODE:\r
- SPI_MODE =\r
- ( 0 << 24) | // Delay between chip selects (take default: 6 MCK periods)\r
- (14 << 16) | // Peripheral Chip Select (selects FPGA SPI_NCS0 or PA11)\r
- ( 0 << 7) | // Local Loopback Disabled\r
- ( 1 << 4) | // Mode Fault Detection disabled\r
- ( 0 << 2) | // Chip selects connected directly to peripheral\r
- ( 0 << 1) | // Fixed Peripheral Select\r
- ( 1 << 0); // Master Mode\r
- SPI_FOR_CHIPSEL_0 =\r
- ( 1 << 24) | // Delay between Consecutive Transfers (32 MCK periods)\r
- ( 1 << 16) | // Delay Before SPCK (1 MCK period)\r
- ( 6 << 8) | // Serial Clock Baud Rate (baudrate = MCK/6 = 24Mhz/6 = 4M baud\r
- ( 8 << 4) | // Bits per Transfer (16 bits)\r
- ( 0 << 3) | // Chip Select inactive after transfer\r
- ( 1 << 1) | // Clock Phase data captured on leading edge, changes on following edge\r
- ( 0 << 0); // Clock Polarity inactive state is logic 0\r
- break;\r
- case SPI_LCD_MODE:\r
- SPI_MODE =\r
- ( 0 << 24) | // Delay between chip selects (take default: 6 MCK periods)\r
- (11 << 16) | // Peripheral Chip Select (selects LCD SPI_NCS2 or PA10)\r
- ( 0 << 7) | // Local Loopback Disabled\r
- ( 1 << 4) | // Mode Fault Detection disabled\r
- ( 0 << 2) | // Chip selects connected directly to peripheral\r
- ( 0 << 1) | // Fixed Peripheral Select\r
- ( 1 << 0); // Master Mode\r
- SPI_FOR_CHIPSEL_2 =\r
- ( 1 << 24) | // Delay between Consecutive Transfers (32 MCK periods)\r
- ( 1 << 16) | // Delay Before SPCK (1 MCK period)\r
- ( 6 << 8) | // Serial Clock Baud Rate (baudrate = MCK/6 = 24Mhz/6 = 4M baud\r
- ( 1 << 4) | // Bits per Transfer (9 bits)\r
- ( 0 << 3) | // Chip Select inactive after transfer\r
- ( 1 << 1) | // Clock Phase data captured on leading edge, changes on following edge\r
- ( 0 << 0); // Clock Polarity inactive state is logic 0\r
- break;\r
- default: // Disable SPI\r
- SPI_CONTROL = SPI_CONTROL_DISABLE;\r
- break;\r
- }\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// Set up the synchronous serial port, with the one set of options that we\r
-// always use when we are talking to the FPGA. Both RX and TX are enabled.\r
-//-----------------------------------------------------------------------------\r
-void FpgaSetupSsc(void)\r
-{\r
- // First configure the GPIOs, and get ourselves a clock.\r
- PIO_PERIPHERAL_A_SEL = (1 << GPIO_SSC_FRAME) |\r
- (1 << GPIO_SSC_DIN) |\r
- (1 << GPIO_SSC_DOUT) |\r
- (1 << GPIO_SSC_CLK);\r
- PIO_DISABLE = (1 << GPIO_SSC_DOUT);\r
-\r
- PMC_PERIPHERAL_CLK_ENABLE = (1 << PERIPH_SSC);\r
-\r
- // Now set up the SSC proper, starting from a known state.\r
- SSC_CONTROL = SSC_CONTROL_RESET;\r
-\r
- // RX clock comes from TX clock, RX starts when TX starts, data changes\r
- // on RX clock rising edge, sampled on falling edge\r
- SSC_RECEIVE_CLOCK_MODE = SSC_CLOCK_MODE_SELECT(1) | SSC_CLOCK_MODE_START(1);\r
-\r
- // 8 bits per transfer, no loopback, MSB first, 1 transfer per sync\r
- // pulse, no output sync, start on positive-going edge of sync\r
- SSC_RECEIVE_FRAME_MODE = SSC_FRAME_MODE_BITS_IN_WORD(8) |\r
- SSC_FRAME_MODE_MSB_FIRST | SSC_FRAME_MODE_WORDS_PER_TRANSFER(0);\r
-\r
- // clock comes from TK pin, no clock output, outputs change on falling\r
- // edge of TK, start on rising edge of TF\r
- SSC_TRANSMIT_CLOCK_MODE = SSC_CLOCK_MODE_SELECT(2) |\r
- SSC_CLOCK_MODE_START(5);\r
-\r
- // tx framing is the same as the rx framing\r
- SSC_TRANSMIT_FRAME_MODE = SSC_RECEIVE_FRAME_MODE;\r
-\r
- SSC_CONTROL = SSC_CONTROL_RX_ENABLE | SSC_CONTROL_TX_ENABLE;\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// Set up DMA to receive samples from the FPGA. We will use the PDC, with\r
-// a single buffer as a circular buffer (so that we just chain back to\r
-// ourselves, not to another buffer). The stuff to manipulate those buffers\r
-// is in apps.h, because it should be inlined, for speed.\r
-//-----------------------------------------------------------------------------\r
-void FpgaSetupSscDma(BYTE *buf, int len)\r
-{\r
- PDC_RX_POINTER(SSC_BASE) = (DWORD)buf;\r
- PDC_RX_COUNTER(SSC_BASE) = len;\r
- PDC_RX_NEXT_POINTER(SSC_BASE) = (DWORD)buf;\r
- PDC_RX_NEXT_COUNTER(SSC_BASE) = len;\r
- PDC_CONTROL(SSC_BASE) = PDC_RX_ENABLE;\r
-}\r
-\r
-static void DownloadFPGA_byte(unsigned char w)\r
-{\r
-#define SEND_BIT(x) { if(w & (1<<x) ) HIGH(GPIO_FPGA_DIN); else LOW(GPIO_FPGA_DIN); HIGH(GPIO_FPGA_CCLK); LOW(GPIO_FPGA_CCLK); }\r
- SEND_BIT(7);\r
- SEND_BIT(6);\r
- SEND_BIT(5);\r
- SEND_BIT(4);\r
- SEND_BIT(3);\r
- SEND_BIT(2);\r
- SEND_BIT(1);\r
- SEND_BIT(0);\r
-}\r
-\r
-// Download the fpga image starting at FpgaImage and with length FpgaImageLen bytes\r
-// If bytereversal is set: reverse the byte order in each 4-byte word\r
-static void DownloadFPGA(const char *FpgaImage, int FpgaImageLen, int bytereversal)\r
-{\r
- int i;\r
-\r
- PIO_OUTPUT_ENABLE = (1 << GPIO_FPGA_ON);\r
- PIO_ENABLE = (1 << GPIO_FPGA_ON);\r
- PIO_OUTPUT_DATA_SET = (1 << GPIO_FPGA_ON);\r
-\r
- SpinDelay(50);\r
-\r
- LED_D_ON();\r
-\r
- HIGH(GPIO_FPGA_NPROGRAM);\r
- LOW(GPIO_FPGA_CCLK);\r
- LOW(GPIO_FPGA_DIN);\r
- PIO_OUTPUT_ENABLE = (1 << GPIO_FPGA_NPROGRAM) |\r
- (1 << GPIO_FPGA_CCLK) |\r
- (1 << GPIO_FPGA_DIN);\r
- SpinDelay(1);\r
-\r
- LOW(GPIO_FPGA_NPROGRAM);\r
- SpinDelay(50);\r
- HIGH(GPIO_FPGA_NPROGRAM);\r
-\r
- if(bytereversal) {\r
- /* This is only supported for DWORD aligned images */\r
- if( ((int)FpgaImage % sizeof(DWORD)) == 0 ) {\r
- i=0;\r
- while(FpgaImageLen-->0)\r
- DownloadFPGA_byte(FpgaImage[(i++)^0x3]);\r
- /* Explanation of the magic in the above line: \r
- * i^0x3 inverts the lower two bits of the integer i, counting backwards\r
- * for each 4 byte increment. The generated sequence of (i++)^3 is\r
+//-----------------------------------------------------------------------------
+// Routines to load the FPGA image, and then to configure the FPGA's major
+// mode once it is configured.
+//
+// Jonathan Westhues, April 2006
+//-----------------------------------------------------------------------------
+#include <proxmark3.h>
+#include "apps.h"
+
+//-----------------------------------------------------------------------------
+// Set up the Serial Peripheral Interface as master
+// Used to write the FPGA config word
+// May also be used to write to other SPI attached devices like an LCD
+//-----------------------------------------------------------------------------
+void SetupSpi(int mode)
+{
+ // PA10 -> SPI_NCS2 chip select (LCD)
+ // PA11 -> SPI_NCS0 chip select (FPGA)
+ // PA12 -> SPI_MISO Master-In Slave-Out
+ // PA13 -> SPI_MOSI Master-Out Slave-In
+ // PA14 -> SPI_SPCK Serial Clock
+
+ // Disable PIO control of the following pins, allows use by the SPI peripheral
+ AT91C_BASE_PIOA->PIO_PDR =
+ GPIO_NCS0 |
+ GPIO_NCS2 |
+ GPIO_MISO |
+ GPIO_MOSI |
+ GPIO_SPCK;
+
+ AT91C_BASE_PIOA->PIO_ASR =
+ GPIO_NCS0 |
+ GPIO_MISO |
+ GPIO_MOSI |
+ GPIO_SPCK;
+
+ AT91C_BASE_PIOA->PIO_BSR = GPIO_NCS2;
+
+ //enable the SPI Peripheral clock
+ AT91C_BASE_PMC->PMC_PCER = (1<<AT91C_ID_SPI);
+ // Enable SPI
+ AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SPIEN;
+
+ switch (mode) {
+ case SPI_FPGA_MODE:
+ AT91C_BASE_SPI->SPI_MR =
+ ( 0 << 24) | // Delay between chip selects (take default: 6 MCK periods)
+ (14 << 16) | // Peripheral Chip Select (selects FPGA SPI_NCS0 or PA11)
+ ( 0 << 7) | // Local Loopback Disabled
+ ( 1 << 4) | // Mode Fault Detection disabled
+ ( 0 << 2) | // Chip selects connected directly to peripheral
+ ( 0 << 1) | // Fixed Peripheral Select
+ ( 1 << 0); // Master Mode
+ AT91C_BASE_SPI->SPI_CSR[0] =
+ ( 1 << 24) | // Delay between Consecutive Transfers (32 MCK periods)
+ ( 1 << 16) | // Delay Before SPCK (1 MCK period)
+ ( 6 << 8) | // Serial Clock Baud Rate (baudrate = MCK/6 = 24Mhz/6 = 4M baud
+ ( 8 << 4) | // Bits per Transfer (16 bits)
+ ( 0 << 3) | // Chip Select inactive after transfer
+ ( 1 << 1) | // Clock Phase data captured on leading edge, changes on following edge
+ ( 0 << 0); // Clock Polarity inactive state is logic 0
+ break;
+ case SPI_LCD_MODE:
+ AT91C_BASE_SPI->SPI_MR =
+ ( 0 << 24) | // Delay between chip selects (take default: 6 MCK periods)
+ (11 << 16) | // Peripheral Chip Select (selects LCD SPI_NCS2 or PA10)
+ ( 0 << 7) | // Local Loopback Disabled
+ ( 1 << 4) | // Mode Fault Detection disabled
+ ( 0 << 2) | // Chip selects connected directly to peripheral
+ ( 0 << 1) | // Fixed Peripheral Select
+ ( 1 << 0); // Master Mode
+ AT91C_BASE_SPI->SPI_CSR[2] =
+ ( 1 << 24) | // Delay between Consecutive Transfers (32 MCK periods)
+ ( 1 << 16) | // Delay Before SPCK (1 MCK period)
+ ( 6 << 8) | // Serial Clock Baud Rate (baudrate = MCK/6 = 24Mhz/6 = 4M baud
+ ( 1 << 4) | // Bits per Transfer (9 bits)
+ ( 0 << 3) | // Chip Select inactive after transfer
+ ( 1 << 1) | // Clock Phase data captured on leading edge, changes on following edge
+ ( 0 << 0); // Clock Polarity inactive state is logic 0
+ break;
+ default: // Disable SPI
+ AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SPIDIS;
+ break;
+ }
+}
+
+//-----------------------------------------------------------------------------
+// Set up the synchronous serial port, with the one set of options that we
+// always use when we are talking to the FPGA. Both RX and TX are enabled.
+//-----------------------------------------------------------------------------
+void FpgaSetupSsc(void)
+{
+ // First configure the GPIOs, and get ourselves a clock.
+ AT91C_BASE_PIOA->PIO_ASR =
+ GPIO_SSC_FRAME |
+ GPIO_SSC_DIN |
+ GPIO_SSC_DOUT |
+ GPIO_SSC_CLK;
+ AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
+
+ AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_SSC);
+
+ // Now set up the SSC proper, starting from a known state.
+ AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
+
+ // RX clock comes from TX clock, RX starts when TX starts, data changes
+ // on RX clock rising edge, sampled on falling edge
+ AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(1) | SSC_CLOCK_MODE_START(1);
+
+ // 8 bits per transfer, no loopback, MSB first, 1 transfer per sync
+ // pulse, no output sync, start on positive-going edge of sync
+ AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(8) |
+ AT91C_SSC_MSBF | SSC_FRAME_MODE_WORDS_PER_TRANSFER(0);
+
+ // clock comes from TK pin, no clock output, outputs change on falling
+ // edge of TK, start on rising edge of TF
+ AT91C_BASE_SSC->SSC_TCMR = SSC_CLOCK_MODE_SELECT(2) |
+ SSC_CLOCK_MODE_START(5);
+
+ // tx framing is the same as the rx framing
+ AT91C_BASE_SSC->SSC_TFMR = AT91C_BASE_SSC->SSC_RFMR;
+
+ AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
+}
+
+//-----------------------------------------------------------------------------
+// Set up DMA to receive samples from the FPGA. We will use the PDC, with
+// a single buffer as a circular buffer (so that we just chain back to
+// ourselves, not to another buffer). The stuff to manipulate those buffers
+// is in apps.h, because it should be inlined, for speed.
+//-----------------------------------------------------------------------------
+void FpgaSetupSscDma(BYTE *buf, int len)
+{
+ AT91C_BASE_PDC_SSC->PDC_RPR = (DWORD)buf;
+ AT91C_BASE_PDC_SSC->PDC_RCR = len;
+ AT91C_BASE_PDC_SSC->PDC_RNPR = (DWORD)buf;
+ AT91C_BASE_PDC_SSC->PDC_RNCR = len;
+ AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTEN;
+}
+
+static void DownloadFPGA_byte(unsigned char w)
+{
+#define SEND_BIT(x) { if(w & (1<<x) ) HIGH(GPIO_FPGA_DIN); else LOW(GPIO_FPGA_DIN); HIGH(GPIO_FPGA_CCLK); LOW(GPIO_FPGA_CCLK); }
+ SEND_BIT(7);
+ SEND_BIT(6);
+ SEND_BIT(5);
+ SEND_BIT(4);
+ SEND_BIT(3);
+ SEND_BIT(2);
+ SEND_BIT(1);
+ SEND_BIT(0);
+}
+
+// Download the fpga image starting at FpgaImage and with length FpgaImageLen bytes
+// If bytereversal is set: reverse the byte order in each 4-byte word
+static void DownloadFPGA(const char *FpgaImage, int FpgaImageLen, int bytereversal)
+{
+ int i=0;
+
+ AT91C_BASE_PIOA->PIO_OER = GPIO_FPGA_ON;
+ AT91C_BASE_PIOA->PIO_PER = GPIO_FPGA_ON;
+ HIGH(GPIO_FPGA_ON); // ensure everything is powered on
+
+ SpinDelay(50);
+
+ LED_D_ON();
+
+ // These pins are inputs
+ AT91C_BASE_PIOA->PIO_ODR =
+ GPIO_FPGA_NINIT |
+ GPIO_FPGA_DONE;
+ // PIO controls the following pins
+ AT91C_BASE_PIOA->PIO_PER =
+ GPIO_FPGA_NINIT |
+ GPIO_FPGA_DONE;
+ // Enable pull-ups
+ AT91C_BASE_PIOA->PIO_PPUER =
+ GPIO_FPGA_NINIT |
+ GPIO_FPGA_DONE;
+
+ // setup initial logic state
+ HIGH(GPIO_FPGA_NPROGRAM);
+ LOW(GPIO_FPGA_CCLK);
+ LOW(GPIO_FPGA_DIN);
+ // These pins are outputs
+ AT91C_BASE_PIOA->PIO_OER =
+ GPIO_FPGA_NPROGRAM |
+ GPIO_FPGA_CCLK |
+ GPIO_FPGA_DIN;
+
+ // enter FPGA configuration mode
+ LOW(GPIO_FPGA_NPROGRAM);
+ SpinDelay(50);
+ HIGH(GPIO_FPGA_NPROGRAM);
+
+ i=100000;
+ // wait for FPGA ready to accept data signal
+ while ((i) && ( !(AT91C_BASE_PIOA->PIO_PDSR & GPIO_FPGA_NINIT ) ) ) {
+ i--;
+ }
+
+ // crude error indicator, leave both red LEDs on and return
+ if (i==0){
+ LED_C_ON();
+ LED_D_ON();
+ return;
+ }
+
+ if(bytereversal) {
+ /* This is only supported for DWORD aligned images */
+ if( ((int)FpgaImage % sizeof(DWORD)) == 0 ) {
+ i=0;
+ while(FpgaImageLen-->0)
+ DownloadFPGA_byte(FpgaImage[(i++)^0x3]);
+ /* Explanation of the magic in the above line:
+ * i^0x3 inverts the lower two bits of the integer i, counting backwards
+ * for each 4 byte increment. The generated sequence of (i++)^3 is
* 3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12 etc. pp.
- */\r
- }\r
- } else {\r
- while(FpgaImageLen-->0)\r
- DownloadFPGA_byte(*FpgaImage++);\r
- }\r
-\r
- LED_D_OFF();\r
-}\r
-\r
-static char *bitparse_headers_start;\r
-static char *bitparse_bitstream_end;\r
-static int bitparse_initialized;\r
-/* Simple Xilinx .bit parser. The file starts with the fixed opaque byte sequence\r
- * 00 09 0f f0 0f f0 0f f0 0f f0 00 00 01\r
- * After that the format is 1 byte section type (ASCII character), 2 byte length\r
- * (big endian), <length> bytes content. Except for section 'e' which has 4 bytes\r
+ */
+ }
+ } else {
+ while(FpgaImageLen-->0)
+ DownloadFPGA_byte(*FpgaImage++);
+ }
+
+ // continue to clock FPGA until ready signal goes high
+ i=100000;
+ while ( (i--) && ( !(AT91C_BASE_PIOA->PIO_PDSR & GPIO_FPGA_DONE ) ) ) {
+ HIGH(GPIO_FPGA_CCLK);
+ LOW(GPIO_FPGA_CCLK);
+ }
+ // crude error indicator, leave both red LEDs on and return
+ if (i==0){
+ LED_C_ON();
+ LED_D_ON();
+ return;
+ }
+ LED_D_OFF();
+}
+
+static char *bitparse_headers_start;
+static char *bitparse_bitstream_end;
+static int bitparse_initialized;
+/* Simple Xilinx .bit parser. The file starts with the fixed opaque byte sequence
+ * 00 09 0f f0 0f f0 0f f0 0f f0 00 00 01
+ * After that the format is 1 byte section type (ASCII character), 2 byte length
+ * (big endian), <length> bytes content. Except for section 'e' which has 4 bytes
* length.
- */\r
-static const char _bitparse_fixed_header[] = {0x00, 0x09, 0x0f, 0xf0, 0x0f, 0xf0, 0x0f, 0xf0, 0x0f, 0xf0, 0x00, 0x00, 0x01};\r
-static int bitparse_init(void * start_address, void *end_address)\r
-{\r
- bitparse_initialized = 0;\r
- \r
- if(memcmp(_bitparse_fixed_header, start_address, sizeof(_bitparse_fixed_header)) != 0) {\r
- return 0; /* Not matched */\r
- } else {\r
- bitparse_headers_start= ((char*)start_address) + sizeof(_bitparse_fixed_header);\r
- bitparse_bitstream_end= (char*)end_address;\r
- bitparse_initialized = 1;\r
- return 1;\r
- }\r
-}\r
-\r
-int bitparse_find_section(char section_name, char **section_start, unsigned int *section_length)\r
-{\r
- char *pos = bitparse_headers_start;\r
- int result = 0;\r
-\r
- if(!bitparse_initialized) return 0;\r
-\r
- while(pos < bitparse_bitstream_end) {\r
- char current_name = *pos++;\r
- unsigned int current_length = 0;\r
- if(current_name < 'a' || current_name > 'e') {\r
- /* Strange section name, abort */\r
- break;\r
- }\r
- current_length = 0;\r
- switch(current_name) {\r
- case 'e':\r
- /* Four byte length field */\r
- current_length += (*pos++) << 24;\r
- current_length += (*pos++) << 16;\r
- default: /* Fall through, two byte length field */\r
- current_length += (*pos++) << 8;\r
- current_length += (*pos++) << 0;\r
- }\r
- \r
- if(current_name != 'e' && current_length > 255) {\r
- /* Maybe a parse error */\r
- break;\r
- }\r
- \r
- if(current_name == section_name) {\r
- /* Found it */\r
- *section_start = pos;\r
- *section_length = current_length;\r
- result = 1;\r
- break;\r
- }\r
- \r
- pos += current_length; /* Skip section */\r
- }\r
- \r
- return result;\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// Find out which FPGA image format is stored in flash, then call DownloadFPGA\r
-// with the right parameters to download the image\r
-//-----------------------------------------------------------------------------\r
-extern char _binary_fpga_bit_start, _binary_fpga_bit_end;\r
-void FpgaDownloadAndGo(void)\r
-{\r
+ */
+static const char _bitparse_fixed_header[] = {0x00, 0x09, 0x0f, 0xf0, 0x0f, 0xf0, 0x0f, 0xf0, 0x0f, 0xf0, 0x00, 0x00, 0x01};
+static int bitparse_init(void * start_address, void *end_address)
+{
+ bitparse_initialized = 0;
+
+ if(memcmp(_bitparse_fixed_header, start_address, sizeof(_bitparse_fixed_header)) != 0) {
+ return 0; /* Not matched */
+ } else {
+ bitparse_headers_start= ((char*)start_address) + sizeof(_bitparse_fixed_header);
+ bitparse_bitstream_end= (char*)end_address;
+ bitparse_initialized = 1;
+ return 1;
+ }
+}
+
+int bitparse_find_section(char section_name, char **section_start, unsigned int *section_length)
+{
+ char *pos = bitparse_headers_start;
+ int result = 0;
+
+ if(!bitparse_initialized) return 0;
+
+ while(pos < bitparse_bitstream_end) {
+ char current_name = *pos++;
+ unsigned int current_length = 0;
+ if(current_name < 'a' || current_name > 'e') {
+ /* Strange section name, abort */
+ break;
+ }
+ current_length = 0;
+ switch(current_name) {
+ case 'e':
+ /* Four byte length field */
+ current_length += (*pos++) << 24;
+ current_length += (*pos++) << 16;
+ default: /* Fall through, two byte length field */
+ current_length += (*pos++) << 8;
+ current_length += (*pos++) << 0;
+ }
+
+ if(current_name != 'e' && current_length > 255) {
+ /* Maybe a parse error */
+ break;
+ }
+
+ if(current_name == section_name) {
+ /* Found it */
+ *section_start = pos;
+ *section_length = current_length;
+ result = 1;
+ break;
+ }
+
+ pos += current_length; /* Skip section */
+ }
+
+ return result;
+}
+
+//-----------------------------------------------------------------------------
+// Find out which FPGA image format is stored in flash, then call DownloadFPGA
+// with the right parameters to download the image
+//-----------------------------------------------------------------------------
+extern char _binary_fpga_bit_start, _binary_fpga_bit_end;
+void FpgaDownloadAndGo(void)
+{
/* Check for the new flash image format: Should have the .bit file at &_binary_fpga_bit_start
- */\r
- if(bitparse_init(&_binary_fpga_bit_start, &_binary_fpga_bit_end)) {\r
- /* Successfully initialized the .bit parser. Find the 'e' section and\r
+ */
+ if(bitparse_init(&_binary_fpga_bit_start, &_binary_fpga_bit_end)) {
+ /* Successfully initialized the .bit parser. Find the 'e' section and
* send its contents to the FPGA.
- */\r
- char *bitstream_start;\r
- unsigned int bitstream_length;\r
- if(bitparse_find_section('e', &bitstream_start, &bitstream_length)) {\r
- DownloadFPGA(bitstream_start, bitstream_length, 0);\r
- \r
- return; /* All done */\r
- }\r
- }\r
- \r
- /* Fallback for the old flash image format: Check for the magic marker 0xFFFFFFFF\r
- * 0xAA995566 at address 0x102000. This is raw bitstream with a size of 336,768 bits \r
- * = 10,524 DWORDs, stored as DWORDS e.g. little-endian in memory, but each DWORD\r
- * is still to be transmitted in MSBit first order. Set the invert flag to indicate\r
- * that the DownloadFPGA function should invert every 4 byte sequence when doing\r
+ */
+ char *bitstream_start;
+ unsigned int bitstream_length;
+ if(bitparse_find_section('e', &bitstream_start, &bitstream_length)) {
+ DownloadFPGA(bitstream_start, bitstream_length, 0);
+
+ return; /* All done */
+ }
+ }
+
+ /* Fallback for the old flash image format: Check for the magic marker 0xFFFFFFFF
+ * 0xAA995566 at address 0x102000. This is raw bitstream with a size of 336,768 bits
+ * = 10,524 DWORDs, stored as DWORDS e.g. little-endian in memory, but each DWORD
+ * is still to be transmitted in MSBit first order. Set the invert flag to indicate
+ * that the DownloadFPGA function should invert every 4 byte sequence when doing
* the bytewise download.
- */\r
- if( *(DWORD*)0x102000 == 0xFFFFFFFF && *(DWORD*)0x102004 == 0xAA995566 )\r
- DownloadFPGA((char*)0x102000, 10524*4, 1);\r
-}\r
-\r
-void FpgaGatherVersion(char *dst, int len)\r
-{\r
- char *fpga_info; \r
- unsigned int fpga_info_len;\r
- dst[0] = 0;\r
- if(!bitparse_find_section('e', &fpga_info, &fpga_info_len)) {\r
- strncat(dst, "FPGA image: legacy image without version information", len-1);\r
- } else {\r
- strncat(dst, "FPGA image built", len-1);\r
- /* USB packets only have 48 bytes data payload, so be terse */\r
-#if 0\r
- if(bitparse_find_section('a', &fpga_info, &fpga_info_len) && fpga_info[fpga_info_len-1] == 0 ) {\r
- strncat(dst, " from ", len-1);\r
- strncat(dst, fpga_info, len-1);\r
- }\r
- if(bitparse_find_section('b', &fpga_info, &fpga_info_len) && fpga_info[fpga_info_len-1] == 0 ) {\r
- strncat(dst, " for ", len-1);\r
- strncat(dst, fpga_info, len-1);\r
- }\r
-#endif\r
- if(bitparse_find_section('c', &fpga_info, &fpga_info_len) && fpga_info[fpga_info_len-1] == 0 ) {\r
- strncat(dst, " on ", len-1);\r
- strncat(dst, fpga_info, len-1);\r
- }\r
- if(bitparse_find_section('d', &fpga_info, &fpga_info_len) && fpga_info[fpga_info_len-1] == 0 ) {\r
- strncat(dst, " at ", len-1);\r
- strncat(dst, fpga_info, len-1);\r
- }\r
- }\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// Send a 16 bit command/data pair to the FPGA.\r
-// The bit format is: C3 C2 C1 C0 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0\r
-// where C is the 4 bit command and D is the 12 bit data\r
-//-----------------------------------------------------------------------------\r
-void FpgaSendCommand(WORD cmd, WORD v)\r
-{\r
- SetupSpi(SPI_FPGA_MODE);\r
- while ((SPI_STATUS & SPI_STATUS_TX_EMPTY) == 0); // wait for the transfer to complete\r
- SPI_TX_DATA = SPI_CONTROL_LAST_TRANSFER | cmd | v; // send the data\r
-}\r
-//-----------------------------------------------------------------------------\r
-// Write the FPGA setup word (that determines what mode the logic is in, read\r
-// vs. clone vs. etc.). This is now a special case of FpgaSendCommand() to\r
-// avoid changing this function's occurence everywhere in the source code.\r
-//-----------------------------------------------------------------------------\r
-void FpgaWriteConfWord(BYTE v)\r
-{\r
- FpgaSendCommand(FPGA_CMD_SET_CONFREG, v);\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// Set up the CMOS switches that mux the ADC: four switches, independently\r
-// closable, but should only close one at a time. Not an FPGA thing, but\r
-// the samples from the ADC always flow through the FPGA.\r
-//-----------------------------------------------------------------------------\r
-void SetAdcMuxFor(int whichGpio)\r
-{\r
- PIO_OUTPUT_ENABLE = (1 << GPIO_MUXSEL_HIPKD) |\r
- (1 << GPIO_MUXSEL_LOPKD) |\r
- (1 << GPIO_MUXSEL_LORAW) |\r
- (1 << GPIO_MUXSEL_HIRAW);\r
-\r
- PIO_ENABLE = (1 << GPIO_MUXSEL_HIPKD) |\r
- (1 << GPIO_MUXSEL_LOPKD) |\r
- (1 << GPIO_MUXSEL_LORAW) |\r
- (1 << GPIO_MUXSEL_HIRAW);\r
-\r
- LOW(GPIO_MUXSEL_HIPKD);\r
- LOW(GPIO_MUXSEL_HIRAW);\r
- LOW(GPIO_MUXSEL_LORAW);\r
- LOW(GPIO_MUXSEL_LOPKD);\r
-\r
- HIGH(whichGpio);\r
-}\r
+ */
+ if( *(DWORD*)0x102000 == 0xFFFFFFFF && *(DWORD*)0x102004 == 0xAA995566 )
+ DownloadFPGA((char*)0x102000, 10524*4, 1);
+}
+
+void FpgaGatherVersion(char *dst, int len)
+{
+ char *fpga_info;
+ unsigned int fpga_info_len;
+ dst[0] = 0;
+ if(!bitparse_find_section('e', &fpga_info, &fpga_info_len)) {
+ strncat(dst, "FPGA image: legacy image without version information", len-1);
+ } else {
+ strncat(dst, "FPGA image built", len-1);
+ /* USB packets only have 48 bytes data payload, so be terse */
+#if 0
+ if(bitparse_find_section('a', &fpga_info, &fpga_info_len) && fpga_info[fpga_info_len-1] == 0 ) {
+ strncat(dst, " from ", len-1);
+ strncat(dst, fpga_info, len-1);
+ }
+ if(bitparse_find_section('b', &fpga_info, &fpga_info_len) && fpga_info[fpga_info_len-1] == 0 ) {
+ strncat(dst, " for ", len-1);
+ strncat(dst, fpga_info, len-1);
+ }
+#endif
+ if(bitparse_find_section('c', &fpga_info, &fpga_info_len) && fpga_info[fpga_info_len-1] == 0 ) {
+ strncat(dst, " on ", len-1);
+ strncat(dst, fpga_info, len-1);
+ }
+ if(bitparse_find_section('d', &fpga_info, &fpga_info_len) && fpga_info[fpga_info_len-1] == 0 ) {
+ strncat(dst, " at ", len-1);
+ strncat(dst, fpga_info, len-1);
+ }
+ }
+}
+
+//-----------------------------------------------------------------------------
+// Send a 16 bit command/data pair to the FPGA.
+// The bit format is: C3 C2 C1 C0 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
+// where C is the 4 bit command and D is the 12 bit data
+//-----------------------------------------------------------------------------
+void FpgaSendCommand(WORD cmd, WORD v)
+{
+ SetupSpi(SPI_FPGA_MODE);
+ while ((AT91C_BASE_SPI->SPI_SR & AT91C_SPI_TXEMPTY) == 0); // wait for the transfer to complete
+ AT91C_BASE_SPI->SPI_TDR = AT91C_SPI_LASTXFER | cmd | v; // send the data
+}
+//-----------------------------------------------------------------------------
+// Write the FPGA setup word (that determines what mode the logic is in, read
+// vs. clone vs. etc.). This is now a special case of FpgaSendCommand() to
+// avoid changing this function's occurence everywhere in the source code.
+//-----------------------------------------------------------------------------
+void FpgaWriteConfWord(BYTE v)
+{
+ FpgaSendCommand(FPGA_CMD_SET_CONFREG, v);
+}
+
+//-----------------------------------------------------------------------------
+// Set up the CMOS switches that mux the ADC: four switches, independently
+// closable, but should only close one at a time. Not an FPGA thing, but
+// the samples from the ADC always flow through the FPGA.
+//-----------------------------------------------------------------------------
+void SetAdcMuxFor(DWORD whichGpio)
+{
+ AT91C_BASE_PIOA->PIO_OER =
+ GPIO_MUXSEL_HIPKD |
+ GPIO_MUXSEL_LOPKD |
+ GPIO_MUXSEL_LORAW |
+ GPIO_MUXSEL_HIRAW;
+
+ AT91C_BASE_PIOA->PIO_PER =
+ GPIO_MUXSEL_HIPKD |
+ GPIO_MUXSEL_LOPKD |
+ GPIO_MUXSEL_LORAW |
+ GPIO_MUXSEL_HIRAW;
+
+ LOW(GPIO_MUXSEL_HIPKD);
+ LOW(GPIO_MUXSEL_HIRAW);
+ LOW(GPIO_MUXSEL_LORAW);
+ LOW(GPIO_MUXSEL_LOPKD);
+
+ HIGH(whichGpio);
+}