#include "crc16.h"
#include "string.h"
#include "lfdemod.h"
+#include "lfsampling.h"
/**
-* Does the sample acquisition. If threshold is specified, the actual sampling
-* is not commenced until the threshold has been reached.
-* @param trigger_threshold - the threshold
-* @param silent - is true, now outputs are made. If false, dbprints the status
-*/
-void DoAcquisition125k_internal(int trigger_threshold,bool silent)
-{
- uint8_t *dest = (uint8_t *)BigBuf;
- int n = sizeof(BigBuf);
- int i;
-
- memset(dest, 0, n);
- i = 0;
- for(;;) {
- if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
- AT91C_BASE_SSC->SSC_THR = 0x43;
- LED_D_ON();
- }
- if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
- dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
- LED_D_OFF();
- if (trigger_threshold != -1 && dest[i] < trigger_threshold)
- continue;
- else
- trigger_threshold = -1;
- if (++i >= n) break;
- }
- }
- if(!silent)
- {
- Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
- dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]);
-
- }
-}
-/**
-* Perform sample aquisition.
-*/
-void DoAcquisition125k(int trigger_threshold)
-{
- DoAcquisition125k_internal(trigger_threshold, false);
-}
-
-/**
-* Setup the FPGA to listen for samples. This method downloads the FPGA bitstream
-* if not already loaded, sets divisor and starts up the antenna.
-* @param divisor : 1, 88> 255 or negative ==> 134.8 KHz
-* 0 or 95 ==> 125 KHz
-*
-**/
-void LFSetupFPGAForADC(int divisor, bool lf_field)
-{
- FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
- if ( (divisor == 1) || (divisor < 0) || (divisor > 255) )
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
- else if (divisor == 0)
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- else
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor);
-
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | (lf_field ? FPGA_LF_ADC_READER_FIELD : 0));
-
- // Connect the A/D to the peak-detected low-frequency path.
- SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
- // Give it a bit of time for the resonant antenna to settle.
- SpinDelay(50);
- // Now set up the SSC to get the ADC samples that are now streaming at us.
- FpgaSetupSsc();
-}
-/**
-* Initializes the FPGA, and acquires the samples.
-**/
-void AcquireRawAdcSamples125k(int divisor)
-{
- LFSetupFPGAForADC(divisor, true);
- // Now call the acquisition routine
- DoAcquisition125k_internal(-1,false);
-}
-/**
-* Initializes the FPGA for snoop-mode, and acquires the samples.
-**/
-
-void SnoopLFRawAdcSamples(int divisor, int trigger_threshold)
-{
- LFSetupFPGAForADC(divisor, false);
- DoAcquisition125k(trigger_threshold);
-}
-
+ * Function to do a modulation and then get samples.
+ * @param delay_off
+ * @param period_0
+ * @param period_1
+ * @param command
+ */
void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command)
{
- /* Make sure the tag is reset */
- FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- SpinDelay(2500);
-
-
int divisor_used = 95; // 125 KHz
// see if 'h' was specified
if (command[strlen((char *) command) - 1] == 'h')
divisor_used = 88; // 134.8 KHz
+ sample_config sc = { 0,0,1, divisor_used, 0};
+ setSamplingConfig(&sc);
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
- // Give it a bit of time for the resonant antenna to settle.
- SpinDelay(50);
+ /* Make sure the tag is reset */
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ SpinDelay(2500);
+
+ LFSetupFPGAForADC(sc.divisor, 1);
// And a little more time for the tag to fully power up
SpinDelay(2000);
- // Now set up the SSC to get the ADC samples that are now streaming at us.
- FpgaSetupSsc();
-
// now modulate the reader field
while(*command != '\0' && *command != ' ') {
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
SpinDelayUs(delay_off);
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
LED_D_ON();
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
SpinDelayUs(delay_off);
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
// now do the read
- DoAcquisition125k(-1);
+ DoAcquisition_config(false);
}
/* blank r/w tag data stream
#define FREQLO 123200
#define FREQHI 134200
- signed char *dest = (signed char *)BigBuf;
- int n = sizeof(BigBuf);
+ signed char *dest = (signed char *)BigBuf_get_addr();
+ uint16_t n = BigBuf_max_traceLen();
// 128 bit shift register [shift3:shift2:shift1:shift0]
uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
#define TIBUFLEN 1250
// clear buffer
- memset(BigBuf,0,sizeof(BigBuf));
+ uint32_t *BigBuf = (uint32_t *)BigBuf_get_addr();
+ memset(BigBuf,0,BigBuf_max_traceLen()/sizeof(uint32_t));
// Set up the synchronous serial port
AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
- char *dest = (char *)BigBuf;
+ char *dest = (char *)BigBuf_get_addr();
n = TIBUFLEN*32;
// unpack buffer
for (i=TIBUFLEN-1; i>=0; i--) {
DbpString("Now use tiread to check");
}
-void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
+void SimulateTagLowFrequency(uint16_t period, uint32_t gap, uint8_t ledcontrol)
{
int i;
- uint8_t *tab = (uint8_t *)BigBuf;
+ uint8_t *tab = BigBuf_get_addr();
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
-#define SHORT_COIL() LOW(GPIO_SSC_DOUT)
-#define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
+ #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
+ #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
i = 0;
for(;;) {
+ //wait until SSC_CLK goes HIGH
while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
if(BUTTON_PRESS()) {
DbpString("Stopped");
}
WDT_HIT();
}
-
if (ledcontrol)
LED_D_ON();
if (ledcontrol)
LED_D_OFF();
-
+ //wait until SSC_CLK goes LOW
while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
if(BUTTON_PRESS()) {
DbpString("Stopped");
return;
}
WDT_HIT();
- }
-
+ }
+
i++;
if(i == period) {
+
i = 0;
if (gap) {
SHORT_COIL();
{
}
-// compose fc/8 fc/10 waveform
-static void fc(int c, int *n) {
- uint8_t *dest = (uint8_t *)BigBuf;
+// compose fc/8 fc/10 waveform (FSK2)
+static void fc(int c, int *n)
+{
+ uint8_t *dest = BigBuf_get_addr();
int idx;
// for when we want an fc8 pattern every 4 logical bits
if(c==0) {
dest[((*n)++)]=1;
dest[((*n)++)]=1;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
+ dest[((*n)++)]=1;
+ dest[((*n)++)]=1;
dest[((*n)++)]=0;
dest[((*n)++)]=0;
dest[((*n)++)]=0;
dest[((*n)++)]=0;
}
- // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
+
+ // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples
if(c==8) {
for (idx=0; idx<6; idx++) {
dest[((*n)++)]=1;
dest[((*n)++)]=1;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
+ dest[((*n)++)]=1;
+ dest[((*n)++)]=1;
dest[((*n)++)]=0;
dest[((*n)++)]=0;
dest[((*n)++)]=0;
}
}
- // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
+ // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
if(c==10) {
for (idx=0; idx<5; idx++) {
dest[((*n)++)]=1;
dest[((*n)++)]=1;
dest[((*n)++)]=1;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
+ dest[((*n)++)]=1;
+ dest[((*n)++)]=1;
dest[((*n)++)]=0;
dest[((*n)++)]=0;
dest[((*n)++)]=0;
}
}
}
+// compose fc/X fc/Y waveform (FSKx)
+static void fcAll(uint8_t fc, int *n, uint8_t clock, uint16_t *modCnt)
+{
+ uint8_t *dest = BigBuf_get_addr();
+ uint8_t halfFC = fc/2;
+ uint8_t wavesPerClock = clock/fc;
+ uint8_t mod = clock % fc; //modifier
+ uint8_t modAdj = fc/mod; //how often to apply modifier
+ bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk=TRUE;
+ // loop through clock - step field clock
+ for (uint8_t idx=0; idx < wavesPerClock; idx++){
+ // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
+ memset(dest+(*n), 0, fc-halfFC); //in case of odd number use extra here
+ memset(dest+(*n)+(fc-halfFC), 1, halfFC);
+ *n += fc;
+ }
+ if (mod>0) (*modCnt)++;
+ if ((mod>0) && modAdjOk){ //fsk2
+ if ((*modCnt % modAdj) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
+ memset(dest+(*n), 0, fc-halfFC);
+ memset(dest+(*n)+(fc-halfFC), 1, halfFC);
+ *n += fc;
+ }
+ }
+ if (mod>0 && !modAdjOk){ //fsk1
+ memset(dest+(*n), 0, mod-(mod/2));
+ memset(dest+(*n)+(mod-(mod/2)), 1, mod/2);
+ *n += mod;
+ }
+}
// prepare a waveform pattern in the buffer based on the ID given then
// simulate a HID tag until the button is pressed
*/
if (hi>0xFFF) {
- DbpString("Tags can only have 44 bits.");
+ DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags");
return;
}
fc(0,&n);
LED_A_OFF();
}
+// prepare a waveform pattern in the buffer based on the ID given then
+// simulate a FSK tag until the button is pressed
+// arg1 contains fcHigh and fcLow, arg2 contains invert and clock
+void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
+{
+ int ledcontrol=1;
+ int n=0, i=0;
+ uint8_t fcHigh = arg1 >> 8;
+ uint8_t fcLow = arg1 & 0xFF;
+ uint16_t modCnt = 0;
+ uint8_t clk = arg2 & 0xFF;
+ uint8_t invert = (arg2 >> 8) & 1;
+
+ for (i=0; i<size; i++){
+ if (BitStream[i] == invert){
+ fcAll(fcLow, &n, clk, &modCnt);
+ } else {
+ fcAll(fcHigh, &n, clk, &modCnt);
+ }
+ }
+ Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh, fcLow, clk, invert, n);
+ /*Dbprintf("DEBUG: First 32:");
+ uint8_t *dest = BigBuf_get_addr();
+ i=0;
+ Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
+ i+=16;
+ Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
+ */
+ if (ledcontrol)
+ LED_A_ON();
+
+ SimulateTagLowFrequency(n, 0, ledcontrol);
+
+ if (ledcontrol)
+ LED_A_OFF();
+}
+
+// compose ask waveform for one bit(ASK)
+static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester)
+{
+ uint8_t *dest = BigBuf_get_addr();
+ uint8_t halfClk = clock/2;
+ // c = current bit 1 or 0
+ if (manchester){
+ memset(dest+(*n), c, halfClk);
+ memset(dest+(*n) + halfClk, c^1, halfClk);
+ } else {
+ memset(dest+(*n), c, clock);
+ }
+ *n += clock;
+}
+
+// args clock, ask/man or askraw, invert, transmission separator
+void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
+{
+ int ledcontrol = 1;
+ int n=0, i=0;
+ uint8_t clk = (arg1 >> 8) & 0xFF;
+ uint8_t manchester = arg1 & 1;
+ uint8_t separator = arg2 & 1;
+ uint8_t invert = (arg2 >> 8) & 1;
+ for (i=0; i<size; i++){
+ askSimBit(BitStream[i]^invert, &n, clk, manchester);
+ }
+ if (manchester==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for biphase phase)
+ for (i=0; i<size; i++){
+ askSimBit(BitStream[i]^invert^1, &n, clk, manchester);
+ }
+ }
+ if (separator==1) Dbprintf("sorry but separator option not yet available");
+
+ Dbprintf("Simulating with clk: %d, invert: %d, manchester: %d, separator: %d, n: %d",clk, invert, manchester, separator, n);
+ //DEBUG
+ //Dbprintf("First 32:");
+ //uint8_t *dest = BigBuf_get_addr();
+ //i=0;
+ //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
+ //i+=16;
+ //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
+
+ if (ledcontrol)
+ LED_A_ON();
+
+ SimulateTagLowFrequency(n, 0, ledcontrol);
+
+ if (ledcontrol)
+ LED_A_OFF();
+}
+
+//carrier can be 2,4 or 8
+static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg)
+{
+ uint8_t *dest = BigBuf_get_addr();
+ uint8_t halfWave = waveLen/2;
+ //uint8_t idx;
+ int i = 0;
+ if (phaseChg){
+ // write phase change
+ memset(dest+(*n), *curPhase^1, halfWave);
+ memset(dest+(*n) + halfWave, *curPhase, halfWave);
+ *n += waveLen;
+ *curPhase ^= 1;
+ i += waveLen;
+ }
+ //write each normal clock wave for the clock duration
+ for (; i < clk; i+=waveLen){
+ memset(dest+(*n), *curPhase, halfWave);
+ memset(dest+(*n) + halfWave, *curPhase^1, halfWave);
+ *n += waveLen;
+ }
+}
+
+// args clock, carrier, invert,
+void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
+{
+ int ledcontrol=1;
+ int n=0, i=0;
+ uint8_t clk = arg1 >> 8;
+ uint8_t carrier = arg1 & 0xFF;
+ uint8_t invert = arg2 & 0xFF;
+ uint8_t curPhase = 0;
+ for (i=0; i<size; i++){
+ if (BitStream[i] == curPhase){
+ pskSimBit(carrier, &n, clk, &curPhase, FALSE);
+ } else {
+ pskSimBit(carrier, &n, clk, &curPhase, TRUE);
+ }
+ }
+ Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n);
+ //Dbprintf("DEBUG: First 32:");
+ //uint8_t *dest = BigBuf_get_addr();
+ //i=0;
+ //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
+ //i+=16;
+ //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
+
+ if (ledcontrol)
+ LED_A_ON();
+ SimulateTagLowFrequency(n, 0, ledcontrol);
+
+ if (ledcontrol)
+ LED_A_OFF();
+}
+
// loop to get raw HID waveform then FSK demodulate the TAG ID from it
void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
{
- uint8_t *dest = (uint8_t *)BigBuf;
-
- size_t size=sizeof(BigBuf);
+ uint8_t *dest = BigBuf_get_addr();
+ const size_t sizeOfBigBuff = BigBuf_max_traceLen();
+ size_t size = 0;
uint32_t hi2=0, hi=0, lo=0;
int idx=0;
// Configure to go in 125Khz listen mode
WDT_HIT();
if (ledcontrol) LED_A_ON();
- DoAcquisition125k_internal(-1,true);
+ DoAcquisition_default(-1,true);
// FSK demodulator
- WDT_HIT();
- size = sizeof(BigBuf);
-
+ size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use
idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo);
if (idx>0 && lo>0){
}
if (findone){
if (ledcontrol) LED_A_OFF();
+ *high = hi;
+ *low = lo;
return;
}
// reset
void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
{
- uint8_t *dest = (uint8_t *)BigBuf;
+ uint8_t *dest = BigBuf_get_addr();
size_t size=0, idx=0;
- int clk=0, invert=0, errCnt=0;
+ int clk=0, invert=0, errCnt=0, maxErr=20;
uint64_t lo=0;
// Configure to go in 125Khz listen mode
LFSetupFPGAForADC(95, true);
WDT_HIT();
if (ledcontrol) LED_A_ON();
- DoAcquisition125k_internal(-1,true);
- size = sizeof(BigBuf);
+ DoAcquisition_default(-1,true);
+ size = BigBuf_max_traceLen();
//Dbprintf("DEBUG: Buffer got");
//askdemod and manchester decode
- errCnt = askmandemod(dest, &size, &clk, &invert);
+ errCnt = askmandemod(dest, &size, &clk, &invert, maxErr);
//Dbprintf("DEBUG: ASK Got");
WDT_HIT();
}
if (findone){
if (ledcontrol) LED_A_OFF();
+ *high=lo>>32;
+ *low=lo & 0xFFFFFFFF;
return;
}
} else{
void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
{
- uint8_t *dest = (uint8_t *)BigBuf;
+ uint8_t *dest = BigBuf_get_addr();
int idx=0;
uint32_t code=0, code2=0;
uint8_t version=0;
while(!BUTTON_PRESS()) {
WDT_HIT();
if (ledcontrol) LED_A_ON();
- DoAcquisition125k_internal(-1,true);
+ DoAcquisition_default(-1,true);
//fskdemod and get start index
WDT_HIT();
- idx = IOdemodFSK(dest,sizeof(BigBuf));
+ idx = IOdemodFSK(dest, BigBuf_max_traceLen());
if (idx>0){
//valid tag found
if (findone){
if (ledcontrol) LED_A_OFF();
//LED_A_OFF();
+ *high=code;
+ *low=code2;
return;
}
code=code2=0;
* To compensate antenna falling times shorten the write times
* and enlarge the gap ones.
*/
-#define START_GAP 250
-#define WRITE_GAP 160
-#define WRITE_0 144 // 192
-#define WRITE_1 400 // 432 for T55x7; 448 for E5550
+#define START_GAP 30*8 // 10 - 50fc 250
+#define WRITE_GAP 20*8 // 8 - 30fc
+#define WRITE_0 24*8 // 16 - 31fc 24fc 192
+#define WRITE_1 54*8 // 48 - 63fc 54fc 432 for T55x7; 448 for E5550
+
+// VALUES TAKEN FROM EM4x function: SendForward
+// START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
+// WRITE_GAP = 128; (16*8)
+// WRITE_1 = 256 32*8; (32*8)
+
+// These timings work for 4469/4269/4305 (with the 55*8 above)
+// WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
+
+#define T55xx_SAMPLES_SIZE 12000 // 32 x 32 x 10 (32 bit times numofblock (7), times clock skip..)
// Write one bit to card
void T55xxWriteBit(int bit)
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
- if (bit == 0)
+ if (!bit)
SpinDelayUs(WRITE_0);
else
SpinDelayUs(WRITE_1);
// Write one card block in page 0, no lock
void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
{
- //unsigned int i; //enio adjustment 12/10/14
- uint32_t i;
-
- FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+ uint32_t i = 0;
- // Give it a bit of time for the resonant antenna to settle.
- // And for the tag to fully power up
- SpinDelay(150);
+ // Set up FPGA, 125kHz
+ // Wait for config.. (192+8190xPOW)x8 == 67ms
+ LFSetupFPGAForADC(0, true);
// Now start writting
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
// Read one card block in page 0
void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
{
- uint8_t *dest = (uint8_t *)BigBuf;
- //int m=0, i=0; //enio adjustment 12/10/14
- uint32_t m=0, i=0;
- FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
- m = sizeof(BigBuf);
- // Clear destination buffer before sending the command
- memset(dest, 128, m);
- // Connect the A/D to the peak-detected low-frequency path.
- SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
- // Now set up the SSC to get the ADC samples that are now streaming at us.
- FpgaSetupSsc();
-
- LED_D_ON();
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
-
- // Give it a bit of time for the resonant antenna to settle.
- // And for the tag to fully power up
- SpinDelay(150);
-
- // Now start writting
+ uint32_t i = 0;
+ uint8_t *dest = BigBuf_get_addr();
+ uint16_t bufferlength = BigBuf_max_traceLen();
+ if ( bufferlength > T55xx_SAMPLES_SIZE )
+ bufferlength = T55xx_SAMPLES_SIZE;
+
+ memset(dest, 0x80, bufferlength);
+
+ // Set up FPGA, 125kHz
+ // Wait for config.. (192+8190xPOW)x8 == 67ms
+ LFSetupFPGAForADC(0, true);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
SpinDelayUs(START_GAP);
T55xxWriteBit(Block & i);
// Turn field on to read the response
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+ TurnReadLFOn();
// Now do the acquisition
i = 0;
for(;;) {
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
AT91C_BASE_SSC->SSC_THR = 0x43;
+ LED_D_ON();
}
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
- // we don't care about actual value, only if it's more or less than a
- // threshold essentially we capture zero crossings for later analysis
- // if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
- i++;
- if (i >= m) break;
+ ++i;
+ LED_D_OFF();
+ if (i >= bufferlength) break;
}
}
+ cmd_send(CMD_ACK,0,0,0,0,0);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
LED_D_OFF();
- DbpString("DONE!");
}
// Read card traceability data (page 1)
void T55xxReadTrace(void){
- uint8_t *dest = (uint8_t *)BigBuf;
- int m=0, i=0;
-
- FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
- m = sizeof(BigBuf);
- // Clear destination buffer before sending the command
- memset(dest, 128, m);
- // Connect the A/D to the peak-detected low-frequency path.
- SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
- // Now set up the SSC to get the ADC samples that are now streaming at us.
- FpgaSetupSsc();
- LED_D_ON();
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+ uint32_t i = 0;
+ uint8_t *dest = BigBuf_get_addr();
+ uint16_t bufferlength = BigBuf_max_traceLen();
+ if ( bufferlength > T55xx_SAMPLES_SIZE )
+ bufferlength = T55xx_SAMPLES_SIZE;
- // Give it a bit of time for the resonant antenna to settle.
- // And for the tag to fully power up
- SpinDelay(150);
-
- // Now start writting
+ memset(dest, 0x80, bufferlength);
+
+ LFSetupFPGAForADC(0, true);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
SpinDelayUs(START_GAP);
T55xxWriteBit(1); //Page 1
// Turn field on to read the response
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+ TurnReadLFOn();
// Now do the acquisition
- i = 0;
for(;;) {
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
AT91C_BASE_SSC->SSC_THR = 0x43;
+ LED_D_ON();
}
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
- i++;
- if (i >= m) break;
- }
- }
-
+ ++i;
+ LED_D_OFF();
+
+ if (i >= bufferlength) break;
+ }
+ }
+
+ cmd_send(CMD_ACK,0,0,0,0,0);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
LED_D_OFF();
- DbpString("DONE!");
+}
+
+void TurnReadLFOn(){
+ //FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+ // Give it a bit of time for the resonant antenna to settle.
+ //SpinDelay(30);
+ SpinDelayUs(9*150);
}
/*-------------- Cloning routines -----------*/
#define max(x,y) ( x<y ? y:x)
int DemodPCF7931(uint8_t **outBlocks) {
- uint8_t BitStream[256];
- uint8_t Blocks[8][16];
- uint8_t *GraphBuffer = (uint8_t *)BigBuf;
- int GraphTraceLen = sizeof(BigBuf);
+
+ uint8_t BitStream[256] = {0x00};
+ uint8_t Blocks[8][16];
+ uint8_t *dest = BigBuf_get_addr();
+ int GraphTraceLen = BigBuf_max_traceLen();
int i, j, lastval, bitidx, half_switch;
int clock = 64;
int tolerance = clock / 8;
int lmin=128, lmax=128;
uint8_t dir;
- AcquireRawAdcSamples125k(0);
+ LFSetupFPGAForADC(95, true);
+ DoAcquisition_default(0, true);
lmin = 64;
lmax = 192;
i = 2;
/* Find first local max/min */
- if(GraphBuffer[1] > GraphBuffer[0]) {
+ if(dest[1] > dest[0]) {
while(i < GraphTraceLen) {
- if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax)
+ if( !(dest[i] > dest[i-1]) && dest[i] > lmax)
break;
i++;
}
}
else {
while(i < GraphTraceLen) {
- if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin)
+ if( !(dest[i] < dest[i-1]) && dest[i] < lmin)
break;
i++;
}
for (bitidx = 0; i < GraphTraceLen; i++)
{
- if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin))
+ if ( (dest[i-1] > dest[i] && dir == 1 && dest[i] > lmax) || (dest[i-1] < dest[i] && dir == 0 && dest[i] < lmin))
{
lc = i - lastval;
lastval = i;
}
if(i < GraphTraceLen)
{
- if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0;
+ if (dest[i-1] > dest[i]) dir=0;
else dir = 1;
}
}
tries++;
if (BUTTON_PRESS()) return;
} while (num_blocks != max_blocks);
-end:
+ end:
Dbprintf("-----------------------------------------");
Dbprintf("Memory content:");
Dbprintf("-----------------------------------------");
void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
+ uint8_t *dest = BigBuf_get_addr();
+ uint16_t bufferlength = BigBuf_max_traceLen();
+ uint32_t i = 0;
+
+ // Clear destination buffer before sending the command 0x80 = average.
+ memset(dest, 0x80, bufferlength);
+
uint8_t fwd_bit_count;
- uint8_t *dest = (uint8_t *)BigBuf;
- int m=0, i=0;
//If password mode do login
if (PwdMode == 1) EM4xLogin(Pwd);
fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
fwd_bit_count += Prepare_Addr( Address );
- m = sizeof(BigBuf);
- // Clear destination buffer before sending the command
- memset(dest, 128, m);
// Connect the A/D to the peak-detected low-frequency path.
SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
// Now set up the SSC to get the ADC samples that are now streaming at us.
}
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
- i++;
- if (i >= m) break;
- }
- }
+ ++i;
+ if (i >= bufferlength) break;
+ }
+ }
+
+ cmd_send(CMD_ACK,0,0,0,0,0);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
LED_D_OFF();
}