#include "legicrf.h"
#include <hitag2.h>
-
+#include "lfsampling.h"
+#include "BigBuf.h"
+#include "mifareutil.h"
#ifdef WITH_LCD
#include "LCD.h"
#endif
+// Craig Young - 14a stand-alone code
+#ifdef WITH_ISO14443a_StandAlone
+ #include "iso14443a.h"
+#endif
+
#define abs(x) ( ((x)<0) ? -(x) : (x) )
//=============================================================================
// is the order in which they go out on the wire.
//=============================================================================
-uint8_t ToSend[512];
+#define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
+uint8_t ToSend[TOSEND_BUFFER_SIZE];
int ToSendMax;
static int ToSendBit;
struct common_area common_area __attribute__((section(".commonarea")));
-void BufferClear(void)
-{
- memset(BigBuf,0,sizeof(BigBuf));
- Dbprintf("Buffer cleared (%i bytes)",sizeof(BigBuf));
-}
-
void ToSendReset(void)
{
ToSendMax = -1;
ToSendBit++;
- if(ToSendBit >= sizeof(ToSend)) {
+ if(ToSendMax >= sizeof(ToSend)) {
ToSendBit = 0;
DbpString("ToSendStuffBit overflowed!");
}
{
byte_t len = strlen(str);
cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(byte_t*)str,len);
-// /* this holds up stuff unless we're connected to usb */
-// if (!UsbConnected())
-// return;
-//
-// UsbCommand c;
-// c.cmd = CMD_DEBUG_PRINT_STRING;
-// c.arg[0] = strlen(str);
-// if(c.arg[0] > sizeof(c.d.asBytes)) {
-// c.arg[0] = sizeof(c.d.asBytes);
-// }
-// memcpy(c.d.asBytes, str, c.arg[0]);
-//
-// UsbSendPacket((uint8_t *)&c, sizeof(c));
-// // TODO fix USB so stupid things like this aren't req'd
-// SpinDelay(50);
}
#if 0
void DbpIntegers(int x1, int x2, int x3)
{
cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
-// /* this holds up stuff unless we're connected to usb */
-// if (!UsbConnected())
-// return;
-//
-// UsbCommand c;
-// c.cmd = CMD_DEBUG_PRINT_INTEGERS;
-// c.arg[0] = x1;
-// c.arg[1] = x2;
-// c.arg[2] = x3;
-//
-// UsbSendPacket((uint8_t *)&c, sizeof(c));
-// // XXX
-// SpinDelay(50);
}
#endif
AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
AT91C_BASE_ADC->ADC_MR =
- ADC_MODE_PRESCALE(32) |
- ADC_MODE_STARTUP_TIME(16) |
- ADC_MODE_SAMPLE_HOLD_TIME(8);
+ ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
+ ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
+ ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
+
+ // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
+ // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
+ // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
+ //
+ // The maths are:
+ // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
+ //
+ // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
+ //
+ // Note: with the "historic" values in the comments above, the error was 34% !!!
+
AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
+
while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))
;
d = AT91C_BASE_ADC->ADC_CDR[ch];
void MeasureAntennaTuning(void)
{
- uint8_t *dest = (uint8_t *)BigBuf+FREE_BUFFER_OFFSET;
+ uint8_t LF_Results[256];
int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; //ptr = 0
int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
-// UsbCommand c;
-
- LED_B_ON();
- DbpString("Measuring antenna characteristics, please wait...");
- memset(dest,0,sizeof(FREE_BUFFER_SIZE));
+ LED_B_ON();
/*
* Sweeps the useful LF range of the proxmark from
* ( hopefully around 95 if it is tuned to 125kHz!)
*/
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
- for (i=255; i>19; i--) {
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+ for (i=255; i>=19; i--) {
WDT_HIT();
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
SpinDelay(20);
- // Vref = 3.3V, and a 10000:240 voltage divider on the input
- // can measure voltages up to 137500 mV
- adcval = ((137500 * AvgAdc(ADC_CHAN_LF)) >> 10);
+ adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
if (i==95) vLf125 = adcval; // voltage at 125Khz
if (i==89) vLf134 = adcval; // voltage at 134Khz
- dest[i] = adcval>>8; // scale int to fit in byte for graphing purposes
- if(dest[i] > peak) {
+ LF_Results[i] = adcval>>8; // scale int to fit in byte for graphing purposes
+ if(LF_Results[i] > peak) {
peakv = adcval;
- peak = dest[i];
+ peak = LF_Results[i];
peakf = i;
//ptr = i;
}
}
- LED_A_ON();
+ for (i=18; i >= 0; i--) LF_Results[i] = 0;
+
+ LED_A_ON();
// Let the FPGA drive the high-frequency antenna around 13.56 MHz.
+ FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
SpinDelay(20);
- // Vref = 3300mV, and an 10:1 voltage divider on the input
- // can measure voltages up to 33000 mV
- vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
-
-// c.cmd = CMD_MEASURED_ANTENNA_TUNING;
-// c.arg[0] = (vLf125 << 0) | (vLf134 << 16);
-// c.arg[1] = vHf;
-// c.arg[2] = peakf | (peakv << 16);
-
- DbpString("Measuring complete, sending report back to host");
- cmd_send(CMD_MEASURED_ANTENNA_TUNING,vLf125|(vLf134<<16),vHf,peakf|(peakv<<16),0,0);
-// UsbSendPacket((uint8_t *)&c, sizeof(c));
+ vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
+
+ cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125 | (vLf134<<16), vHf, peakf | (peakv<<16), LF_Results, 256);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- LED_A_OFF();
- LED_B_OFF();
- return;
+ LED_A_OFF();
+ LED_B_OFF();
+ return;
}
void MeasureAntennaTuningHf(void)
DbpString("Measuring HF antenna, press button to exit");
+ // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
+ FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
+
for (;;) {
- // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
SpinDelay(20);
- // Vref = 3300mV, and an 10:1 voltage divider on the input
- // can measure voltages up to 33000 mV
- vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
+ vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
Dbprintf("%d mV",vHf);
if (BUTTON_PRESS()) break;
}
DbpString("cancelled");
-}
-
-
-void SimulateTagHfListen(void)
-{
- uint8_t *dest = (uint8_t *)BigBuf+FREE_BUFFER_OFFSET;
- uint8_t v = 0;
- int i;
- int p = 0;
-
- // We're using this mode just so that I can test it out; the simulated
- // tag mode would work just as well and be simpler.
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);
-
- // We need to listen to the high-frequency, peak-detected path.
- SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
-
- FpgaSetupSsc();
- i = 0;
- for(;;) {
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
- AT91C_BASE_SSC->SSC_THR = 0xff;
- }
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
- uint8_t r = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
-
- v <<= 1;
- if(r & 1) {
- v |= 1;
- }
- p++;
-
- if(p >= 8) {
- dest[i] = v;
- v = 0;
- p = 0;
- i++;
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- if(i >= FREE_BUFFER_SIZE) {
- break;
- }
- }
- }
- }
- DbpString("simulate tag (now type bitsamples)");
}
+
void ReadMem(int addr)
{
const uint8_t *data = ((uint8_t *)addr);
/* osimage version information is linked in */
extern struct version_information version_information;
/* bootrom version information is pointed to from _bootphase1_version_pointer */
-extern char *_bootphase1_version_pointer, _flash_start, _flash_end;
+extern char *_bootphase1_version_pointer, _flash_start, _flash_end, _bootrom_start, _bootrom_end, __data_src_start__;
void SendVersion(void)
{
- char temp[48]; /* Limited data payload in USB packets */
- DbpString("Prox/RFID mark3 RFID instrument");
+ char temp[USB_CMD_DATA_SIZE]; /* Limited data payload in USB packets */
+ char VersionString[USB_CMD_DATA_SIZE] = { '\0' };
/* Try to find the bootrom version information. Expect to find a pointer at
* symbol _bootphase1_version_pointer, perform slight sanity checks on the
*/
char *bootrom_version = *(char**)&_bootphase1_version_pointer;
if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
- DbpString("bootrom version information appears invalid");
+ strcat(VersionString, "bootrom version information appears invalid\n");
} else {
FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
- DbpString(temp);
+ strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
}
FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
- DbpString(temp);
+ strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
- FpgaGatherVersion(temp, sizeof(temp));
- DbpString(temp);
- // Send Chip ID
- cmd_send(CMD_ACK,*(AT91C_DBGU_CIDR),0,0,NULL,0);
-}
+ FpgaGatherVersion(FPGA_BITSTREAM_LF, temp, sizeof(temp));
+ strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
+ FpgaGatherVersion(FPGA_BITSTREAM_HF, temp, sizeof(temp));
+ strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
-#ifdef WITH_LF
-// samy's sniff and repeat routine
-void SamyRun()
+ // Send Chip ID and used flash memory
+ uint32_t text_and_rodata_section_size = (uint32_t)&__data_src_start__ - (uint32_t)&_flash_start;
+ uint32_t compressed_data_section_size = common_area.arg1;
+ cmd_send(CMD_ACK, *(AT91C_DBGU_CIDR), text_and_rodata_section_size + compressed_data_section_size, 0, VersionString, strlen(VersionString));
+}
+/**
+ * Prints runtime information about the PM3.
+**/
+void SendStatus(void)
{
- DbpString("Stand-alone mode! No PC necessary.");
+ BigBuf_print_status();
+ Fpga_print_status();
+ printConfig(); //LF Sampling config
+ Dbprintf("Various");
+ Dbprintf(" MF_DBGLEVEL......%d", MF_DBGLEVEL);
+ Dbprintf(" ToSendMax........%d",ToSendMax);
+ Dbprintf(" ToSendBit........%d",ToSendBit);
+}
- // 3 possible options? no just 2 for now
-#define OPTS 2
+#if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
- int high[OPTS], low[OPTS];
+#define OPTS 2
+void StandAloneMode()
+{
+ DbpString("Stand-alone mode! No PC necessary.");
// Oooh pretty -- notify user we're in elite samy mode now
LED(LED_RED, 200);
LED(LED_ORANGE, 200);
LED(LED_ORANGE, 200);
LED(LED_RED, 200);
+}
+
+#endif
+
+
+
+#ifdef WITH_ISO14443a_StandAlone
+void StandAloneMode14a()
+{
+ StandAloneMode();
+ FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+
+ int selected = 0;
+ int playing = 0, iGotoRecord = 0, iGotoClone = 0;
+ int cardRead[OPTS] = {0};
+ uint8_t readUID[10] = {0};
+ uint32_t uid_1st[OPTS]={0};
+ uint32_t uid_2nd[OPTS]={0};
+ uint32_t uid_tmp1 = 0;
+ uint32_t uid_tmp2 = 0;
+ iso14a_card_select_t hi14a_card[OPTS];
+
+ LED(selected + 1, 0);
+
+ for (;;)
+ {
+ usb_poll();
+ WDT_HIT();
+ SpinDelay(300);
+
+ if (iGotoRecord == 1 || cardRead[selected] == 0)
+ {
+ iGotoRecord = 0;
+ LEDsoff();
+ LED(selected + 1, 0);
+ LED(LED_RED2, 0);
+
+ // record
+ Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected);
+ /* need this delay to prevent catching some weird data */
+ SpinDelay(500);
+ /* Code for reading from 14a tag */
+ uint8_t uid[10] ={0};
+ uint32_t cuid;
+ iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
+
+ for ( ; ; )
+ {
+ WDT_HIT();
+ if (BUTTON_PRESS()) {
+ if (cardRead[selected]) {
+ Dbprintf("Button press detected -- replaying card in bank[%d]", selected);
+ break;
+ }
+ else if (cardRead[(selected+1)%OPTS]) {
+ Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected, (selected+1)%OPTS);
+ selected = (selected+1)%OPTS;
+ break; // playing = 1;
+ }
+ else {
+ Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
+ SpinDelay(300);
+ }
+ }
+ if (!iso14443a_select_card(uid, &hi14a_card[selected], &cuid))
+ continue;
+ else
+ {
+ Dbprintf("Read UID:"); Dbhexdump(10,uid,0);
+ memcpy(readUID,uid,10*sizeof(uint8_t));
+ uint8_t *dst = (uint8_t *)&uid_tmp1;
+ // Set UID byte order
+ for (int i=0; i<4; i++)
+ dst[i] = uid[3-i];
+ dst = (uint8_t *)&uid_tmp2;
+ for (int i=0; i<4; i++)
+ dst[i] = uid[7-i];
+ if (uid_1st[(selected+1)%OPTS] == uid_tmp1 && uid_2nd[(selected+1)%OPTS] == uid_tmp2) {
+ Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
+ }
+ else {
+ if (uid_tmp2) {
+ Dbprintf("Bank[%d] received a 7-byte UID",selected);
+ uid_1st[selected] = (uid_tmp1)>>8;
+ uid_2nd[selected] = (uid_tmp1<<24) + (uid_tmp2>>8);
+ }
+ else {
+ Dbprintf("Bank[%d] received a 4-byte UID",selected);
+ uid_1st[selected] = uid_tmp1;
+ uid_2nd[selected] = uid_tmp2;
+ }
+ break;
+ }
+ }
+ }
+ Dbprintf("ATQA = %02X%02X",hi14a_card[selected].atqa[0],hi14a_card[selected].atqa[1]);
+ Dbprintf("SAK = %02X",hi14a_card[selected].sak);
+ LEDsoff();
+ LED(LED_GREEN, 200);
+ LED(LED_ORANGE, 200);
+ LED(LED_GREEN, 200);
+ LED(LED_ORANGE, 200);
+
+ LEDsoff();
+ LED(selected + 1, 0);
+
+ // Next state is replay:
+ playing = 1;
+
+ cardRead[selected] = 1;
+ }
+ /* MF Classic UID clone */
+ else if (iGotoClone==1)
+ {
+ iGotoClone=0;
+ LEDsoff();
+ LED(selected + 1, 0);
+ LED(LED_ORANGE, 250);
+
+
+ // record
+ Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected, uid_1st[selected]);
+
+ // wait for button to be released
+ while(BUTTON_PRESS())
+ {
+ // Delay cloning until card is in place
+ WDT_HIT();
+ }
+ Dbprintf("Starting clone. [Bank: %u]", selected);
+ // need this delay to prevent catching some weird data
+ SpinDelay(500);
+ // Begin clone function here:
+ /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
+ UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
+ memcpy(c.d.asBytes, data, 16);
+ SendCommand(&c);
+
+ Block read is similar:
+ UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
+ We need to imitate that call with blockNo 0 to set a uid.
+
+ The get and set commands are handled in this file:
+ // Work with "magic Chinese" card
+ case CMD_MIFARE_CSETBLOCK:
+ MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+ break;
+ case CMD_MIFARE_CGETBLOCK:
+ MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+ break;
+
+ mfCSetUID provides example logic for UID set workflow:
+ -Read block0 from card in field with MifareCGetBlock()
+ -Configure new values without replacing reserved bytes
+ memcpy(block0, uid, 4); // Copy UID bytes from byte array
+ // Mifare UID BCC
+ block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
+ Bytes 5-7 are reserved SAK and ATQA for mifare classic
+ -Use mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER) to write it
+ */
+ uint8_t oldBlock0[16] = {0}, newBlock0[16] = {0}, testBlock0[16] = {0};
+ // arg0 = Flags == CSETBLOCK_SINGLE_OPER=0x1F, arg1=returnSlot, arg2=blockNo
+ MifareCGetBlock(0x3F, 1, 0, oldBlock0);
+ if (oldBlock0[0] == 0 && oldBlock0[0] == oldBlock0[1] && oldBlock0[1] == oldBlock0[2] && oldBlock0[2] == oldBlock0[3]) {
+ Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected);
+ playing = 1;
+ }
+ else {
+ Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0[0],oldBlock0[1],oldBlock0[2],oldBlock0[3]);
+ memcpy(newBlock0,oldBlock0,16);
+ // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
+
+ newBlock0[0] = uid_1st[selected]>>24;
+ newBlock0[1] = 0xFF & (uid_1st[selected]>>16);
+ newBlock0[2] = 0xFF & (uid_1st[selected]>>8);
+ newBlock0[3] = 0xFF & (uid_1st[selected]);
+ newBlock0[4] = newBlock0[0]^newBlock0[1]^newBlock0[2]^newBlock0[3];
+ // arg0 = needWipe, arg1 = workFlags, arg2 = blockNo, datain
+ MifareCSetBlock(0, 0xFF,0, newBlock0);
+ MifareCGetBlock(0x3F, 1, 0, testBlock0);
+ if (memcmp(testBlock0,newBlock0,16)==0)
+ {
+ DbpString("Cloned successfull!");
+ cardRead[selected] = 0; // Only if the card was cloned successfully should we clear it
+ playing = 0;
+ iGotoRecord = 1;
+ selected = (selected+1) % OPTS;
+ }
+ else {
+ Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected);
+ playing = 1;
+ }
+ }
+ LEDsoff();
+ LED(selected + 1, 0);
+
+ }
+ // Change where to record (or begin playing)
+ else if (playing==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
+ {
+ LEDsoff();
+ LED(selected + 1, 0);
+
+ // Begin transmitting
+ if (playing)
+ {
+ LED(LED_GREEN, 0);
+ DbpString("Playing");
+ for ( ; ; ) {
+ WDT_HIT();
+ int button_action = BUTTON_HELD(1000);
+ if (button_action == 0) { // No button action, proceed with sim
+ uint8_t data[512] = {0}; // in case there is a read command received we shouldn't break
+ Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st[selected],uid_2nd[selected],selected);
+ if (hi14a_card[selected].sak == 8 && hi14a_card[selected].atqa[0] == 4 && hi14a_card[selected].atqa[1] == 0) {
+ DbpString("Mifare Classic");
+ SimulateIso14443aTag(1,uid_1st[selected], uid_2nd[selected], data); // Mifare Classic
+ }
+ else if (hi14a_card[selected].sak == 0 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 0) {
+ DbpString("Mifare Ultralight");
+ SimulateIso14443aTag(2,uid_1st[selected],uid_2nd[selected],data); // Mifare Ultralight
+ }
+ else if (hi14a_card[selected].sak == 20 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 3) {
+ DbpString("Mifare DESFire");
+ SimulateIso14443aTag(3,uid_1st[selected],uid_2nd[selected],data); // Mifare DESFire
+ }
+ else {
+ Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
+ SimulateIso14443aTag(1,uid_1st[selected], uid_2nd[selected], data);
+ }
+ }
+ else if (button_action == BUTTON_SINGLE_CLICK) {
+ selected = (selected + 1) % OPTS;
+ Dbprintf("Done playing. Switching to record mode on bank %d",selected);
+ iGotoRecord = 1;
+ break;
+ }
+ else if (button_action == BUTTON_HOLD) {
+ Dbprintf("Playtime over. Begin cloning...");
+ iGotoClone = 1;
+ break;
+ }
+ WDT_HIT();
+ }
+
+ /* We pressed a button so ignore it here with a delay */
+ SpinDelay(300);
+ LEDsoff();
+ LED(selected + 1, 0);
+ }
+ else
+ while(BUTTON_PRESS())
+ WDT_HIT();
+ }
+ }
+}
+#elif WITH_LF
+// samy's sniff and repeat routine
+void SamyRun()
+{
+ StandAloneMode();
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+
+ int high[OPTS], low[OPTS];
int selected = 0;
int playing = 0;
+ int cardRead = 0;
// Turn on selected LED
LED(selected + 1, 0);
for (;;)
{
-// UsbPoll(FALSE);
usb_poll();
- WDT_HIT();
+ WDT_HIT();
// Was our button held down or pressed?
int button_pressed = BUTTON_HELD(1000);
SpinDelay(300);
// Button was held for a second, begin recording
- if (button_pressed > 0)
+ if (button_pressed > 0 && cardRead == 0)
{
LEDsoff();
LED(selected + 1, 0);
// If we were previously playing, set playing off
// so next button push begins playing what we recorded
playing = 0;
+
+ cardRead = 1;
+
+ }
+
+ else if (button_pressed > 0 && cardRead == 1)
+ {
+ LEDsoff();
+ LED(selected + 1, 0);
+ LED(LED_ORANGE, 0);
+
+ // record
+ Dbprintf("Cloning %x %x %x", selected, high[selected], low[selected]);
+
+ // wait for button to be released
+ while(BUTTON_PRESS())
+ WDT_HIT();
+
+ /* need this delay to prevent catching some weird data */
+ SpinDelay(500);
+
+ CopyHIDtoT55x7(high[selected], low[selected], 0, 0);
+ Dbprintf("Cloned %x %x %x", selected, high[selected], low[selected]);
+
+ LEDsoff();
+ LED(selected + 1, 0);
+ // Finished recording
+
+ // If we were previously playing, set playing off
+ // so next button push begins playing what we recorded
+ playing = 0;
+
+ cardRead = 0;
+
}
// Change where to record (or begin playing)
}
}
}
-#endif
+#endif
/*
OBJECTIVE
Listen and detect an external reader. Determine the best location
void ListenReaderField(int limit)
{
- int lf_av, lf_av_new, lf_baseline= 0, lf_count= 0, lf_max;
- int hf_av, hf_av_new, hf_baseline= 0, hf_count= 0, hf_max;
+ int lf_av, lf_av_new, lf_baseline= 0, lf_max;
+ int hf_av, hf_av_new, hf_baseline= 0, hf_max;
int mode=1, display_val, display_max, i;
-#define LF_ONLY 1
-#define HF_ONLY 2
+#define LF_ONLY 1
+#define HF_ONLY 2
+#define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
+
+
+ // switch off FPGA - we don't want to measure our own signal
+ FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
- lf_av=lf_max=ReadAdc(ADC_CHAN_LF);
+ lf_av = lf_max = AvgAdc(ADC_CHAN_LF);
if(limit != HF_ONLY) {
- Dbprintf("LF 125/134 Baseline: %d", lf_av);
+ Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE * lf_av) >> 10);
lf_baseline = lf_av;
}
- hf_av=hf_max=ReadAdc(ADC_CHAN_HF);
+ hf_av = hf_max = AvgAdc(ADC_CHAN_HF);
if (limit != LF_ONLY) {
- Dbprintf("HF 13.56 Baseline: %d", hf_av);
+ Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE * hf_av) >> 10);
hf_baseline = hf_av;
}
WDT_HIT();
if (limit != HF_ONLY) {
- if(mode==1) {
- if (abs(lf_av - lf_baseline) > 10) LED_D_ON();
- else LED_D_OFF();
+ if(mode == 1) {
+ if (abs(lf_av - lf_baseline) > REPORT_CHANGE)
+ LED_D_ON();
+ else
+ LED_D_OFF();
}
- ++lf_count;
- lf_av_new= ReadAdc(ADC_CHAN_LF);
+ lf_av_new = AvgAdc(ADC_CHAN_LF);
// see if there's a significant change
- if(abs(lf_av - lf_av_new) > 10) {
- Dbprintf("LF 125/134 Field Change: %x %x %x", lf_av, lf_av_new, lf_count);
+ if(abs(lf_av - lf_av_new) > REPORT_CHANGE) {
+ Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE * lf_av_new) >> 10);
lf_av = lf_av_new;
if (lf_av > lf_max)
lf_max = lf_av;
- lf_count= 0;
}
}
if (limit != LF_ONLY) {
if (mode == 1){
- if (abs(hf_av - hf_baseline) > 10) LED_B_ON();
- else LED_B_OFF();
+ if (abs(hf_av - hf_baseline) > REPORT_CHANGE)
+ LED_B_ON();
+ else
+ LED_B_OFF();
}
- ++hf_count;
- hf_av_new= ReadAdc(ADC_CHAN_HF);
+ hf_av_new = AvgAdc(ADC_CHAN_HF);
// see if there's a significant change
- if(abs(hf_av - hf_av_new) > 10) {
- Dbprintf("HF 13.56 Field Change: %x %x %x", hf_av, hf_av_new, hf_count);
+ if(abs(hf_av - hf_av_new) > REPORT_CHANGE) {
+ Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE * hf_av_new) >> 10);
hf_av = hf_av_new;
if (hf_av > hf_max)
hf_max = hf_av;
- hf_count= 0;
}
}
switch(c->cmd) {
#ifdef WITH_LF
+ case CMD_SET_LF_SAMPLING_CONFIG:
+ setSamplingConfig((sample_config *) c->d.asBytes);
+ break;
case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
- AcquireRawAdcSamples125k(c->arg[0]);
- cmd_send(CMD_ACK,0,0,0,0,0);
+ cmd_send(CMD_ACK,SampleLF(c->arg[0]),0,0,0,0);
break;
case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
break;
+ case CMD_LF_SNOOP_RAW_ADC_SAMPLES:
+ cmd_send(CMD_ACK,SnoopLF(),0,0,0,0);
+ break;
case CMD_HID_DEMOD_FSK:
- CmdHIDdemodFSK(0, 0, 0, 1); // Demodulate HID tag
+ CmdHIDdemodFSK(c->arg[0], 0, 0, 1);
break;
case CMD_HID_SIM_TAG:
- CmdHIDsimTAG(c->arg[0], c->arg[1], 1); // Simulate HID tag by ID
+ CmdHIDsimTAG(c->arg[0], c->arg[1], 1);
+ break;
+ case CMD_FSK_SIM_TAG:
+ CmdFSKsimTAG(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
- case CMD_HID_CLONE_TAG: // Clone HID tag by ID to T55x7
+ case CMD_ASK_SIM_TAG:
+ CmdASKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+ break;
+ case CMD_PSK_SIM_TAG:
+ CmdPSKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+ break;
+ case CMD_HID_CLONE_TAG:
CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
break;
case CMD_IO_DEMOD_FSK:
- CmdIOdemodFSK(1, 0, 0, 1); // Demodulate IO tag
+ CmdIOdemodFSK(c->arg[0], 0, 0, 1);
break;
- case CMD_IO_CLONE_TAG: // Clone IO tag by ID to T55x7
+ case CMD_IO_CLONE_TAG:
CopyIOtoT55x7(c->arg[0], c->arg[1], c->d.asBytes[0]);
break;
+ case CMD_EM410X_DEMOD:
+ CmdEM410xdemod(c->arg[0], 0, 0, 1);
+ break;
case CMD_EM410X_WRITE_TAG:
WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
break;
case CMD_LF_SIMULATE_BIDIR:
SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
break;
- case CMD_INDALA_CLONE_TAG: // Clone Indala 64-bit tag by UID to T55x7
+ case CMD_INDALA_CLONE_TAG:
CopyIndala64toT55x7(c->arg[0], c->arg[1]);
break;
- case CMD_INDALA_CLONE_TAG_L: // Clone Indala 224-bit tag by UID to T55x7
+ case CMD_INDALA_CLONE_TAG_L:
CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
break;
case CMD_T55XX_READ_BLOCK:
break;
case CMD_T55XX_WRITE_BLOCK:
T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
+ cmd_send(CMD_ACK,0,0,0,0,0);
break;
- case CMD_T55XX_READ_TRACE: // Clone HID tag by ID to T55x7
+ case CMD_T55XX_READ_TRACE:
T55xxReadTrace();
break;
- case CMD_PCF7931_READ: // Read PCF7931 tag
+ case CMD_PCF7931_READ:
ReadPCF7931();
cmd_send(CMD_ACK,0,0,0,0,0);
-// UsbSendPacket((uint8_t*)&ack, sizeof(ack));
break;
case CMD_EM4X_READ_WORD:
EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]);
case CMD_EM4X_WRITE_WORD:
EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
break;
+ case CMD_AWID_DEMOD_FSK: // Set realtime AWID demodulation
+ CmdAWIDdemodFSK(c->arg[0], 0, 0, 1);
+ break;
#endif
#ifdef WITH_HITAG
ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
break;
#endif
-
+
#ifdef WITH_ISO15693
case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
AcquireRawAdcSamplesIso15693();
ReaderIso15693(c->arg[0]);
break;
case CMD_SIMTAG_ISO_15693:
- SimTagIso15693(c->arg[0]);
+ SimTagIso15693(c->arg[0], c->d.asBytes);
break;
#endif
#endif
#ifdef WITH_ISO14443b
- case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443:
- AcquireRawAdcSamplesIso14443(c->arg[0]);
- break;
case CMD_READ_SRI512_TAG:
- ReadSTMemoryIso14443(0x0F);
+ ReadSTMemoryIso14443b(0x0F);
break;
case CMD_READ_SRIX4K_TAG:
- ReadSTMemoryIso14443(0x7F);
+ ReadSTMemoryIso14443b(0x7F);
break;
- case CMD_SNOOP_ISO_14443:
- SnoopIso14443();
+ case CMD_SNOOP_ISO_14443B:
+ SnoopIso14443b();
break;
- case CMD_SIMULATE_TAG_ISO_14443:
- SimulateIso14443Tag();
+ case CMD_SIMULATE_TAG_ISO_14443B:
+ SimulateIso14443bTag();
break;
case CMD_ISO_14443B_COMMAND:
SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
case CMD_SIMULATE_TAG_ISO_14443a:
SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
break;
+
case CMD_EPA_PACE_COLLECT_NONCE:
EPA_PACE_Collect_Nonce(c);
break;
+ case CMD_EPA_PACE_REPLAY:
+ EPA_PACE_Replay(c);
+ break;
case CMD_READER_MIFARE:
- ReaderMifare(c->arg[0]);
+ ReaderMifare(c->arg[0]);
break;
case CMD_MIFARE_READBL:
MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
case CMD_MIFAREU_READBL:
- MifareUReadBlock(c->arg[0],c->d.asBytes);
+ MifareUReadBlock(c->arg[0],c->arg[1], c->d.asBytes);
+ break;
+ case CMD_MIFAREUC_AUTH:
+ MifareUC_Auth(c->arg[0],c->d.asBytes);
break;
case CMD_MIFAREU_READCARD:
- MifareUReadCard(c->arg[0],c->d.asBytes);
- break;
+ MifareUReadCard(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+ break;
+ case CMD_MIFAREUC_SETPWD:
+ MifareUSetPwd(c->arg[0], c->d.asBytes);
+ break;
case CMD_MIFARE_READSC:
MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
case CMD_MIFARE_WRITEBL:
MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
- case CMD_MIFAREU_WRITEBL_COMPAT:
- MifareUWriteBlock(c->arg[0], c->d.asBytes);
- break;
+ //case CMD_MIFAREU_WRITEBL_COMPAT:
+ //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
+ //break;
case CMD_MIFAREU_WRITEBL:
- MifareUWriteBlock_Special(c->arg[0], c->d.asBytes);
- break;
+ MifareUWriteBlock(c->arg[0], c->arg[1], c->d.asBytes);
+ break;
case CMD_MIFARE_NESTED:
MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
break;
// Work with "magic Chinese" card
- case CMD_MIFARE_EML_CSETBLOCK:
+ case CMD_MIFARE_CSETBLOCK:
MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
- case CMD_MIFARE_EML_CGETBLOCK:
+ case CMD_MIFARE_CGETBLOCK:
MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
+ case CMD_MIFARE_CIDENT:
+ MifareCIdent();
+ break;
// mifare sniffer
case CMD_MIFARE_SNIFFER:
SniffMifare(c->arg[0]);
break;
+
#endif
#ifdef WITH_ICLASS
SnoopIClass();
break;
case CMD_SIMULATE_TAG_ICLASS:
- SimulateIClass(c->arg[0], c->d.asBytes);
+ SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
case CMD_READER_ICLASS:
ReaderIClass(c->arg[0]);
break;
-#endif
-
- case CMD_SIMULATE_TAG_HF_LISTEN:
- SimulateTagHfListen();
+ case CMD_READER_ICLASS_REPLAY:
+ ReaderIClass_Replay(c->arg[0], c->d.asBytes);
+ break;
+ case CMD_ICLASS_EML_MEMSET:
+ emlSet(c->d.asBytes,c->arg[0], c->arg[1]);
break;
+#endif
case CMD_BUFF_CLEAR:
- BufferClear();
+ BigBuf_Clear();
break;
case CMD_MEASURE_ANTENNA_TUNING:
break;
case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:
-// UsbCommand n;
-// if(c->cmd == CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K) {
-// n.cmd = CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K;
-// } else {
-// n.cmd = CMD_DOWNLOADED_RAW_BITS_TI_TYPE;
-// }
-// n.arg[0] = c->arg[0];
- // memcpy(n.d.asBytes, BigBuf+c->arg[0], 48); // 12*sizeof(uint32_t)
- // LED_B_ON();
- // usb_write((uint8_t *)&n, sizeof(n));
- // UsbSendPacket((uint8_t *)&n, sizeof(n));
- // LED_B_OFF();
LED_B_ON();
+ uint8_t *BigBuf = BigBuf_get_addr();
for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
size_t len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE);
- cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,0,((byte_t*)BigBuf)+c->arg[0]+i,len);
+ cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,BigBuf_get_traceLen(),BigBuf+c->arg[0]+i,len);
}
// Trigger a finish downloading signal with an ACK frame
- cmd_send(CMD_ACK,0,0,0,0,0);
+ cmd_send(CMD_ACK,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config));
LED_B_OFF();
break;
case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
- uint8_t *b = (uint8_t *)BigBuf;
- memcpy(b+c->arg[0], c->d.asBytes, 48);
- //Dbprintf("copied 48 bytes to %i",b+c->arg[0]);
-// UsbSendPacket((uint8_t*)&ack, sizeof(ack));
+ uint8_t *b = BigBuf_get_addr();
+ memcpy(b+c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
cmd_send(CMD_ACK,0,0,0,0,0);
break;
}
break;
case CMD_SET_LF_DIVISOR:
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
break;
case CMD_VERSION:
SendVersion();
break;
-
+ case CMD_STATUS:
+ SendStatus();
+ break;
+ case CMD_PING:
+ cmd_send(CMD_ACK,0,0,0,0,0);
+ break;
#ifdef WITH_LCD
case CMD_LCD_RESET:
LCDReset();
case CMD_DEVICE_INFO: {
uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
-// UsbSendPacket((uint8_t*)&c, sizeof(c));
cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);
break;
}
void __attribute__((noreturn)) AppMain(void)
{
SpinDelay(100);
-
+ clear_trace();
if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
/* Initialize common area */
memset(&common_area, 0, sizeof(common_area));
LED_B_OFF();
LED_A_OFF();
- // Init USB device`
+ // Init USB device
usb_enable();
-// UsbStart();
// The FPGA gets its clock from us from PCK0 output, so set that up.
AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
// Load the FPGA image, which we have stored in our flash.
- FpgaDownloadAndGo();
+ // (the HF version by default)
+ FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
StartTickCount();
UsbPacketReceived(rx,rx_len);
}
}
-// UsbPoll(FALSE);
-
WDT_HIT();
#ifdef WITH_LF
+#ifndef WITH_ISO14443a_StandAlone
if (BUTTON_HELD(1000) > 0)
SamyRun();
+#endif
+#endif
+#ifdef WITH_ISO14443a
+#ifdef WITH_ISO14443a_StandAlone
+ if (BUTTON_HELD(1000) > 0)
+ StandAloneMode14a();
+#endif
#endif
}
}