]> cvs.zerfleddert.de Git - proxmark3-svn/blobdiff - armsrc/legicrf.c
CHG: extracted some timers functionality, to get unified access to a timer/clock...
[proxmark3-svn] / armsrc / legicrf.c
index 00cb52b630300b14fb08f77d48c9725f6fa4d54f..e8a2e1aab0616f2b9dcb485ebefa85f4a6025fd7 100644 (file)
-/*
- * LEGIC RF simulation code
- *  
- * (c) 2009 Henryk Plötz <henryk@ploetzli.ch>
- */
-
-#include <proxmark3.h>
-
-#include "apps.h"
+//-----------------------------------------------------------------------------
+// (c) 2009 Henryk Plötz <henryk@ploetzli.ch>
+//
+// This code is licensed to you under the terms of the GNU GPL, version 2 or,
+// at your option, any later version. See the LICENSE.txt file for the text of
+// the license.
+//-----------------------------------------------------------------------------
+// LEGIC RF simulation code
+//-----------------------------------------------------------------------------
 #include "legicrf.h"
-#include "unistd.h"
-#include "stdint.h"
 
 static struct legic_frame {
        int bits;
-       uint16_t data;
+       uint32_t data;
 } current_frame;
+
+static enum {
+  STATE_DISCON,
+  STATE_IV,
+  STATE_CON,
+} legic_state;
+
+static crc_t    legic_crc;
+static int      legic_read_count;
+static uint32_t legic_prng_bc;
+static uint32_t legic_prng_iv;
+
+static int      legic_phase_drift;
+static int      legic_frame_drift;
+static int      legic_reqresp_drift;
+
 AT91PS_TC timer;
+AT91PS_TC prng_timer;
 
-static void setup_timer(void)
-{
-       /* Set up Timer 1 to use for measuring time between pulses. Since we're bit-banging
-        * this it won't be terribly accurate but should be good enough.
-        */
+/*
+static void setup_timer(void) {
+       // Set up Timer 1 to use for measuring time between pulses. Since we're bit-banging
+       // this it won't be terribly accurate but should be good enough.
+       //
        AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
        timer = AT91C_BASE_TC1;
        timer->TC_CCR = AT91C_TC_CLKDIS;
-       timer->TC_CMR = TC_CMR_TCCLKS_TIMER_CLOCK3;
+       timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK;
        timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
 
-/* At TIMER_CLOCK3 (MCK/32) */
-#define        RWD_TIME_1 150     /* RWD_TIME_PAUSE off, 80us on = 100us */
-#define RWD_TIME_0 90      /* RWD_TIME_PAUSE off, 40us on = 60us */
-#define RWD_TIME_PAUSE 30  /* 20us */
-#define RWD_TIME_FUZZ 20   /* rather generous 13us, since the peak detector + hysteresis fuzz quite a bit */
-#define TAG_TIME_BIT 150   /* 100us for every bit */
-#define TAG_TIME_WAIT 490  /* time from RWD frame end to tag frame start, experimentally determined */
-
+       // 
+    // Set up Timer 2 to use for measuring time between frames in 
+    // tag simulation mode. Runs 4x faster as Timer 1
+       //
+    AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC2);
+    prng_timer = AT91C_BASE_TC2;
+    prng_timer->TC_CCR = AT91C_TC_CLKDIS;
+       prng_timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV2_CLOCK;
+    prng_timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
 }
 
+       AT91C_BASE_PMC->PMC_PCER |= (0x1 << 12) | (0x1 << 13) | (0x1 << 14);
+       AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE;
+
+       // fast clock
+       AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable
+       AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK | // MCK(48MHz)/32 -- tick=1.5mks
+                                                               AT91C_TC_WAVE | AT91C_TC_WAVESEL_UP_AUTO | AT91C_TC_ACPA_CLEAR |
+                                                               AT91C_TC_ACPC_SET | AT91C_TC_ASWTRG_SET;
+       AT91C_BASE_TC0->TC_RA = 1;
+       AT91C_BASE_TC0->TC_RC = 0xBFFF + 1; // 0xC000
+       
+*/
+
+// At TIMER_CLOCK3 (MCK/32)
+//#define RWD_TIME_1 150     /* RWD_TIME_PAUSE off, 80us on = 100us */
+//#define RWD_TIME_0 90      /* RWD_TIME_PAUSE off, 40us on = 60us */
+//#define RWD_TIME_PAUSE 30  /* 20us */
+
+// testing calculating in (us) microseconds.
+#define        RWD_TIME_1 120          // READER_TIME_PAUSE 20us off, 80us on = 100us  80 * 1.5 == 120ticks
+#define RWD_TIME_0 60          // READER_TIME_PAUSE 20us off, 40us on = 60us   40 * 1.5 == 60ticks 
+#define RWD_TIME_PAUSE 30      // 20us == 20 * 1.5 == 30ticks */
+#define TAG_BIT_PERIOD 150     // 100us == 100 * 1.5 == 150ticks
+#define TAG_FRAME_WAIT 495  // 330us from READER frame end to TAG frame start. 330 * 1.5 == 495
+
+#define RWD_TIME_FUZZ 20   // rather generous 13us, since the peak detector + hysteresis fuzz quite a bit
+
+#define SIM_DIVISOR  586   /* prng_time/SIM_DIVISOR count prng needs to be forwared */
+#define SIM_SHIFT    900   /* prng_time+SIM_SHIFT shift of delayed start */
+
+#define OFFSET_LOG 1024
+
 #define FUZZ_EQUAL(value, target, fuzz) ((value) > ((target)-(fuzz)) && (value) < ((target)+(fuzz)))
 
-static const struct legic_frame queries[] = {
-               {7, 0x55}, /* 1010 101 */
-};
+#ifndef SHORT_COIL
+//#define LOW(x)        AT91C_BASE_PIOA->PIO_CODR = (x)
+# define SHORT_COIL    LOW(GPIO_SSC_DOUT);
+#endif
+#ifndef OPEN_COIL
+//#define HIGH(x)       AT91C_BASE_PIOA->PIO_SODR = (x)
+# define OPEN_COIL     HIGH(GPIO_SSC_DOUT);
+#endif
+
+uint32_t sendFrameStop = 0;
+
+// Pause pulse,  off in 20us / 30ticks,
+// ONE / ZERO bit pulse,  
+//    one == 80us / 120ticks
+//    zero == 40us / 60ticks
+#ifndef COIL_PULSE
+# define COIL_PULSE(x)  { \
+               SHORT_COIL; \
+               WaitTicks(RWD_TIME_PAUSE); \
+               OPEN_COIL; \
+               WaitTicks((x)); \
+       }
+#endif
+
+// ToDo: define a meaningful maximum size for auth_table. The bigger this is, the lower will be the available memory for traces. 
+// Historically it used to be FREE_BUFFER_SIZE, which was 2744.
+#define LEGIC_CARD_MEMSIZE 1024
+static uint8_t* cardmem;
 
-static const struct legic_frame responses[] = {
-               {6, 0x3b}, /* 1101 11 */
-};
+static void frame_append_bit(struct legic_frame * const f, int bit) {
+       // Overflow, won't happen
+   if (f->bits >= 31) return;
+  
+   f->data |= (bit << f->bits);
+   f->bits++;
+}
+
+static void frame_clean(struct legic_frame * const f) {
+       f->data = 0;
+       f->bits = 0;
+}
+
+// Prng works when waiting in 99.1us cycles.
+// and while sending/receiving in bit frames (100, 60)
+/*static void CalibratePrng( uint32_t time){
+       // Calculate Cycles based on timer 100us
+       uint32_t i =  (time - sendFrameStop) / 100 ;
+
+       // substract cycles of finished frames
+       int k =  i - legic_prng_count()+1; 
+
+       // substract current frame length, rewind to beginning
+       if ( k > 0 )
+               legic_prng_forward(k);
+}
+*/
+
+/* Generate Keystream */
+uint32_t get_key_stream(int skip, int count) {
+       uint32_t key = 0;
+       int i;
+
+       // Use int to enlarge timer tc to 32bit
+       legic_prng_bc += prng_timer->TC_CV;
+
+       // reset the prng timer.
+       ResetTimer(prng_timer);
+
+       /* If skip == -1, forward prng time based */
+       if(skip == -1) {
+               i  = (legic_prng_bc + SIM_SHIFT)/SIM_DIVISOR; /* Calculate Cycles based on timer */
+               i -= legic_prng_count(); /* substract cycles of finished frames */
+               i -= count; /* substract current frame length, rewind to beginning */
+               legic_prng_forward(i);
+       } else {
+               legic_prng_forward(skip);
+       }
+
+       i = (count == 6) ? -1 : legic_read_count;
+
+       /* Write Time Data into LOG */
+       // uint8_t *BigBuf = BigBuf_get_addr();
+       // BigBuf[OFFSET_LOG+128+i] = legic_prng_count();
+       // BigBuf[OFFSET_LOG+256+i*4]   = (legic_prng_bc >> 0) & 0xff;
+       // BigBuf[OFFSET_LOG+256+i*4+1] = (legic_prng_bc >> 8) & 0xff;
+       // BigBuf[OFFSET_LOG+256+i*4+2] = (legic_prng_bc >>16) & 0xff;
+       // BigBuf[OFFSET_LOG+256+i*4+3] = (legic_prng_bc >>24) & 0xff;
+       // BigBuf[OFFSET_LOG+384+i] = count;
+
+       /* Generate KeyStream */
+       for(i=0; i<count; i++) {
+               key |= legic_prng_get_bit() << i;
+               legic_prng_forward(1);
+       }
+       return key;
+}
 
 /* Send a frame in tag mode, the FPGA must have been set up by
  * LegicRfSimulate
  */
-static void frame_send_tag(uint16_t response, int bits)
-{
-#if 0
-       /* Use the SSC to send a response. 8-bit transfers, LSBit first, 100us per bit */
-#else 
+void frame_send_tag(uint16_t response, uint8_t bits, uint8_t crypt) {
        /* Bitbang the response */
-       AT91C_BASE_PIOA->PIO_CODR = GPIO_SSC_DOUT;
+       LOW(GPIO_SSC_DOUT);
        AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
        AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
-       
+
+       /* Use time to crypt frame */
+       if(crypt) {
+               legic_prng_forward(2); /* TAG_FRAME_WAIT -> shift by 2 */
+               response ^= legic_prng_get_bits(bits);
+       }
+
        /* Wait for the frame start */
-       while(timer->TC_CV < TAG_TIME_WAIT) ;
-       
-       int i;
-       for(i=0; i<bits; i++) {
-               int nextbit = timer->TC_CV + TAG_TIME_BIT;
-               int bit = response & 1;
-               response = response >> 1;
-               if(bit) 
-                       AT91C_BASE_PIOA->PIO_SODR = GPIO_SSC_DOUT;
+       WaitUS( TAG_FRAME_WAIT );
+
+       uint8_t bit = 0;
+       for(int i = 0; i < bits; i++) {
+
+               bit = response & 1;
+               response >>= 1;
+
+               if (bit)
+                       HIGH(GPIO_SSC_DOUT);
                else
-                       AT91C_BASE_PIOA->PIO_CODR = GPIO_SSC_DOUT;
-               while(timer->TC_CV < nextbit) ;
+                       LOW(GPIO_SSC_DOUT);
+                 
+               WaitUS(100);
+   }
+   LOW(GPIO_SSC_DOUT);
+}
+
+/* Send a frame in reader mode, the FPGA must have been set up by
+ * LegicRfReader
+ */
+void frame_sendAsReader(uint32_t data, uint8_t bits){
+
+       uint32_t starttime = GET_TICKS, send = 0;
+       uint16_t mask = 1;
+       uint8_t prng1 = legic_prng_count() ;
+       
+       // xor lsfr onto data.
+       send = data ^ legic_prng_get_bits(bits);
+                               
+       for (; mask < BITMASK(bits); mask <<= 1) {      
+               if (send & mask) {
+                       COIL_PULSE(RWD_TIME_1);
+               } else {
+                       COIL_PULSE(RWD_TIME_0);
+               }
        }
-       AT91C_BASE_PIOA->PIO_CODR = GPIO_SSC_DOUT;
-#endif
+
+       // Final pause to mark the end of the frame
+       COIL_PULSE(0);
+       
+       sendFrameStop = GET_TICKS;
+       uint8_t cmdbytes[] = {
+               BYTEx(data, 0), 
+               BYTEx(data, 1),
+               bits,
+               prng1,
+               legic_prng_count()
+       };
+       LogTrace(cmdbytes, sizeof(cmdbytes), starttime, sendFrameStop, NULL, TRUE);
 }
 
-/* Figure out a response to a frame in tag mode */
-static void frame_respond_tag(struct legic_frame const * const f)
-{
-       LED_D_ON();
-       int i, r_size;
-       uint16_t r_data;
+/* Receive a frame from the card in reader emulation mode, the FPGA and
+ * timer must have been set up by LegicRfReader and frame_sendAsReader.
+ *
+ * The LEGIC RF protocol from card to reader does not include explicit
+ * frame start/stop information or length information. The reader must
+ * know beforehand how many bits it wants to receive. (Notably: a card
+ * sending a stream of 0-bits is indistinguishable from no card present.)
+ *
+ * Receive methodology: There is a fancy correlator in hi_read_rx_xcorr, but
+ * I'm not smart enough to use it. Instead I have patched hi_read_tx to output
+ * the ADC signal with hysteresis on SSP_DIN. Bit-bang that signal and look
+ * for edges. Count the edges in each bit interval. If they are approximately
+ * 0 this was a 0-bit, if they are approximately equal to the number of edges
+ * expected for a 212kHz subcarrier, this was a 1-bit. For timing we use the
+ * timer that's still running from frame_sendAsReader in order to get a synchronization
+ * with the frame that we just sent.
+ *
+ * FIXME: Because we're relying on the hysteresis to just do the right thing
+ * the range is severely reduced (and you'll probably also need a good antenna).
+ * So this should be fixed some time in the future for a proper receiver.
+ */
+static void frame_receiveAsReader(struct legic_frame * const f, uint8_t bits) {
+
+       frame_clean(f);
+       if ( bits > 32 ) return;
        
-       for(i=0; i<sizeof(queries)/sizeof(queries[0]); i++) {
-               if(f->bits == queries[i].bits && f->data == queries[i].data) {
-                       r_data = responses[i].data;
-                       r_size = responses[i].bits;
-                       break;
+       uint8_t i = bits, edges = 0;    
+       uint16_t lsfr = 0;
+       uint32_t the_bit = 1, next_bit_at = 0, data;
+       int old_level = 0, level = 0;
+
+       AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN;
+       AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN;
+       
+       // calibrate the prng.  
+       legic_prng_forward(2);
+       
+       // precompute the cipher
+       uint8_t prng_before =  legic_prng_count() ;
+
+       lsfr = legic_prng_get_bits(bits);
+
+       data = lsfr;
+       
+       //FIXED time between sending frame and now listening frame. 330us
+       //WaitTicks( GET_TICKS - sendFrameStop - TAG_FRAME_WAIT);
+       WaitTicks( 490 );
+
+       uint32_t starttime = GET_TICKS;
+       
+       next_bit_at =  GET_TICKS + TAG_BIT_PERIOD;
+       
+       while ( i-- ){
+               edges = 0;
+               while  ( GET_TICKS < next_bit_at) {
+
+                       level = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN);
+                       
+                       if (level != old_level)
+                               ++edges;
+                       
+                       old_level = level;
                }
+               next_bit_at += TAG_BIT_PERIOD;
+               
+               // We expect 42 edges  == ONE
+               if(edges > 30 && edges < 64)
+                       data ^= the_bit;
+
+               the_bit <<= 1;  
        }
+
+       // output
+       f->data = data;
+       f->bits = bits;
+               
+       // log
+       sendFrameStop = GET_TICKS;
        
-       if(r_size != 0) {
-               frame_send_tag(r_data, r_size);
-               LED_A_ON();
-       } else {
-               LED_A_OFF();
+       uint8_t cmdbytes[] = { 
+               BYTEx(data,0),
+               BYTEx(data,1),
+               bits,
+               BYTEx(lsfr,0),
+               BYTEx(lsfr,1),
+               BYTEx(data, 0) ^ BYTEx(lsfr,0),
+               BYTEx(data, 1) ^ BYTEx(lsfr,1),
+               prng_before,
+               legic_prng_count()
+       };
+       LogTrace(cmdbytes, sizeof(cmdbytes), starttime, sendFrameStop, NULL, FALSE);
+}
+
+// Setup pm3 as a Legic Reader
+static uint32_t setup_phase_reader(uint8_t iv) {
+       
+       // Switch on carrier and let the tag charge for 1ms
+       HIGH(GPIO_SSC_DOUT);
+       WaitUS(300);    
+       
+       ResetTicks();
+       
+       // no keystream yet
+       legic_prng_init(0);
+       
+       // send IV handshake
+       frame_sendAsReader(iv, 7);
+
+       // Now both tag and reader has same IV. Prng can start.
+       legic_prng_init(iv);
+
+       frame_receiveAsReader(&current_frame, 6);
+
+       // fixed delay before sending ack.
+       WaitTicks(387);  // 244us
+       legic_prng_forward(3);  //240us / 100 == 2.4 iterations
+       
+       // Send obsfuscated acknowledgment frame.
+       // 0x19 = 0x18 MIM22, 0x01 LSB READCMD 
+       // 0x39 = 0x38 MIM256, MIM1024 0x01 LSB READCMD 
+       switch ( current_frame.data  ) {
+               case 0x0D: frame_sendAsReader(0x19, 6); break;
+               case 0x1D: 
+               case 0x3D: frame_sendAsReader(0x39, 6); break;
+               default: break;
        }
+       return current_frame.data;
+}
+
+static void LegicCommonInit(void) {
+
+       FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX);
+       SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+
+       /* Bitbang the transmitter */
+       LOW(GPIO_SSC_DOUT);
+       AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
+       AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
+
+       // reserve a cardmem,  meaning we can use the tracelog function in bigbuff easier.
+       cardmem = BigBuf_malloc(LEGIC_CARD_MEMSIZE);
+       memset(cardmem, 0x00, LEGIC_CARD_MEMSIZE);
+
+       clear_trace();
+       set_tracing(TRUE);
+       crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0);
        
-       LED_D_OFF();
+       StartTicks();
 }
 
-static void frame_append_bit(struct legic_frame * const f, int bit)
-{
-       if(f->bits >= 15)
-               return; /* Overflow, won't happen */
-       f->data |= (bit<<f->bits);
-       f->bits++;
+// Switch off carrier, make sure tag is reset
+static void switch_off_tag_rwd(void) {
+       LOW(GPIO_SSC_DOUT);
+       WaitUS(200);
+       WDT_HIT();
+       Dbprintf("Exit Switch_off_tag_rwd");
 }
 
-static int frame_is_empty(struct legic_frame const * const f)
-{
-       return( f->bits <= 4 );
+// calculate crc4 for a legic READ command 
+// 5,8,10 address size.
+static uint32_t legic4Crc(uint8_t legicCmd, uint16_t byte_index, uint8_t value, uint8_t cmd_sz) {
+       crc_clear(&legic_crc);  
+       //uint32_t temp =  (value << cmd_sz) | (byte_index << 1) | legicCmd;
+       //crc_update(&legic_crc, temp, cmd_sz + 8 );
+       crc_update(&legic_crc, 1, 1); /* CMD_READ */
+       crc_update(&legic_crc, byte_index, cmd_sz-1);
+       crc_update(&legic_crc, value, 8);
+       return crc_finish(&legic_crc);
 }
 
-/* Handle (whether to respond) a frame in tag mode */
-static void frame_handle_tag(struct legic_frame const * const f)
-{
-       if(f->bits == 6) {
-               /* Short path */
-               return;
-       }
-       if( !frame_is_empty(f) ) {
-               frame_respond_tag(f);
+int legic_read_byte(int byte_index, int cmd_sz) {
+
+       // (us)| ticks
+       // -------------
+       // 330 | 495
+       // 460 | 690
+       // 258 | 387
+       // 244 | 366
+       WaitTicks(332); 
+       legic_prng_forward(2); // 460 / 100 = 4.6  iterations
+
+       uint8_t byte = 0, crc = 0, calcCrc = 0;
+       uint32_t cmd = (byte_index << 1) | LEGIC_READ;
+
+       frame_sendAsReader(cmd, cmd_sz);
+       frame_receiveAsReader(&current_frame, 12);
+
+       byte = BYTEx(current_frame.data, 0);
+       calcCrc = legic4Crc(LEGIC_READ, byte_index, byte, cmd_sz);
+       crc = BYTEx(current_frame.data, 1);
+
+       if( calcCrc != crc ) {
+               Dbprintf("!!! crc mismatch: expected %x but got %x !!!",  calcCrc, crc);
+               return -1;
        }
+
+
+//     legic_prng_forward(2); // 460 / 100 = 4.6  iterations
+       return byte;
 }
 
-static void frame_clean(struct legic_frame * const f)
-{
-       f->data = 0;
-       f->bits = 0;
+/* 
+ * - assemble a write_cmd_frame with crc and send it
+ * - wait until the tag sends back an ACK ('1' bit unencrypted)
+ * - forward the prng based on the timing
+ */
+//int legic_write_byte(int byte, int addr, int addr_sz, int PrngCorrection) {
+int legic_write_byte(uint8_t byte, uint16_t addr, uint8_t addr_sz) {
+
+    //do not write UID, CRC at offset 0-4.
+       if (addr <= 4) return 0;
+
+       // crc
+       crc_clear(&legic_crc);
+       crc_update(&legic_crc, 0, 1); /* CMD_WRITE */
+       crc_update(&legic_crc, addr, addr_sz);
+       crc_update(&legic_crc, byte, 8);
+       uint32_t crc = crc_finish(&legic_crc);
+
+       uint32_t crc2 = legic4Crc(LEGIC_WRITE, addr, byte, addr_sz+1);
+       if ( crc != crc2 ) 
+               Dbprintf("crc is missmatch");
+       
+       // send write command
+       uint32_t cmd = ((crc     <<(addr_sz+1+8)) //CRC
+                   |(byte    <<(addr_sz+1))   //Data
+                   |(addr    <<1)             //Address
+                   | LEGIC_WRITE);             //CMD = Write
+                                  
+    uint32_t cmd_sz = addr_sz+1+8+4;          //crc+data+cmd
+
+    legic_prng_forward(2); /* we wait anyways */
+       
+       WaitUS(TAG_FRAME_WAIT);
+       
+       frame_sendAsReader(cmd, cmd_sz);
+  
+       // wllm-rbnt doesnt have these
+       AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN;
+       AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN;
+
+       // wait for ack
+    int t, old_level = 0, edges = 0;
+    int next_bit_at = 0;
+
+       WaitUS(TAG_FRAME_WAIT);
+
+    for( t = 0; t < 80; ++t) {
+        edges = 0;
+               next_bit_at += TAG_BIT_PERIOD;
+        while(timer->TC_CV < next_bit_at) {
+            int level = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN);
+            if(level != old_level)
+                edges++;
+
+            old_level = level;
+        }
+        if(edges > 20 && edges < 60) { /* expected are 42 edges */
+                       int t = timer->TC_CV;
+                       int c = t / TAG_BIT_PERIOD;
+                       
+                       ResetTimer(timer);
+                       legic_prng_forward(c);
+               return 0;
+        }
+    }
+
+       ResetTimer(timer);
+       return -1;
 }
 
-enum emit_mode { 
-       EMIT_RWD, /* Emit in tag simulation mode, e.g. the source is the RWD */
-       EMIT_TAG  /* Emit in reader simulation mode, e.g. the source is the TAG */
-}; 
-static void emit(enum emit_mode mode, int bit)
-{
-       if(bit == -1) {
-               if(mode == EMIT_RWD) {
-                       frame_handle_tag(&current_frame);
+int LegicRfReader(int offset, int bytes, int iv) {
+       
+       uint16_t byte_index = 0;
+       uint8_t cmd_sz = 0;
+       int card_sz = 0;                                                                   
+       uint8_t isOK = 1;
+       
+       if ( MF_DBGLEVEL >= 2)
+               Dbprintf("setting up legic card,  IV = 0x%02x", iv);
+       
+       LegicCommonInit();
+
+       uint32_t tag_type = setup_phase_reader(iv);
+
+        //we lose to mutch time with dprintf
+       switch_off_tag_rwd();
+       
+       switch(tag_type) {
+               case 0x0d:
+                       if ( MF_DBGLEVEL >= 2) DbpString("MIM22 card found, reading card");
+            cmd_sz = 6;
+                       card_sz = 22;
+                       break;
+               case 0x1d:
+                       if ( MF_DBGLEVEL >= 2) DbpString("MIM256 card found, reading card");
+            cmd_sz = 9;
+                       card_sz = 256;
+                       break;
+               case 0x3d:
+                       if ( MF_DBGLEVEL >= 2) DbpString("MIM1024 card found, reading card");
+            cmd_sz = 11;
+                       card_sz = 1024;
+                       break;
+               default:
+                       if ( MF_DBGLEVEL >= 1) Dbprintf("Unknown card format: %x", tag_type);
+                       isOK = 0;
+                       goto OUT;
+                       break;
+       }
+       if (bytes == -1)
+               bytes = card_sz;
+
+       if (bytes + offset >= card_sz)
+               bytes = card_sz - offset;
+
+       // Start setup and read bytes.
+       setup_phase_reader(iv);
+       
+       LED_B_ON();
+       while (byte_index < bytes) {
+               int r = legic_read_byte(byte_index + offset, cmd_sz);
+               
+               if (r == -1 || BUTTON_PRESS()) {                        
+               if ( MF_DBGLEVEL >= 2) DbpString("operation aborted");
+                       isOK = 0;
+                       goto OUT;
                }
-               frame_clean(&current_frame);
-       } else if(bit == 0) {
-               frame_append_bit(&current_frame, 0);
-       } else if(bit == 1) {
-               frame_append_bit(&current_frame, 1);
+               cardmem[++byte_index] = r;
+               //byte_index++;
+        WDT_HIT();
+       }
+
+OUT:   
+       switch_off_tag_rwd();
+       LEDsoff();
+       uint8_t len = (bytes & 0x3FF);
+       cmd_send(CMD_ACK,isOK,len,0,cardmem,len);
+    return 0;
+}
+
+/*int _LegicRfWriter(int offset, int bytes, int addr_sz, uint8_t *BigBuf, int RoundBruteforceValue) {
+       int byte_index=0;
+
+    LED_B_ON();
+       setup_phase_reader(iv);
+    //legic_prng_forward(2);
+       while(byte_index < bytes) {
+               int r;
+
+               //check if the DCF should be changed
+               if ( (offset == 0x05) && (bytes == 0x02) ) {
+                       //write DCF in reverse order (addr 0x06 before 0x05)
+                       r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz, RoundBruteforceValue);
+                       //legic_prng_forward(1);
+                       if(r == 0) {
+                               byte_index++;
+                               r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz, RoundBruteforceValue);
+                       }
+                       //legic_prng_forward(1);
+               }
+               else {
+                       r = legic_write_byte(BigBuf[byte_index+offset], byte_index+offset, addr_sz, RoundBruteforceValue);
+               }
+               if((r != 0) || BUTTON_PRESS()) {
+                       Dbprintf("operation aborted @ 0x%03.3x", byte_index);
+       switch_off_tag_rwd();
+                       LED_B_OFF();
+                       LED_C_OFF();
+                       return -1;
+               }
+
+        WDT_HIT();
+               byte_index++;
+        if(byte_index & 0x10) LED_C_ON(); else LED_C_OFF();
+       }
+    LED_B_OFF();
+    LED_C_OFF();
+    DbpString("write successful");
+    return 0;
+}*/
+
+void LegicRfWriter(int offset, int bytes, int iv) {
+
+       int byte_index = 0, addr_sz = 0;                                                                  
+
+       LegicCommonInit();
+       
+       if ( MF_DBGLEVEL >= 2)  DbpString("setting up legic card");
+       
+       uint32_t tag_type = setup_phase_reader(iv);
+       
+       switch_off_tag_rwd();
+       
+       switch(tag_type) {
+               case 0x0d:
+                       if(offset+bytes > 22) {
+                               Dbprintf("Error: can not write to 0x%03.3x on MIM22", offset + bytes);
+                               return;
+                       }
+                       addr_sz = 5;
+                       if ( MF_DBGLEVEL >= 2) Dbprintf("MIM22 card found, writing 0x%02.2x - 0x%02.2x ...", offset, offset + bytes);
+                       break;
+               case 0x1d:
+                       if(offset+bytes > 0x100) {
+                               Dbprintf("Error: can not write to 0x%03.3x on MIM256", offset + bytes);
+                               return;
+                       }
+                       addr_sz = 8;
+                       if ( MF_DBGLEVEL >= 2) Dbprintf("MIM256 card found, writing 0x%02.2x - 0x%02.2x ...", offset, offset + bytes);
+                       break;
+               case 0x3d:
+                       if(offset+bytes > 0x400) {
+                       Dbprintf("Error: can not write to 0x%03.3x on MIM1024", offset + bytes);
+                       return;
+               }
+                       addr_sz = 10;
+                       if ( MF_DBGLEVEL >= 2) Dbprintf("MIM1024 card found, writing 0x%03.3x - 0x%03.3x ...", offset, offset + bytes);
+                       break;
+               default:
+                       Dbprintf("No or unknown card found, aborting");
+            return;
+       }
+
+    LED_B_ON();
+       setup_phase_reader(iv);
+       int r = 0;
+       while(byte_index < bytes) {
+
+               //check if the DCF should be changed
+               if ( ((byte_index+offset) == 0x05) && (bytes >= 0x02) ) {
+                       //write DCF in reverse order (addr 0x06 before 0x05)
+                       r = legic_write_byte(cardmem[(0x06-byte_index)], (0x06-byte_index), addr_sz);
+
+                       // write second byte on success...
+                       if(r == 0) {
+                               byte_index++;
+                               r = legic_write_byte(cardmem[(0x06-byte_index)], (0x06-byte_index), addr_sz);
+                       }
+               }
+               else {
+                       r = legic_write_byte(cardmem[byte_index+offset], byte_index+offset, addr_sz);
+               }
+               
+               if ((r != 0) || BUTTON_PRESS()) {
+                       Dbprintf("operation aborted @ 0x%03.3x", byte_index);
+                       switch_off_tag_rwd();
+                       LEDsoff();
+                       return;
+               }
+
+        WDT_HIT();
+               byte_index++;
+       }
+       LEDsoff();
+    if ( MF_DBGLEVEL >= 1) DbpString("write successful");
+}
+
+void LegicRfRawWriter(int address, int byte, int iv) {
+
+       int byte_index = 0, addr_sz = 0;
+       
+       LegicCommonInit();
+       
+       if ( MF_DBGLEVEL >= 2) DbpString("setting up legic card");
+       
+       uint32_t tag_type = setup_phase_reader(iv);
+       
+       switch_off_tag_rwd();
+       
+       switch(tag_type) {
+               case 0x0d:
+                       if(address > 22) {
+                               Dbprintf("Error: can not write to 0x%03.3x on MIM22", address);
+                               return;
+                       }
+                       addr_sz = 5;
+                       if ( MF_DBGLEVEL >= 2) Dbprintf("MIM22 card found, writing at addr 0x%02.2x - value 0x%02.2x ...", address, byte);
+                       break;
+               case 0x1d:
+                       if(address > 0x100) {
+                               Dbprintf("Error: can not write to 0x%03.3x on MIM256", address);
+                               return;
+                       }
+                       addr_sz = 8;
+                       if ( MF_DBGLEVEL >= 2) Dbprintf("MIM256 card found, writing at addr 0x%02.2x - value 0x%02.2x ...", address, byte);
+                       break;
+               case 0x3d:
+                       if(address > 0x400) {
+                       Dbprintf("Error: can not write to 0x%03.3x on MIM1024", address);
+                       return;
+               }
+                       addr_sz = 10;
+                       if ( MF_DBGLEVEL >= 2) Dbprintf("MIM1024 card found, writing at addr 0x%03.3x - value 0x%03.3x ...", address, byte);
+                       break;
+               default:
+                       Dbprintf("No or unknown card found, aborting");
+            return;
+       }
+       
+       Dbprintf("integer value: %d address: %d  addr_sz: %d", byte, address, addr_sz);
+    LED_B_ON();
+       
+       setup_phase_reader(iv);
+               
+       int r = legic_write_byte(byte, address, addr_sz);
+               
+       if((r != 0) || BUTTON_PRESS()) {
+               Dbprintf("operation aborted @ 0x%03.3x (%1d)", byte_index, r);
+               switch_off_tag_rwd();
+               LEDsoff();
+               return;
        }
+
+    LEDsoff();
+    if ( MF_DBGLEVEL >= 1) DbpString("write successful");
+}
+
+/* Handle (whether to respond) a frame in tag mode
+ * Only called when simulating a tag.
+ */
+static void frame_handle_tag(struct legic_frame const * const f)
+{
+       uint8_t *BigBuf = BigBuf_get_addr();
+
+   /* First Part of Handshake (IV) */
+   if(f->bits == 7) {
+
+        LED_C_ON();
+        
+               // Reset prng timer
+               ResetTimer(prng_timer);
+               
+        legic_prng_init(f->data);
+        frame_send_tag(0x3d, 6, 1); /* 0x3d^0x26 = 0x1B */
+        legic_state = STATE_IV;
+        legic_read_count = 0;
+        legic_prng_bc = 0;
+        legic_prng_iv = f->data;
+               ResetTimer(timer);
+               WaitUS(280);
+        return;
+   }
+
+   /* 0x19==??? */
+   if(legic_state == STATE_IV) {
+      int local_key = get_key_stream(3, 6);
+      int xored = 0x39 ^ local_key;
+      if((f->bits == 6) && (f->data == xored)) {
+         legic_state = STATE_CON;
+
+                ResetTimer(timer);
+                WaitUS(200);
+         return;
+
+        } else {
+         legic_state = STATE_DISCON;
+         LED_C_OFF();
+         Dbprintf("iv: %02x frame: %02x key: %02x xored: %02x", legic_prng_iv, f->data, local_key, xored);
+         return;
+      }
+   }
+
+   /* Read */
+   if(f->bits == 11) {
+      if(legic_state == STATE_CON) {
+         int key   = get_key_stream(2, 11); //legic_phase_drift, 11);
+         int addr  = f->data ^ key; addr = addr >> 1;
+         int data = BigBuf[addr];
+         int hash = legic4Crc(LEGIC_READ, addr, data, 11) << 8;
+         BigBuf[OFFSET_LOG+legic_read_count] = (uint8_t)addr;
+         legic_read_count++;
+
+         //Dbprintf("Data:%03.3x, key:%03.3x, addr: %03.3x, read_c:%u", f->data, key, addr, read_c);
+         legic_prng_forward(legic_reqresp_drift);
+
+         frame_send_tag(hash | data, 12, 1);
+
+                ResetTimer(timer);
+         legic_prng_forward(2);
+                WaitUS(180);
+         return;
+      }
+   }
+
+   /* Write */
+   if(f->bits == 23) {
+      int key   = get_key_stream(-1, 23); //legic_frame_drift, 23);
+      int addr  = f->data ^ key; addr = addr >> 1; addr = addr & 0x3ff;
+      int data  = f->data ^ key; data = data >> 11; data = data & 0xff;
+
+      /* write command */
+      legic_state = STATE_DISCON;
+      LED_C_OFF();
+      Dbprintf("write - addr: %x, data: %x", addr, data);
+      return;
+   }
+
+   if(legic_state != STATE_DISCON) {
+      Dbprintf("Unexpected: sz:%u, Data:%03.3x, State:%u, Count:%u", f->bits, f->data, legic_state, legic_read_count);
+      int i;
+      Dbprintf("IV: %03.3x", legic_prng_iv);
+      for(i = 0; i<legic_read_count; i++) {
+         Dbprintf("Read Nb: %u, Addr: %u", i, BigBuf[OFFSET_LOG+i]);
+      }
+
+      for(i = -1; i<legic_read_count; i++) {
+         uint32_t t;
+         t  = BigBuf[OFFSET_LOG+256+i*4];
+         t |= BigBuf[OFFSET_LOG+256+i*4+1] << 8;
+         t |= BigBuf[OFFSET_LOG+256+i*4+2] <<16;
+         t |= BigBuf[OFFSET_LOG+256+i*4+3] <<24;
+
+         Dbprintf("Cycles: %u, Frame Length: %u, Time: %u", 
+            BigBuf[OFFSET_LOG+128+i],
+            BigBuf[OFFSET_LOG+384+i],
+            t);
+      }
+   }
+   legic_state = STATE_DISCON; 
+   legic_read_count = 0;
+   SpinDelay(10);
+   LED_C_OFF();
+   return; 
+}
+
+/* Read bit by bit untill full frame is received
+ * Call to process frame end answer
+ */
+static void emit(int bit) {
+
+       switch (bit) {
+               case 1:
+                       frame_append_bit(&current_frame, 1);
+                       break;                  
+               case 0:
+                       frame_append_bit(&current_frame, 0);
+                       break;
+               default: 
+                       if(current_frame.bits <= 4) {
+                               frame_clean(&current_frame);
+                       } else {
+                               frame_handle_tag(&current_frame);
+                               frame_clean(&current_frame);
+                       }
+                       WDT_HIT();
+                       break;
+       } 
 }
 
-void LegicRfSimulate(void)
+void LegicRfSimulate(int phase, int frame, int reqresp)
 {
-       /* ADC path high-frequency peak detector, FPGA in high-frequency simulator mode, 
-        * modulation mode set to 212kHz subcarrier. We are getting the incoming raw
-        * envelope waveform on DIN and should send our response on DOUT.
-        * 
-        * The LEGIC RF protocol is pulse-pause-encoding from reader to card, so we'll
-        * measure the time between two rising edges on DIN, and no encoding on the
-        * subcarrier from card to reader, so we'll just shift out our verbatim data
-        * on DOUT, 1 bit is 100us. The time from reader to card frame is still unclear,
-        * seems to be 300us-ish.
-        */
+  /* ADC path high-frequency peak detector, FPGA in high-frequency simulator mode, 
+   * modulation mode set to 212kHz subcarrier. We are getting the incoming raw
+   * envelope waveform on DIN and should send our response on DOUT.
+   *
+   * The LEGIC RF protocol is pulse-pause-encoding from reader to card, so we'll
+   * measure the time between two rising edges on DIN, and no encoding on the
+   * subcarrier from card to reader, so we'll just shift out our verbatim data
+   * on DOUT, 1 bit is 100us. The time from reader to card frame is still unclear,
+   * seems to be 300us-ish.
+   */
+
+       legic_phase_drift = phase;
+       legic_frame_drift = frame;
+       legic_reqresp_drift = reqresp;
+
+       FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
        SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
        FpgaSetupSsc();
        FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_212K);
-       
+
        /* Bitbang the receiver */
        AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN;
        AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN;
-       
-       setup_timer();
-       
+
+       //setup_timer();
+       crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0);
+
        int old_level = 0;
        int active = 0;
-       
-       while(!BUTTON_PRESS()) {
+       legic_state = STATE_DISCON;
+
+       LED_B_ON();
+       DbpString("Starting Legic emulator, press button to end");
+   
+       while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
                int level = !!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN);
                int time = timer->TC_CV;
-               
+
                if(level != old_level) {
                        if(level == 1) {
                                timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
-                               if(FUZZ_EQUAL(time, RWD_TIME_1, RWD_TIME_FUZZ)) {
+                               
+                               if (FUZZ_EQUAL(time, RWD_TIME_1, RWD_TIME_FUZZ)) {
                                        /* 1 bit */
-                                       emit(EMIT_RWD, 1);
+                                       emit(1);
                                        active = 1;
-                                       LED_B_ON();
-                               } else if(FUZZ_EQUAL(time, RWD_TIME_0, RWD_TIME_FUZZ)) {
+                                       LED_A_ON();
+                               } else if (FUZZ_EQUAL(time, RWD_TIME_0, RWD_TIME_FUZZ)) {
                                        /* 0 bit */
-                                       emit(EMIT_RWD, 0);
+                                       emit(0);
                                        active = 1;
-                                       LED_B_ON();
-                               } else if(active) {
+                                       LED_A_ON();
+                               } else if (active) {
                                        /* invalid */
-                                       emit(EMIT_RWD, -1);
+                                       emit(-1);
                                        active = 0;
-                                       LED_B_OFF();
+                                       LED_A_OFF();
                                }
                        }
                }
-               
+
+               /* Frame end */
                if(time >= (RWD_TIME_1+RWD_TIME_FUZZ) && active) {
-                       /* Frame end */
-                       emit(EMIT_RWD, -1);
+                       emit(-1);
                        active = 0;
-                       LED_B_OFF();
+                       LED_A_OFF();
                }
-               
+
                if(time >= (20*RWD_TIME_1) && (timer->TC_SR & AT91C_TC_CLKSTA)) {
                        timer->TC_CCR = AT91C_TC_CLKDIS;
                }
-               
-               
+
                old_level = level;
                WDT_HIT();
        }
+       if ( MF_DBGLEVEL >= 1) DbpString("Stopped");
+       LEDsoff();
+}
+
+//-----------------------------------------------------------------------------
+// Code up a string of octets at layer 2 (including CRC, we don't generate
+// that here) so that they can be transmitted to the reader. Doesn't transmit
+// them yet, just leaves them ready to send in ToSend[].
+//-----------------------------------------------------------------------------
+// static void CodeLegicAsTag(const uint8_t *cmd, int len)
+// {
+       // int i;
+
+       // ToSendReset();
+
+       // // Transmit a burst of ones, as the initial thing that lets the
+       // // reader get phase sync. This (TR1) must be > 80/fs, per spec,
+       // // but tag that I've tried (a Paypass) exceeds that by a fair bit,
+       // // so I will too.
+       // for(i = 0; i < 20; i++) {
+               // ToSendStuffBit(1);
+               // ToSendStuffBit(1);
+               // ToSendStuffBit(1);
+               // ToSendStuffBit(1);
+       // }
+
+       // // Send SOF.
+       // for(i = 0; i < 10; i++) {
+               // ToSendStuffBit(0);
+               // ToSendStuffBit(0);
+               // ToSendStuffBit(0);
+               // ToSendStuffBit(0);
+       // }
+       // for(i = 0; i < 2; i++) {
+               // ToSendStuffBit(1);
+               // ToSendStuffBit(1);
+               // ToSendStuffBit(1);
+               // ToSendStuffBit(1);
+       // }
+
+       // for(i = 0; i < len; i++) {
+               // int j;
+               // uint8_t b = cmd[i];
+
+               // // Start bit
+               // ToSendStuffBit(0);
+               // ToSendStuffBit(0);
+               // ToSendStuffBit(0);
+               // ToSendStuffBit(0);
+
+               // // Data bits
+               // for(j = 0; j < 8; j++) {
+                       // if(b & 1) {
+                               // ToSendStuffBit(1);
+                               // ToSendStuffBit(1);
+                               // ToSendStuffBit(1);
+                               // ToSendStuffBit(1);
+                       // } else {
+                               // ToSendStuffBit(0);
+                               // ToSendStuffBit(0);
+                               // ToSendStuffBit(0);
+                               // ToSendStuffBit(0);
+                       // }
+                       // b >>= 1;
+               // }
+
+               // // Stop bit
+               // ToSendStuffBit(1);
+               // ToSendStuffBit(1);
+               // ToSendStuffBit(1);
+               // ToSendStuffBit(1);
+       // }
+
+       // // Send EOF.
+       // for(i = 0; i < 10; i++) {
+               // ToSendStuffBit(0);
+               // ToSendStuffBit(0);
+               // ToSendStuffBit(0);
+               // ToSendStuffBit(0);
+       // }
+       // for(i = 0; i < 2; i++) {
+               // ToSendStuffBit(1);
+               // ToSendStuffBit(1);
+               // ToSendStuffBit(1);
+               // ToSendStuffBit(1);
+       // }
+
+       // // Convert from last byte pos to length
+       // ToSendMax++;
+// }
+
+//-----------------------------------------------------------------------------
+// The software UART that receives commands from the reader, and its state
+// variables.
+//-----------------------------------------------------------------------------
+static struct {
+       enum {
+               STATE_UNSYNCD,
+               STATE_GOT_FALLING_EDGE_OF_SOF,
+               STATE_AWAITING_START_BIT,
+               STATE_RECEIVING_DATA
+       }       state;
+       uint16_t shiftReg;
+       int     bitCnt;
+       int     byteCnt;
+       int     byteCntMax;
+       int     posCnt;
+       uint8_t *output;
+} Uart;
+
+/* Receive & handle a bit coming from the reader.
+ *
+ * This function is called 4 times per bit (every 2 subcarrier cycles).
+ * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us
+ *
+ * LED handling:
+ * LED A -> ON once we have received the SOF and are expecting the rest.
+ * LED A -> OFF once we have received EOF or are in error state or unsynced
+ *
+ * Returns: true if we received a EOF
+ *          false if we are still waiting for some more
+ */
+// static RAMFUNC int HandleLegicUartBit(uint8_t bit)
+// {
+       // switch(Uart.state) {
+               // case STATE_UNSYNCD:
+                       // if(!bit) {
+                               // // we went low, so this could be the beginning of an SOF
+                               // Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF;
+                               // Uart.posCnt = 0;
+                               // Uart.bitCnt = 0;
+                       // }
+                       // break;
+
+               // case STATE_GOT_FALLING_EDGE_OF_SOF:
+                       // Uart.posCnt++;
+                       // if(Uart.posCnt == 2) {       // sample every 4 1/fs in the middle of a bit
+                               // if(bit) {
+                                       // if(Uart.bitCnt > 9) {
+                                               // // we've seen enough consecutive
+                                               // // zeros that it's a valid SOF
+                                               // Uart.posCnt = 0;
+                                               // Uart.byteCnt = 0;
+                                               // Uart.state = STATE_AWAITING_START_BIT;
+                                               // LED_A_ON(); // Indicate we got a valid SOF
+                                       // } else {
+                                               // // didn't stay down long enough
+                                               // // before going high, error
+                                               // Uart.state = STATE_UNSYNCD;
+                                       // }
+                               // } else {
+                                       // // do nothing, keep waiting
+                               // }
+                               // Uart.bitCnt++;
+                       // }
+                       // if(Uart.posCnt >= 4) Uart.posCnt = 0;
+                       // if(Uart.bitCnt > 12) {
+                               // // Give up if we see too many zeros without
+                               // // a one, too.
+                               // LED_A_OFF();
+                               // Uart.state = STATE_UNSYNCD;
+                       // }
+                       // break;
+
+               // case STATE_AWAITING_START_BIT:
+                       // Uart.posCnt++;
+                       // if(bit) {
+                               // if(Uart.posCnt > 50/2) {     // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs
+                                       // // stayed high for too long between
+                                       // // characters, error
+                                       // Uart.state = STATE_UNSYNCD;
+                               // }
+                       // } else {
+                               // // falling edge, this starts the data byte
+                               // Uart.posCnt = 0;
+                               // Uart.bitCnt = 0;
+                               // Uart.shiftReg = 0;
+                               // Uart.state = STATE_RECEIVING_DATA;
+                       // }
+                       // break;
+
+               // case STATE_RECEIVING_DATA:
+                       // Uart.posCnt++;
+                       // if(Uart.posCnt == 2) {
+                               // // time to sample a bit
+                               // Uart.shiftReg >>= 1;
+                               // if(bit) {
+                                       // Uart.shiftReg |= 0x200;
+                               // }
+                               // Uart.bitCnt++;
+                       // }
+                       // if(Uart.posCnt >= 4) {
+                               // Uart.posCnt = 0;
+                       // }
+                       // if(Uart.bitCnt == 10) {
+                               // if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001))
+                               // {
+                                       // // this is a data byte, with correct
+                                       // // start and stop bits
+                                       // Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff;
+                                       // Uart.byteCnt++;
+
+                                       // if(Uart.byteCnt >= Uart.byteCntMax) {
+                                               // // Buffer overflowed, give up
+                                               // LED_A_OFF();
+                                               // Uart.state = STATE_UNSYNCD;
+                                       // } else {
+                                               // // so get the next byte now
+                                               // Uart.posCnt = 0;
+                                               // Uart.state = STATE_AWAITING_START_BIT;
+                                       // }
+                               // } else if (Uart.shiftReg == 0x000) {
+                                       // // this is an EOF byte
+                                       // LED_A_OFF(); // Finished receiving
+                                       // Uart.state = STATE_UNSYNCD;
+                                       // if (Uart.byteCnt != 0) {
+                                       // return TRUE;
+                                       // }
+                               // } else {
+                                       // // this is an error
+                                       // LED_A_OFF();
+                                       // Uart.state = STATE_UNSYNCD;
+                               // }
+                       // }
+                       // break;
+
+               // default:
+                       // LED_A_OFF();
+                       // Uart.state = STATE_UNSYNCD;
+                       // break;
+       // }
+
+       // return FALSE;
+// }
+
+
+static void UartReset() {
+       Uart.byteCntMax = 3;
+       Uart.state = STATE_UNSYNCD;
+       Uart.byteCnt = 0;
+       Uart.bitCnt = 0;
+       Uart.posCnt = 0;
+       memset(Uart.output, 0x00, 3);
 }
+
+// static void UartInit(uint8_t *data) {
+       // Uart.output = data;
+       // UartReset();
+// }
+
+//=============================================================================
+// An LEGIC reader. We take layer two commands, code them
+// appropriately, and then send them to the tag. We then listen for the
+// tag's response, which we leave in the buffer to be demodulated on the
+// PC side.
+//=============================================================================
+
+static struct {
+       enum {
+               DEMOD_UNSYNCD,
+               DEMOD_PHASE_REF_TRAINING,
+               DEMOD_AWAITING_FALLING_EDGE_OF_SOF,
+               DEMOD_GOT_FALLING_EDGE_OF_SOF,
+               DEMOD_AWAITING_START_BIT,
+               DEMOD_RECEIVING_DATA
+       }       state;
+       int     bitCount;
+       int     posCount;
+       int     thisBit;
+       uint16_t  shiftReg;
+       uint8_t   *output;
+       int     len;
+       int     sumI;
+       int     sumQ;
+} Demod;
+
+/*
+ * Handles reception of a bit from the tag
+ *
+ * This function is called 2 times per bit (every 4 subcarrier cycles).
+ * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us
+ *
+ * LED handling:
+ * LED C -> ON once we have received the SOF and are expecting the rest.
+ * LED C -> OFF once we have received EOF or are unsynced
+ *
+ * Returns: true if we received a EOF
+ *          false if we are still waiting for some more
+ *
+ */
+
+ #ifndef SUBCARRIER_DETECT_THRESHOLD
+ # define SUBCARRIER_DETECT_THRESHOLD  8
+ #endif
+ // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq)))
+#ifndef CHECK_FOR_SUBCARRIER
+# define CHECK_FOR_SUBCARRIER() { v = MAX(ai, aq) + MIN(halfci, halfcq); }
+#endif
+
+// The soft decision on the bit uses an estimate of just the
+// quadrant of the reference angle, not the exact angle.
+// Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq)))
+#define MAKE_SOFT_DECISION() { \
+               if(Demod.sumI > 0) \
+                       v = ci; \
+               else \
+                       v = -ci; \
+               \
+               if(Demod.sumQ > 0) \
+                       v += cq; \
+               else \
+                       v -= cq; \
+               \
+       }
+
+static RAMFUNC int HandleLegicSamplesDemod(int ci, int cq)
+{
+       int v = 0;
+       int ai = ABS(ci);
+       int aq = ABS(cq);
+       int halfci = (ai >> 1);
+       int halfcq = (aq >> 1);
+
+       switch(Demod.state) {
+               case DEMOD_UNSYNCD:
+                       
+                       CHECK_FOR_SUBCARRIER()
+                       
+                       if(v > SUBCARRIER_DETECT_THRESHOLD) {   // subcarrier detected
+                               Demod.state = DEMOD_PHASE_REF_TRAINING;
+                               Demod.sumI = ci;
+                               Demod.sumQ = cq;
+                               Demod.posCount = 1;
+                       }
+                       break;
+
+               case DEMOD_PHASE_REF_TRAINING:
+                       if(Demod.posCount < 8) {
+                       
+                               CHECK_FOR_SUBCARRIER()
+                               
+                               if (v > SUBCARRIER_DETECT_THRESHOLD) {
+                                       // set the reference phase (will code a logic '1') by averaging over 32 1/fs.
+                                       // note: synchronization time > 80 1/fs
+                                       Demod.sumI += ci;
+                                       Demod.sumQ += cq;
+                                       ++Demod.posCount;
+                               } else {
+                                       // subcarrier lost
+                                       Demod.state = DEMOD_UNSYNCD;
+                               }
+                       } else {
+                               Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF;
+                       }
+                       break;
+
+               case DEMOD_AWAITING_FALLING_EDGE_OF_SOF:
+
+                       MAKE_SOFT_DECISION()
+
+                       //Dbprintf("ICE: %d %d %d %d %d", v, Demod.sumI, Demod.sumQ, ci, cq );
+                       // logic '0' detected
+                       if (v <= 0) {
+                               
+                               Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF;
+                       
+                               // start of SOF sequence
+                               Demod.posCount = 0;
+                       } else {
+                               // maximum length of TR1 = 200 1/fs
+                               if(Demod.posCount > 25*2) Demod.state = DEMOD_UNSYNCD;
+                       }
+                       ++Demod.posCount;
+                       break;
+
+               case DEMOD_GOT_FALLING_EDGE_OF_SOF:
+                       ++Demod.posCount;
+
+                       MAKE_SOFT_DECISION()
+
+                       if(v > 0) {
+                               // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges
+                               if(Demod.posCount < 10*2) { 
+                                       Demod.state = DEMOD_UNSYNCD;
+                               } else {
+                                       LED_C_ON(); // Got SOF
+                                       Demod.state = DEMOD_AWAITING_START_BIT;
+                                       Demod.posCount = 0;
+                                       Demod.len = 0;
+                               }
+                       } else {
+                               // low phase of SOF too long (> 12 etu)
+                               if(Demod.posCount > 13*2) { 
+                                       Demod.state = DEMOD_UNSYNCD;
+                                       LED_C_OFF();
+                               }
+                       }
+                       break;
+
+               case DEMOD_AWAITING_START_BIT:
+                       ++Demod.posCount;
+                       
+                       MAKE_SOFT_DECISION()
+                       
+                       if(v > 0) {
+                               // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs
+                               if(Demod.posCount > 3*2) { 
+                                       Demod.state = DEMOD_UNSYNCD;
+                                       LED_C_OFF();
+                               }
+                       } else {
+                               // start bit detected
+                               Demod.bitCount = 0;
+                               Demod.posCount = 1;                             // this was the first half
+                               Demod.thisBit = v;
+                               Demod.shiftReg = 0;
+                               Demod.state = DEMOD_RECEIVING_DATA;
+                       }
+                       break;
+
+               case DEMOD_RECEIVING_DATA:
+               
+                       MAKE_SOFT_DECISION()
+                       
+                       if(Demod.posCount == 0) {
+                               // first half of bit
+                               Demod.thisBit = v;
+                               Demod.posCount = 1;
+                       } else {
+                               // second half of bit
+                               Demod.thisBit += v;
+                               Demod.shiftReg >>= 1;
+                               // logic '1'
+                               if(Demod.thisBit > 0) 
+                                       Demod.shiftReg |= 0x200;
+                               
+                               ++Demod.bitCount;
+                               
+                               if(Demod.bitCount == 10) {
+                                       
+                                       uint16_t s = Demod.shiftReg;
+                                       
+                                       if((s & 0x200) && !(s & 0x001)) { 
+                                               // stop bit == '1', start bit == '0'
+                                               uint8_t b = (s >> 1);
+                                               Demod.output[Demod.len] = b;
+                                               ++Demod.len;
+                                               Demod.state = DEMOD_AWAITING_START_BIT;
+                                       } else {
+                                               Demod.state = DEMOD_UNSYNCD;
+                                               LED_C_OFF();
+                                               
+                                               if(s == 0x000) {
+                                                       // This is EOF (start, stop and all data bits == '0'
+                                                       return TRUE;
+                                               }
+                                       }
+                               }
+                               Demod.posCount = 0;
+                       }
+                       break;
+
+               default:
+                       Demod.state = DEMOD_UNSYNCD;
+                       LED_C_OFF();
+                       break;
+       }
+       return FALSE;
+}
+
+// Clear out the state of the "UART" that receives from the tag.
+static void DemodReset() {
+       Demod.len = 0;
+       Demod.state = DEMOD_UNSYNCD;
+       Demod.posCount = 0;
+       Demod.sumI = 0;
+       Demod.sumQ = 0;
+       Demod.bitCount = 0;
+       Demod.thisBit = 0;
+       Demod.shiftReg = 0;
+       memset(Demod.output, 0x00, 3);
+}
+
+static void DemodInit(uint8_t *data) {
+       Demod.output = data;
+       DemodReset();
+}
+
+/*
+ *  Demodulate the samples we received from the tag, also log to tracebuffer
+ *  quiet: set to 'TRUE' to disable debug output
+ */
+ #define LEGIC_DMA_BUFFER_SIZE 256
+static void GetSamplesForLegicDemod(int n, bool quiet)
+{
+       int max = 0;
+       bool gotFrame = FALSE;
+       int lastRxCounter = LEGIC_DMA_BUFFER_SIZE;
+       int     ci, cq, samples = 0;
+
+       BigBuf_free();
+
+       // And put the FPGA in the appropriate mode
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_QUARTER_FREQ);
+
+       // The response (tag -> reader) that we're receiving.
+       // Set up the demodulator for tag -> reader responses.
+       DemodInit(BigBuf_malloc(MAX_FRAME_SIZE));
+       
+       // The DMA buffer, used to stream samples from the FPGA
+       int8_t *dmaBuf = (int8_t*) BigBuf_malloc(LEGIC_DMA_BUFFER_SIZE);
+       int8_t *upTo = dmaBuf;
+
+       // Setup and start DMA.
+       if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, LEGIC_DMA_BUFFER_SIZE) ){
+               if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting"); 
+               return;
+       }       
+
+       // Signal field is ON with the appropriate LED:
+       LED_D_ON();
+       for(;;) {
+               int behindBy = lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR;
+               if(behindBy > max) max = behindBy;
+
+               while(((lastRxCounter-AT91C_BASE_PDC_SSC->PDC_RCR) & (LEGIC_DMA_BUFFER_SIZE-1)) > 2) {
+                       ci = upTo[0];
+                       cq = upTo[1];
+                       upTo += 2;
+                       if(upTo >= dmaBuf + LEGIC_DMA_BUFFER_SIZE) {
+                               upTo = dmaBuf;
+                               AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
+                               AT91C_BASE_PDC_SSC->PDC_RNCR = LEGIC_DMA_BUFFER_SIZE;
+                       }
+                       lastRxCounter -= 2;
+                       if(lastRxCounter <= 0)
+                               lastRxCounter = LEGIC_DMA_BUFFER_SIZE;
+
+                       samples += 2;
+
+                       gotFrame = HandleLegicSamplesDemod(ci , cq );
+                       if ( gotFrame )
+                               break;
+               }
+
+               if(samples > n || gotFrame)
+                       break;
+       }
+
+       FpgaDisableSscDma();
+
+       if (!quiet && Demod.len == 0) {
+               Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d",
+                       max,
+                       samples, 
+                       gotFrame, 
+                       Demod.len, 
+                       Demod.sumI, 
+                       Demod.sumQ
+               );
+       }
+
+       //Tracing
+       if (Demod.len > 0) {
+               uint8_t parity[MAX_PARITY_SIZE] = {0x00};
+               LogTrace(Demod.output, Demod.len, 0, 0, parity, FALSE);
+       }
+}
+//-----------------------------------------------------------------------------
+// Transmit the command (to the tag) that was placed in ToSend[].
+//-----------------------------------------------------------------------------
+static void TransmitForLegic(void)
+{
+       int c;
+
+       FpgaSetupSsc();
+       
+       while(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))
+               AT91C_BASE_SSC->SSC_THR = 0xff;
+
+       // Signal field is ON with the appropriate Red LED
+       LED_D_ON();
+
+       // Signal we are transmitting with the Green LED
+       LED_B_ON();
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
+       
+       for(c = 0; c < 10;) {
+               if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+                       AT91C_BASE_SSC->SSC_THR = 0xff;
+                       c++;
+               }
+               if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+                       volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
+                       (void)r;
+               }
+               WDT_HIT();
+       }
+
+       c = 0;
+       for(;;) {
+               if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+                       AT91C_BASE_SSC->SSC_THR = ToSend[c];
+                       legic_prng_forward(1); // forward the lfsr 
+                       c++;
+                       if(c >= ToSendMax) {
+                               break;
+                       }
+               }
+               if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+                       volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
+                       (void)r;
+               }
+               WDT_HIT();
+       }
+       LED_B_OFF();
+}
+
+
+//-----------------------------------------------------------------------------
+// Code a layer 2 command (string of octets, including CRC) into ToSend[],
+// so that it is ready to transmit to the tag using TransmitForLegic().
+//-----------------------------------------------------------------------------
+static void CodeLegicBitsAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits)
+{
+       int i, j;
+       uint8_t b;
+
+       ToSendReset();
+
+       // Send SOF
+       for(i = 0; i < 7; i++)
+               ToSendStuffBit(1);
+
+
+       for(i = 0; i < cmdlen; i++) {
+               // Start bit
+               ToSendStuffBit(0);
+
+               // Data bits
+               b = cmd[i];
+               for(j = 0; j < bits; j++) {
+                       if(b & 1) {
+                               ToSendStuffBit(1);
+                       } else {
+                               ToSendStuffBit(0);
+                       }
+                       b >>= 1;
+               }
+       }
+       
+       // Convert from last character reference to length
+       ++ToSendMax;
+}
+
+/**
+  Convenience function to encode, transmit and trace Legic comms
+  **/
+static void CodeAndTransmitLegicAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits)
+{
+       CodeLegicBitsAsReader(cmd, cmdlen, bits);
+       TransmitForLegic();
+       if (tracing) {
+               uint8_t parity[1] = {0x00};
+               LogTrace(cmd, cmdlen, 0, 0, parity, TRUE);
+       }
+}
+
+int ice_legic_select_card()
+{
+       //int cmd_size=0, card_size=0;
+       uint8_t wakeup[] = { 0x7F };
+       uint8_t getid[] = {0x19};
+
+       //legic_prng_init(SESSION_IV);
+
+       // first, wake up the tag, 7bits
+       CodeAndTransmitLegicAsReader(wakeup, sizeof(wakeup), 7);
+
+       GetSamplesForLegicDemod(1000, TRUE);
+
+       //frame_receiveAsReader(&current_frame, 6, 1);
+
+       legic_prng_forward(1); /* we wait anyways */
+       
+       //while(timer->TC_CV < 387) ; /* ~ 258us */
+       //frame_sendAsReader(0x19, 6);
+       CodeAndTransmitLegicAsReader(getid, sizeof(getid), 8);
+       GetSamplesForLegicDemod(1000, TRUE);
+
+       //if (Demod.len < 14) return 2; 
+       Dbprintf("CARD TYPE: %02x  LEN: %d", Demod.output[0], Demod.len);
+
+       switch(Demod.output[0]) {
+               case 0x1d:
+                       DbpString("MIM 256 card found");
+            // cmd_size = 9;
+                       // card_size = 256;
+                       break;
+               case 0x3d:
+                       DbpString("MIM 1024 card found");
+            // cmd_size = 11;
+                       // card_size = 1024;
+                       break;
+               default:
+                       return -1;
+       }
+       
+       // if(bytes == -1)
+               // bytes = card_size;
+
+       // if(bytes + offset >= card_size)
+               // bytes = card_size - offset;  
+       
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+       set_tracing(FALSE);
+       return 1;
+}
+
+// Set up LEGIC communication
+void ice_legic_setup() {
+
+       // standard things.
+       FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+       BigBuf_free(); BigBuf_Clear_ext(false);
+       clear_trace();
+       set_tracing(TRUE);
+       DemodReset();
+       UartReset();
+       
+       // Set up the synchronous serial port
+       FpgaSetupSsc();
+
+       // connect Demodulated Signal to ADC:
+       SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+
+       // Signal field is on with the appropriate LED
+    LED_D_ON();
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
+       SpinDelay(20);
+       // Start the timer
+       //StartCountSspClk();
+       
+       // initalize CRC 
+       crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0);
+
+       // initalize prng
+       legic_prng_init(0);
+}
\ No newline at end of file
Impressum, Datenschutz