]> cvs.zerfleddert.de Git - proxmark3-svn/blobdiff - armsrc/iso14443a.c
FIX: LF TI WRITE inparameters didn't get copied by sscanf. This removes the "PRIu64...
[proxmark3-svn] / armsrc / iso14443a.c
index cf55e6068c9b65d01d06efd583ae76bede2296f6..b1639a88c0568693e40e5f904b343885e777562a 100644 (file)
@@ -22,9 +22,7 @@
 #include "mifareutil.h"
 
 static uint32_t iso14a_timeout;
 #include "mifareutil.h"
 
 static uint32_t iso14a_timeout;
-uint8_t *trace = (uint8_t *) BigBuf+TRACE_OFFSET;
 int rsamples = 0;
 int rsamples = 0;
-int traceLen = 0;
 int tracing = TRUE;
 uint8_t trigger = 0;
 // the block number for the ISO14443-4 PCB
 int tracing = TRUE;
 uint8_t trigger = 0;
 // the block number for the ISO14443-4 PCB
@@ -149,7 +147,9 @@ void iso14a_set_trigger(bool enable) {
 }
 
 void iso14a_clear_trace() {
 }
 
 void iso14a_clear_trace() {
-       memset(trace, 0x44, TRACE_SIZE);
+       uint8_t *trace = BigBuf_get_addr();
+       uint16_t max_traceLen = BigBuf_max_traceLen();
+       memset(trace, 0x44, max_traceLen);
        traceLen = 0;
 }
 
        traceLen = 0;
 }
 
@@ -204,11 +204,13 @@ bool RAMFUNC LogTrace(const uint8_t *btBytes, uint16_t iLen, uint32_t timestamp_
 {
        if (!tracing) return FALSE;
        
 {
        if (!tracing) return FALSE;
        
+       uint8_t *trace = BigBuf_get_addr();
        uint16_t num_paritybytes = (iLen-1)/8 + 1;      // number of valid paritybytes in *parity
        uint16_t duration = timestamp_end - timestamp_start;
 
        // Return when trace is full
        uint16_t num_paritybytes = (iLen-1)/8 + 1;      // number of valid paritybytes in *parity
        uint16_t duration = timestamp_end - timestamp_start;
 
        // Return when trace is full
-       if (traceLen + sizeof(iLen) + sizeof(timestamp_start) + sizeof(duration) + num_paritybytes + iLen >= TRACE_SIZE) {
+       uint16_t max_traceLen = BigBuf_max_traceLen();
+       if (traceLen + sizeof(iLen) + sizeof(timestamp_start) + sizeof(duration) + num_paritybytes + iLen >= max_traceLen) {
                tracing = FALSE;        // don't trace any more
                return FALSE;
        }
                tracing = FALSE;        // don't trace any more
                return FALSE;
        }
@@ -591,9 +593,6 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
        // bit 1 - trigger from first reader 7-bit request
        
        LEDsoff();
        // bit 1 - trigger from first reader 7-bit request
        
        LEDsoff();
-       // init trace buffer
-       iso14a_clear_trace();
-       iso14a_set_tracing(TRUE);
 
        // We won't start recording the frames that we acquire until we trigger;
        // a good trigger condition to get started is probably when we see a
 
        // We won't start recording the frames that we acquire until we trigger;
        // a good trigger condition to get started is probably when we see a
@@ -601,22 +600,25 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
        // triggered == FALSE -- to wait first for card
        bool triggered = !(param & 0x03); 
        
        // triggered == FALSE -- to wait first for card
        bool triggered = !(param & 0x03); 
        
+       // Allocate memory from BigBuf for some buffers
+       // free all previous allocations first
+       BigBuf_free();
+
        // The command (reader -> tag) that we're receiving.
        // The command (reader -> tag) that we're receiving.
-       // The length of a received command will in most cases be no more than 18 bytes.
-       // So 32 should be enough!
-       uint8_t *receivedCmd = ((uint8_t *)BigBuf) + RECV_CMD_OFFSET;
-       uint8_t *receivedCmdPar = ((uint8_t *)BigBuf) + RECV_CMD_PAR_OFFSET;
+       uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
+       uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
        
        // The response (tag -> reader) that we're receiving.
        
        // The response (tag -> reader) that we're receiving.
-       uint8_t *receivedResponse = ((uint8_t *)BigBuf) + RECV_RESP_OFFSET;
-       uint8_t *receivedResponsePar = ((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET;
-       
-       // As we receive stuff, we copy it from receivedCmd or receivedResponse
-       // into trace, along with its length and other annotations.
-       //uint8_t *trace = (uint8_t *)BigBuf;
+       uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE);
+       uint8_t *receivedResponsePar = BigBuf_malloc(MAX_PARITY_SIZE);
        
        // The DMA buffer, used to stream samples from the FPGA
        
        // The DMA buffer, used to stream samples from the FPGA
-       uint8_t *dmaBuf = ((uint8_t *)BigBuf) + DMA_BUFFER_OFFSET;
+       uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
+
+       // init trace buffer
+       iso14a_clear_trace();
+       iso14a_set_tracing(TRUE);
+
        uint8_t *data = dmaBuf;
        uint8_t previous_data = 0;
        int maxDataLen = 0;
        uint8_t *data = dmaBuf;
        uint8_t previous_data = 0;
        int maxDataLen = 0;
@@ -656,7 +658,7 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
                // test for length of buffer
                if(dataLen > maxDataLen) {
                        maxDataLen = dataLen;
                // test for length of buffer
                if(dataLen > maxDataLen) {
                        maxDataLen = dataLen;
-                       if(dataLen > 400) {
+                       if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
                                Dbprintf("blew circular buffer! dataLen=%d", dataLen);
                                break;
                        }
                                Dbprintf("blew circular buffer! dataLen=%d", dataLen);
                                break;
                        }
@@ -885,7 +887,7 @@ int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par);
 bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
                                 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity);
 
 bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
                                 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity);
 
-static uint8_t* free_buffer_pointer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
+static uint8_t* free_buffer_pointer;
 
 typedef struct {
   uint8_t* response;
 
 typedef struct {
   uint8_t* response;
@@ -895,10 +897,6 @@ typedef struct {
   uint32_t ProxToAirDuration;
 } tag_response_info_t;
 
   uint32_t ProxToAirDuration;
 } tag_response_info_t;
 
-void reset_free_buffer() {
-  free_buffer_pointer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
-}
-
 bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) {
        // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
        // This will need the following byte array for a modulation sequence
 bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) {
        // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
        // This will need the following byte array for a modulation sequence
@@ -910,7 +908,8 @@ bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffe
        // ----------- +
        //    166 bytes, since every bit that needs to be send costs us a byte
        //
        // ----------- +
        //    166 bytes, since every bit that needs to be send costs us a byte
        //
-  
   // Prepare the tag modulation bits from the message
   CodeIso14443aAsTag(response_info->response,response_info->response_n);
   
   // Prepare the tag modulation bits from the message
   CodeIso14443aAsTag(response_info->response,response_info->response_n);
   
@@ -931,15 +930,22 @@ bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffe
   return true;
 }
 
   return true;
 }
 
+
+// "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit.
+// Coded responses need one byte per bit to transfer (data, parity, start, stop, correction) 
+// 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits
+// -> need 273 bytes buffer
+#define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 273
+
 bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
   // Retrieve and store the current buffer index
   response_info->modulation = free_buffer_pointer;
   
   // Determine the maximum size we can use from our buffer
 bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
   // Retrieve and store the current buffer index
   response_info->modulation = free_buffer_pointer;
   
   // Determine the maximum size we can use from our buffer
-  size_t max_buffer_size = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + FREE_BUFFER_SIZE) - free_buffer_pointer;
+  size_t max_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE;
   
   // Forward the prepare tag modulation function to the inner function
   
   // Forward the prepare tag modulation function to the inner function
-  if (prepare_tag_modulation(response_info,max_buffer_size)) {
+  if (prepare_tag_modulation(response_info, max_buffer_size)) {
     // Update the free buffer offset
     free_buffer_pointer += ToSendMax;
     return true;
     // Update the free buffer offset
     free_buffer_pointer += ToSendMax;
     return true;
@@ -954,10 +960,6 @@ bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
 //-----------------------------------------------------------------------------
 void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 {
 //-----------------------------------------------------------------------------
 void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 {
-       // Enable and clear the trace
-       iso14a_clear_trace();
-       iso14a_set_tracing(TRUE);
-
        uint8_t sak;
 
        // The first response contains the ATQA (note: bytes are transmitted in reverse order).
        uint8_t sak;
 
        // The first response contains the ATQA (note: bytes are transmitted in reverse order).
@@ -1001,10 +1003,11 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
        }
        
        // The second response contains the (mandatory) first 24 bits of the UID
        }
        
        // The second response contains the (mandatory) first 24 bits of the UID
-       uint8_t response2[5];
+       uint8_t response2[5] = {0x00};
 
        // Check if the uid uses the (optional) part
 
        // Check if the uid uses the (optional) part
-       uint8_t response2a[5];
+       uint8_t response2a[5] = {0x00};
+       
        if (uid_2nd) {
                response2[0] = 0x88;
                num_to_bytes(uid_1st,3,response2+1);
        if (uid_2nd) {
                response2[0] = 0x88;
                num_to_bytes(uid_1st,3,response2+1);
@@ -1025,12 +1028,12 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
        response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3];
 
        // Prepare the mandatory SAK (for 4 and 7 byte UID)
        response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3];
 
        // Prepare the mandatory SAK (for 4 and 7 byte UID)
-       uint8_t response3[3];
+       uint8_t response3[3]  = {0x00};
        response3[0] = sak;
        ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
 
        // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
        response3[0] = sak;
        ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
 
        // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
-       uint8_t response3a[3];
+       uint8_t response3a[3]  = {0x00};
        response3a[0] = sak & 0xFB;
        ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
 
        response3a[0] = sak & 0xFB;
        ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
 
@@ -1066,9 +1069,17 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
                .modulation_n = 0
        };
   
                .modulation_n = 0
        };
   
-       // Reset the offset pointer of the free buffer
-       reset_free_buffer();
-  
+       BigBuf_free_keep_EM();
+
+       // allocate buffers:
+       uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
+       uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
+       free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE);
+
+       // clear trace
+    iso14a_clear_trace();
+       iso14a_set_tracing(TRUE);
+
        // Prepare the responses of the anticollision phase
        // there will be not enough time to do this at the moment the reader sends it REQA
        for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) {
        // Prepare the responses of the anticollision phase
        // there will be not enough time to do this at the moment the reader sends it REQA
        for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) {
@@ -1089,10 +1100,6 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
        // We need to listen to the high-frequency, peak-detected path.
        iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
 
        // We need to listen to the high-frequency, peak-detected path.
        iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
 
-       // buffers used on software Uart:
-       uint8_t *receivedCmd = ((uint8_t *)BigBuf) + RECV_CMD_OFFSET;
-       uint8_t *receivedCmdPar = ((uint8_t *)BigBuf) + RECV_CMD_PAR_OFFSET;
-
        cmdsRecvd = 0;
        tag_response_info_t* p_response;
 
        cmdsRecvd = 0;
        tag_response_info_t* p_response;
 
@@ -1253,6 +1260,7 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 
        Dbprintf("%x %x %x", happened, happened2, cmdsRecvd);
        LED_A_OFF();
 
        Dbprintf("%x %x %x", happened, happened2, cmdsRecvd);
        LED_A_OFF();
+       BigBuf_free_keep_EM();
 }
 
 
 }
 
 
@@ -1726,8 +1734,8 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u
        uint8_t sel_all[]    = { 0x93,0x20 };
        uint8_t sel_uid[]    = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
        uint8_t rats[]       = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
        uint8_t sel_all[]    = { 0x93,0x20 };
        uint8_t sel_uid[]    = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
        uint8_t rats[]       = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
-       uint8_t *resp = ((uint8_t *)BigBuf) + RECV_RESP_OFFSET;
-       uint8_t *resp_par = ((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET;
+       uint8_t resp[MAX_FRAME_SIZE]; // theoretically. A usual RATS will be much smaller
+       uint8_t resp_par[MAX_PARITY_SIZE];
        byte_t uid_resp[4];
        size_t uid_resp_len;
 
        byte_t uid_resp[4];
        size_t uid_resp_len;
 
@@ -1772,7 +1780,7 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u
                                Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
                                for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) {      // add valid UID bits before collision point
                                        uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
                                Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
                                for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) {      // add valid UID bits before collision point
                                        uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
-                                       uid_resp[uid_resp_bits & 0xf8] |= UIDbit << (uid_resp_bits % 8);
+                                       uid_resp[uid_resp_bits 8] |= UIDbit << (uid_resp_bits % 8);
                                }
                                uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8);                                  // next time select the card(s) with a 1 in the collision position
                                uid_resp_bits++;
                                }
                                uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8);                                  // next time select the card(s) with a 1 in the collision position
                                uid_resp_bits++;
@@ -2019,9 +2027,12 @@ void ReaderMifare(bool first_try)
        uint8_t mf_nr_ar[]   = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
        static uint8_t mf_nr_ar3;
 
        uint8_t mf_nr_ar[]   = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
        static uint8_t mf_nr_ar3;
 
-       uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + RECV_RESP_OFFSET);
-       uint8_t* receivedAnswerPar = (((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET);
+       uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
+       uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
 
 
+       // free eventually allocated BigBuf memory. We want all for tracing.
+       BigBuf_free();
+       
        iso14a_clear_trace();
        iso14a_set_tracing(TRUE);
 
        iso14a_clear_trace();
        iso14a_set_tracing(TRUE);
 
@@ -2231,10 +2242,10 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
        struct Crypto1State *pcs;
        pcs = &mpcs;
        uint32_t numReads = 0;//Counts numer of times reader read a block
        struct Crypto1State *pcs;
        pcs = &mpcs;
        uint32_t numReads = 0;//Counts numer of times reader read a block
-       uint8_t* receivedCmd = get_bigbufptr_recvcmdbuf();
-       uint8_t* receivedCmd_par = receivedCmd + MAX_FRAME_SIZE;
-       uint8_t* response = get_bigbufptr_recvrespbuf();
-       uint8_t* response_par = response + MAX_FRAME_SIZE;
+       uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
+       uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE];
+       uint8_t response[MAX_MIFARE_FRAME_SIZE];
+       uint8_t response_par[MAX_MIFARE_PARITY_SIZE];
        
        uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
        uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
        
        uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
        uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
@@ -2251,6 +2262,8 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
        uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0};
        uint8_t ar_nr_collected = 0;
 
        uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0};
        uint8_t ar_nr_collected = 0;
 
+       // free eventually allocated BigBuf memory but keep Emulator Memory
+       BigBuf_free_keep_EM();
        // clear trace
     iso14a_clear_trace();
        iso14a_set_tracing(TRUE);
        // clear trace
     iso14a_clear_trace();
        iso14a_set_tracing(TRUE);
@@ -2721,18 +2734,20 @@ void RAMFUNC SniffMifare(uint8_t param) {
        // The command (reader -> tag) that we're receiving.
        // The length of a received command will in most cases be no more than 18 bytes.
        // So 32 should be enough!
        // The command (reader -> tag) that we're receiving.
        // The length of a received command will in most cases be no more than 18 bytes.
        // So 32 should be enough!
-       uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
-       uint8_t *receivedCmdPar = ((uint8_t *)BigBuf) + RECV_CMD_PAR_OFFSET;
+       uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
+       uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE];
        // The response (tag -> reader) that we're receiving.
        // The response (tag -> reader) that we're receiving.
-       uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RESP_OFFSET);
-       uint8_t *receivedResponsePar = ((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET;
+       uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE];
+       uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE];
 
        // As we receive stuff, we copy it from receivedCmd or receivedResponse
        // into trace, along with its length and other annotations.
        //uint8_t *trace = (uint8_t *)BigBuf;
        
 
        // As we receive stuff, we copy it from receivedCmd or receivedResponse
        // into trace, along with its length and other annotations.
        //uint8_t *trace = (uint8_t *)BigBuf;
        
-       // The DMA buffer, used to stream samples from the FPGA
-       uint8_t *dmaBuf = ((uint8_t *)BigBuf) + DMA_BUFFER_OFFSET;
+       // free eventually allocated BigBuf memory
+       BigBuf_free();
+       // allocate the DMA buffer, used to stream samples from the FPGA
+       uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
        uint8_t *data = dmaBuf;
        uint8_t previous_data = 0;
        int maxDataLen = 0;
        uint8_t *data = dmaBuf;
        uint8_t previous_data = 0;
        int maxDataLen = 0;
@@ -2791,7 +2806,7 @@ void RAMFUNC SniffMifare(uint8_t param) {
                // test for length of buffer
                if(dataLen > maxDataLen) {                                      // we are more behind than ever...
                        maxDataLen = dataLen;                                   
                // test for length of buffer
                if(dataLen > maxDataLen) {                                      // we are more behind than ever...
                        maxDataLen = dataLen;                                   
-                       if(dataLen > 400) {
+                       if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
                                Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
                                break;
                        }
                                Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
                                break;
                        }
Impressum, Datenschutz