]> cvs.zerfleddert.de Git - proxmark3-svn/blobdiff - client/ui.c
First check in.
[proxmark3-svn] / client / ui.c
index 5fe58dc2d039e82d5ed3415e4900b6ae59274841..6486d5243fa9c35d5e0df306acdec7255de7f141 100644 (file)
@@ -21,7 +21,7 @@
 double CursorScaleFactor;
 int PlotGridX, PlotGridY, PlotGridXdefault= 64, PlotGridYdefault= 64;
 int offline;
-
+int flushAfterWrite = 0;  //buzzy
 extern pthread_mutex_t print_lock;
 
 static char *logfilename = "proxmark3.log";
@@ -77,6 +77,10 @@ void PrintAndLog(char *fmt, ...)
        }
        va_end(argptr2);
 
+       if (flushAfterWrite == 1)  //buzzy
+       {
+               fflush(NULL);
+       }
        //release lock
        pthread_mutex_unlock(&print_lock);  
 }
@@ -86,3 +90,195 @@ void SetLogFilename(char *fn)
 {
   logfilename = fn;
 }
+
+
+uint8_t manchester_decode(const uint8_t * data, const size_t len, uint8_t * dataout){
+       
+       size_t bytelength = len;
+       
+       uint8_t bitStream[bytelength];
+       memset(bitStream, 0x00, bytelength);
+       
+       int clock,high, low, bit, hithigh, hitlow, first, bit2idx, lastpeak;
+       int i,invert, lastval;
+       int bitidx = 0;
+       int lc = 0;
+       int warnings = 0;
+       high = 1;
+       low =  bit = bit2idx = lastpeak = invert = lastval = hithigh = hitlow = first = 0;
+       clock = 0xFFFF;
+
+       /* Detect high and lows */
+       for (i = 0; i < bytelength; i++) {
+               if (data[i] > high)
+                       high = data[i];
+               else if (data[i] < low)
+                       low = data[i];
+       }
+       
+       /* get clock */
+       int j=0;
+       for (i = 1; i < bytelength; i++) {
+               /* if this is the beginning of a peak */
+               j = i-1;
+               if ( data[j] != data[i] && 
+                    data[i] == high)
+               {
+                 /* find lowest difference between peaks */
+                       if (lastpeak && i - lastpeak < clock)
+                               clock = i - lastpeak;
+                       lastpeak = i;
+               }
+       }
+    
+       int tolerance = clock/4;
+       PrintAndLog(" Detected clock: %d",clock);
+
+       /* Detect first transition */
+         /* Lo-Hi (arbitrary)       */
+         /* skip to the first high */
+         for (i= 0; i < bytelength; i++)
+               if (data[i] == high)
+                 break;
+                 
+         /* now look for the first low */
+         for (; i < bytelength; i++) {
+               if (data[i] == low) {
+                       lastval = i;
+                       break;
+               }
+         }
+         
+       /* If we're not working with 1/0s, demod based off clock */
+       if (high != 1)
+       {
+               bit = 0; /* We assume the 1st bit is zero, it may not be
+                         * the case: this routine (I think) has an init problem.
+                         * Ed.
+                         */
+               for (; i < (int)(bytelength / clock); i++)
+               {
+               hithigh = 0;
+               hitlow = 0;
+               first = 1;
+
+               /* Find out if we hit both high and low peaks */
+               for (j = 0; j < clock; j++)
+               {
+                       if (data[(i * clock) + j] == high)
+                               hithigh = 1;
+                       else if (data[(i * clock) + j] == low)
+                               hitlow = 1;
+
+                       /* it doesn't count if it's the first part of our read
+                          because it's really just trailing from the last sequence */
+                       if (first && (hithigh || hitlow))
+                         hithigh = hitlow = 0;
+                       else
+                         first = 0;
+
+                       if (hithigh && hitlow)
+                         break;
+                 }
+
+                 /* If we didn't hit both high and low peaks, we had a bit transition */
+                 if (!hithigh || !hitlow)
+                       bit ^= 1;
+
+                 bitStream[bit2idx++] = bit ^ invert;
+               }
+       }
+       /* standard 1/0 bitstream */
+  else {
+               /* Then detect duration between 2 successive transitions */
+               for (bitidx = 1; i < bytelength; i++) {
+               
+                       if (data[i-1] != data[i]) {
+                               lc = i-lastval;
+                               lastval = i;
+
+                               // Error check: if bitidx becomes too large, we do not
+                               // have a Manchester encoded bitstream or the clock is really
+                               // wrong!
+                               if (bitidx > (bytelength*2/clock+8) ) {
+                                       PrintAndLog("Error: the clock you gave is probably wrong, aborting.");
+                                       return 0;
+                               }
+                               // Then switch depending on lc length:
+                               // Tolerance is 1/4 of clock rate (arbitrary)
+                               if (abs(lc-clock/2) < tolerance) {
+                                       // Short pulse : either "1" or "0"
+                                       bitStream[bitidx++] = data[i-1];
+                               } else if (abs(lc-clock) < tolerance) {
+                                       // Long pulse: either "11" or "00"
+                                       bitStream[bitidx++] = data[i-1];
+                                       bitStream[bitidx++] = data[i-1];
+                               } else {
+                                       // Error
+                                       warnings++;
+                                       PrintAndLog("Warning: Manchester decode error for pulse width detection.");
+                                       if (warnings > 10) {
+                                               PrintAndLog("Error: too many detection errors, aborting.");
+                                               return 0;
+                                       }
+                               }
+                       }
+               }
+       }
+       // At this stage, we now have a bitstream of "01" ("1") or "10" ("0"), parse it into final decoded bitstream
+    // Actually, we overwrite BitStream with the new decoded bitstream, we just need to be careful
+    // to stop output at the final bitidx2 value, not bitidx
+    for (i = 0; i < bitidx; i += 2) {
+               if ((bitStream[i] == 0) && (bitStream[i+1] == 1)) {
+                       bitStream[bit2idx++] = 1 ^ invert;
+               } 
+               else if ((bitStream[i] == 1) && (bitStream[i+1] == 0)) {
+                       bitStream[bit2idx++] = 0 ^ invert;
+               } 
+               else {
+                       // We cannot end up in this state, this means we are unsynchronized,
+                       // move up 1 bit:
+                       i++;
+                       warnings++;
+                       PrintAndLog("Unsynchronized, resync...");
+                       if (warnings > 10) {
+                               PrintAndLog("Error: too many decode errors, aborting.");
+                               return 0;
+                       }
+               }
+    }
+
+         // PrintAndLog(" Manchester decoded bitstream : %d bits", (bit2idx-16));
+         // uint8_t mod = (bit2idx-16) % blocksize;
+         // uint8_t div = (bit2idx-16) / blocksize;
+         
+         // // Now output the bitstream to the scrollback by line of 16 bits
+         // for (i = 0; i < div*blocksize; i+=blocksize) {
+               // PrintAndLog(" %s", sprint_bin(bitStream+i,blocksize) );
+         // }
+         // if ( mod > 0 ){
+               // PrintAndLog(" %s", sprint_bin(bitStream+i, mod) );
+         // }
+       
+       if ( bit2idx > 0 )
+               memcpy(dataout, bitStream, bit2idx);
+       
+       free(bitStream);
+       return bit2idx;
+}
+
+void PrintPaddedManchester( uint8_t* bitStream, size_t len, size_t blocksize){
+
+         PrintAndLog(" Manchester decoded bitstream : %d bits", len);
+         
+         uint8_t mod = len % blocksize;
+         uint8_t div = len / blocksize;
+         int i;
+         // Now output the bitstream to the scrollback by line of 16 bits
+         for (i = 0; i < div*blocksize; i+=blocksize) {
+               PrintAndLog(" %s", sprint_bin(bitStream+i,blocksize) );
+         }
+         if ( mod > 0 ){
+               PrintAndLog(" %s", sprint_bin(bitStream+i, mod) );
+         }
+}
Impressum, Datenschutz