#define arraylen(x) (sizeof(x)/sizeof((x)[0]))
+// Delays in SSP_CLK ticks.
+// SSP_CLK runs at 13,56MHz / 32 = 423.75kHz when simulating a tag
+#define DELAY_READER_TO_ARM 8
+#define DELAY_ARM_TO_READER 0
+//SSP_CLK runs at 13.56MHz / 4 = 3,39MHz when acting as reader. All values should be multiples of 16
+#define DELAY_TAG_TO_ARM 32
+#define DELAY_ARM_TO_TAG 16
+
static int DEBUG = 0;
+
+// specific LogTrace function for ISO15693: the duration needs to be scaled because otherwise it won't fit into a uint16_t
+bool LogTrace_ISO15693(const uint8_t *btBytes, uint16_t iLen, uint32_t timestamp_start, uint32_t timestamp_end, uint8_t *parity, bool readerToTag) {
+ uint32_t duration = timestamp_end - timestamp_start;
+ duration /= 32;
+ timestamp_end = timestamp_start + duration;
+ return LogTrace(btBytes, iLen, timestamp_start, timestamp_end, parity, readerToTag);
+}
+
+
///////////////////////////////////////////////////////////////////////
// ISO 15693 Part 2 - Air Interface
// This section basically contains transmission and receiving of bits
// resulting data rate is 26.48 kbit/s (fc/512)
// cmd ... data
// n ... length of data
-static void CodeIso15693AsReader(uint8_t *cmd, int n)
-{
- int i, j;
+void CodeIso15693AsReader(uint8_t *cmd, int n) {
ToSendReset();
- // Give it a bit of slack at the beginning
- for(i = 0; i < 24; i++) {
- ToSendStuffBit(1);
- }
-
// SOF for 1of4
- ToSendStuffBit(0);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(0);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- for(i = 0; i < n; i++) {
- for(j = 0; j < 8; j += 2) {
- int these = (cmd[i] >> j) & 3;
+ ToSend[++ToSendMax] = 0x84; //10000100
+
+ // data
+ for (int i = 0; i < n; i++) {
+ for (int j = 0; j < 8; j += 2) {
+ int these = (cmd[i] >> j) & 0x03;
switch(these) {
case 0:
- ToSendStuffBit(1);
- ToSendStuffBit(0);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
+ ToSend[++ToSendMax] = 0x40; //01000000
break;
case 1:
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(0);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
+ ToSend[++ToSendMax] = 0x10; //00010000
break;
case 2:
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(0);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
+ ToSend[++ToSendMax] = 0x04; //00000100
break;
case 3:
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(0);
+ ToSend[++ToSendMax] = 0x01; //00000001
break;
}
}
}
- // EOF
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(0);
- ToSendStuffBit(1);
-
- // Fill remainder of last byte with 1
- for(i = 0; i < 4; i++) {
- ToSendStuffBit(1);
- }
+ // EOF
+ ToSend[++ToSendMax] = 0x20; //0010 + 0000 padding
+
ToSendMax++;
}
// is designed for more robust communication over longer distances
static void CodeIso15693AsReader256(uint8_t *cmd, int n)
{
- int i, j;
-
ToSendReset();
- // Give it a bit of slack at the beginning
- for(i = 0; i < 24; i++) {
- ToSendStuffBit(1);
- }
-
// SOF for 1of256
- ToSendStuffBit(0);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(0);
-
- for(i = 0; i < n; i++) {
- for (j = 0; j<=255; j++) {
- if (cmd[i]==j) {
- ToSendStuffBit(1);
+ ToSend[++ToSendMax] = 0x81; //10000001
+
+ // data
+ for(int i = 0; i < n; i++) {
+ for (int j = 0; j <= 255; j++) {
+ if (cmd[i] == j) {
ToSendStuffBit(0);
- } else {
- ToSendStuffBit(1);
ToSendStuffBit(1);
+ } else {
+ ToSendStuffBit(0);
+ ToSendStuffBit(0);
}
}
}
+
// EOF
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(0);
- ToSendStuffBit(1);
-
- // Fill remainder of last byte with 1
- for(i = 0; i < 4; i++) {
- ToSendStuffBit(1);
- }
+ ToSend[++ToSendMax] = 0x20; //0010 + 0000 padding
ToSendMax++;
}
// Transmit the command (to the tag) that was placed in cmd[].
-static void TransmitTo15693Tag(const uint8_t *cmd, int len, uint32_t start_time)
-{
+void TransmitTo15693Tag(const uint8_t *cmd, int len, uint32_t *start_time) {
+
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_MODE_SEND_FULL_MOD);
- FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
+
+ *start_time = (*start_time - DELAY_ARM_TO_TAG) & 0xfffffff0;
+
+ while (GetCountSspClk() > *start_time) { // we may miss the intended time
+ *start_time += 16; // next possible time
+ }
- while (GetCountSspClk() < start_time) ;
+
+ while (GetCountSspClk() < *start_time)
+ /* wait */ ;
LED_B_ON();
- for(int c = 0; c < len; c++) {
+ for (int c = 0; c < len; c++) {
uint8_t data = cmd[c];
for (int i = 0; i < 8; i++) {
- uint16_t send_word = (data & 0x80) ? 0x0000 : 0xffff;
+ uint16_t send_word = (data & 0x80) ? 0xffff : 0x0000;
while (!(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))) ;
AT91C_BASE_SSC->SSC_THR = send_word;
while (!(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))) ;
AT91C_BASE_SSC->SSC_THR = send_word;
+
data <<= 1;
}
WDT_HIT();
}
LED_B_OFF();
+
+ *start_time = *start_time + DELAY_ARM_TO_TAG;
+
}
// don't use the FPGA_HF_SIMULATOR_MODULATE_424K_8BIT minor mode. It would spoil GetCountSspClk()
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_424K);
- uint32_t modulation_start_time = *start_time + 3 * 8; // no need to transfer the unmodulated start of SOF
+ uint32_t modulation_start_time = *start_time - DELAY_ARM_TO_READER + 3 * 8; // no need to transfer the unmodulated start of SOF
while (GetCountSspClk() > (modulation_start_time & 0xfffffff8) + 3) { // we will miss the intended time
if (slot_time) {
uint8_t shift_delay = modulation_start_time & 0x00000007;
- *start_time = modulation_start_time - 3 * 8;
+ *start_time = modulation_start_time + DELAY_ARM_TO_READER - 3 * 8;
LED_C_ON();
uint8_t bits_to_shift = 0x00;
// false if we are still waiting for some more
//=============================================================================
-#define NOISE_THRESHOLD 160 // don't try to correlate noise
+#define NOISE_THRESHOLD 160 // don't try to correlate noise
+#define MAX_PREVIOUS_AMPLITUDE (-1 - NOISE_THRESHOLD)
typedef struct DecodeTag {
enum {
STATE_TAG_SOF_LOW,
+ STATE_TAG_SOF_RISING_EDGE,
STATE_TAG_SOF_HIGH,
STATE_TAG_SOF_HIGH_END,
STATE_TAG_RECEIVING_DATA,
- STATE_TAG_EOF
+ STATE_TAG_EOF,
+ STATE_TAG_EOF_TAIL
} state;
int bitCount;
int posCount;
uint8_t *output;
int len;
int sum1, sum2;
+ int threshold_sof;
+ int threshold_half;
+ uint16_t previous_amplitude;
} DecodeTag_t;
{
switch(DecodeTag->state) {
case STATE_TAG_SOF_LOW:
- // waiting for 12 times low (11 times low is accepted as well)
- if (amplitude < NOISE_THRESHOLD) {
- DecodeTag->posCount++;
- } else {
+ // waiting for a rising edge
+ if (amplitude > NOISE_THRESHOLD + DecodeTag->previous_amplitude) {
if (DecodeTag->posCount > 10) {
- DecodeTag->posCount = 1;
- DecodeTag->sum1 = 0;
- DecodeTag->state = STATE_TAG_SOF_HIGH;
+ DecodeTag->threshold_sof = amplitude - DecodeTag->previous_amplitude;
+ DecodeTag->threshold_half = 0;
+ DecodeTag->state = STATE_TAG_SOF_RISING_EDGE;
} else {
DecodeTag->posCount = 0;
}
+ } else {
+ DecodeTag->posCount++;
+ DecodeTag->previous_amplitude = amplitude;
}
break;
+ case STATE_TAG_SOF_RISING_EDGE:
+ if (amplitude - DecodeTag->previous_amplitude > DecodeTag->threshold_sof) { // edge still rising
+ if (amplitude - DecodeTag->threshold_sof > DecodeTag->threshold_sof) { // steeper edge, take this as time reference
+ DecodeTag->posCount = 1;
+ } else {
+ DecodeTag->posCount = 2;
+ }
+ DecodeTag->threshold_sof = (amplitude - DecodeTag->previous_amplitude) / 2;
+ } else {
+ DecodeTag->posCount = 2;
+ DecodeTag->threshold_sof = DecodeTag->threshold_sof/2;
+ }
+ // DecodeTag->posCount = 2;
+ DecodeTag->state = STATE_TAG_SOF_HIGH;
+ break;
+
case STATE_TAG_SOF_HIGH:
// waiting for 10 times high. Take average over the last 8
- if (amplitude > NOISE_THRESHOLD) {
+ if (amplitude > DecodeTag->threshold_sof) {
DecodeTag->posCount++;
if (DecodeTag->posCount > 2) {
- DecodeTag->sum1 += amplitude; // keep track of average high value
+ DecodeTag->threshold_half += amplitude; // keep track of average high value
}
if (DecodeTag->posCount == 10) {
- DecodeTag->sum1 >>= 4; // calculate half of average high value (8 samples)
+ DecodeTag->threshold_half >>= 2; // (4 times 1/2 average)
DecodeTag->state = STATE_TAG_SOF_HIGH_END;
}
} else { // high phase was too short
DecodeTag->posCount = 1;
+ DecodeTag->previous_amplitude = MAX_PREVIOUS_AMPLITUDE;
DecodeTag->state = STATE_TAG_SOF_LOW;
}
break;
case STATE_TAG_SOF_HIGH_END:
- // waiting for a falling edge
- if (amplitude < DecodeTag->sum1) { // signal drops below 50% average high: a falling edge
+ // check for falling edge
+ if (DecodeTag->posCount == 13 && amplitude < DecodeTag->threshold_sof) {
DecodeTag->lastBit = SOF_PART1; // detected 1st part of SOF (12 samples low and 12 samples high)
DecodeTag->shiftReg = 0;
DecodeTag->bitCount = 0;
DecodeTag->sum2 = 0;
DecodeTag->posCount = 2;
DecodeTag->state = STATE_TAG_RECEIVING_DATA;
+ // FpgaDisableTracing(); // DEBUGGING
+ // Dbprintf("amplitude = %d, threshold_sof = %d, threshold_half/4 = %d, previous_amplitude = %d",
+ // amplitude,
+ // DecodeTag->threshold_sof,
+ // DecodeTag->threshold_half/4,
+ // DecodeTag->previous_amplitude); // DEBUGGING
LED_C_ON();
} else {
DecodeTag->posCount++;
if (DecodeTag->posCount > 13) { // high phase too long
DecodeTag->posCount = 0;
+ DecodeTag->previous_amplitude = MAX_PREVIOUS_AMPLITUDE;
DecodeTag->state = STATE_TAG_SOF_LOW;
LED_C_OFF();
}
DecodeTag->sum2 += amplitude;
}
if (DecodeTag->posCount == 8) {
- int32_t corr_1 = DecodeTag->sum2 - DecodeTag->sum1;
- int32_t corr_0 = -corr_1;
- int32_t corr_EOF = (DecodeTag->sum1 + DecodeTag->sum2) / 2;
- if (corr_EOF > corr_0 && corr_EOF > corr_1) {
+ if (DecodeTag->sum1 > DecodeTag->threshold_half && DecodeTag->sum2 > DecodeTag->threshold_half) { // modulation in both halves
if (DecodeTag->lastBit == LOGIC0) { // this was already part of EOF
DecodeTag->state = STATE_TAG_EOF;
} else {
DecodeTag->posCount = 0;
+ DecodeTag->previous_amplitude = MAX_PREVIOUS_AMPLITUDE;
DecodeTag->state = STATE_TAG_SOF_LOW;
LED_C_OFF();
}
- } else if (corr_1 > corr_0) {
+ } else if (DecodeTag->sum1 < DecodeTag->threshold_half && DecodeTag->sum2 > DecodeTag->threshold_half) { // modulation in second half
// logic 1
if (DecodeTag->lastBit == SOF_PART1) { // still part of SOF
DecodeTag->lastBit = SOF_PART2; // SOF completed
if (DecodeTag->bitCount == 8) {
DecodeTag->output[DecodeTag->len] = DecodeTag->shiftReg;
DecodeTag->len++;
+ // if (DecodeTag->shiftReg == 0x12 && DecodeTag->len == 1) FpgaDisableTracing(); // DEBUGGING
if (DecodeTag->len > DecodeTag->max_len) {
// buffer overflow, give up
- DecodeTag->posCount = 0;
- DecodeTag->state = STATE_TAG_SOF_LOW;
LED_C_OFF();
+ return true;
}
DecodeTag->bitCount = 0;
DecodeTag->shiftReg = 0;
}
}
- } else {
+ } else if (DecodeTag->sum1 > DecodeTag->threshold_half && DecodeTag->sum2 < DecodeTag->threshold_half) { // modulation in first half
// logic 0
if (DecodeTag->lastBit == SOF_PART1) { // incomplete SOF
DecodeTag->posCount = 0;
+ DecodeTag->previous_amplitude = MAX_PREVIOUS_AMPLITUDE;
DecodeTag->state = STATE_TAG_SOF_LOW;
LED_C_OFF();
} else {
if (DecodeTag->bitCount == 8) {
DecodeTag->output[DecodeTag->len] = DecodeTag->shiftReg;
DecodeTag->len++;
+ // if (DecodeTag->shiftReg == 0x12 && DecodeTag->len == 1) FpgaDisableTracing(); // DEBUGGING
if (DecodeTag->len > DecodeTag->max_len) {
// buffer overflow, give up
DecodeTag->posCount = 0;
+ DecodeTag->previous_amplitude = MAX_PREVIOUS_AMPLITUDE;
DecodeTag->state = STATE_TAG_SOF_LOW;
LED_C_OFF();
}
DecodeTag->shiftReg = 0;
}
}
+ } else { // no modulation
+ if (DecodeTag->lastBit == SOF_PART2) { // only SOF (this is OK for iClass)
+ LED_C_OFF();
+ return true;
+ } else {
+ DecodeTag->posCount = 0;
+ DecodeTag->state = STATE_TAG_SOF_LOW;
+ LED_C_OFF();
+ }
}
DecodeTag->posCount = 0;
}
DecodeTag->sum2 += amplitude;
}
if (DecodeTag->posCount == 8) {
- int32_t corr_1 = DecodeTag->sum2 - DecodeTag->sum1;
- int32_t corr_0 = -corr_1;
- int32_t corr_EOF = (DecodeTag->sum1 + DecodeTag->sum2) / 2;
- if (corr_EOF > corr_0 || corr_1 > corr_0) {
+ if (DecodeTag->sum1 > DecodeTag->threshold_half && DecodeTag->sum2 < DecodeTag->threshold_half) { // modulation in first half
DecodeTag->posCount = 0;
+ DecodeTag->state = STATE_TAG_EOF_TAIL;
+ } else {
+ DecodeTag->posCount = 0;
+ DecodeTag->previous_amplitude = MAX_PREVIOUS_AMPLITUDE;
DecodeTag->state = STATE_TAG_SOF_LOW;
LED_C_OFF();
- } else {
+ }
+ }
+ DecodeTag->posCount++;
+ break;
+
+ case STATE_TAG_EOF_TAIL:
+ if (DecodeTag->posCount == 1) {
+ DecodeTag->sum1 = 0;
+ DecodeTag->sum2 = 0;
+ }
+ if (DecodeTag->posCount <= 4) {
+ DecodeTag->sum1 += amplitude;
+ } else {
+ DecodeTag->sum2 += amplitude;
+ }
+ if (DecodeTag->posCount == 8) {
+ if (DecodeTag->sum1 < DecodeTag->threshold_half && DecodeTag->sum2 < DecodeTag->threshold_half) { // no modulation in both halves
LED_C_OFF();
return true;
+ } else {
+ DecodeTag->posCount = 0;
+ DecodeTag->previous_amplitude = MAX_PREVIOUS_AMPLITUDE;
+ DecodeTag->state = STATE_TAG_SOF_LOW;
+ LED_C_OFF();
}
}
DecodeTag->posCount++;
break;
-
}
return false;
static void DecodeTagInit(DecodeTag_t *DecodeTag, uint8_t *data, uint16_t max_len)
{
+ DecodeTag->previous_amplitude = MAX_PREVIOUS_AMPLITUDE;
DecodeTag->posCount = 0;
DecodeTag->state = STATE_TAG_SOF_LOW;
DecodeTag->output = data;
{
DecodeTag->posCount = 0;
DecodeTag->state = STATE_TAG_SOF_LOW;
+ DecodeTag->previous_amplitude = MAX_PREVIOUS_AMPLITUDE;
}
/*
* Receive and decode the tag response, also log to tracebuffer
*/
-static int GetIso15693AnswerFromTag(uint8_t* response, uint16_t max_len, int timeout)
-{
+int GetIso15693AnswerFromTag(uint8_t* response, uint16_t max_len, uint16_t timeout, uint32_t *eof_time) {
+
int samples = 0;
- bool gotFrame = false;
+ int ret = 0;
- uint16_t *dmaBuf = (uint16_t*)BigBuf_malloc(ISO15693_DMA_BUFFER_SIZE*sizeof(uint16_t));
+ uint16_t dmaBuf[ISO15693_DMA_BUFFER_SIZE];
// the Decoder data structure
DecodeTag_t DecodeTag = { 0 };
// Setup and start DMA.
FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE);
+ uint32_t dma_start_time = 0;
uint16_t *upTo = dmaBuf;
for(;;) {
if (behindBy == 0) continue;
+ samples++;
+ if (samples == 1) {
+ // DMA has transferred the very first data
+ dma_start_time = GetCountSspClk() & 0xfffffff0;
+ }
+
uint16_t tagdata = *upTo++;
if(upTo >= dmaBuf + ISO15693_DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content.
upTo = dmaBuf; // start reading the circular buffer from the beginning
if(behindBy > (9*ISO15693_DMA_BUFFER_SIZE/10)) {
Dbprintf("About to blow circular buffer - aborted! behindBy=%d", behindBy);
+ ret = -1;
break;
}
}
AT91C_BASE_PDC_SSC->PDC_RNCR = ISO15693_DMA_BUFFER_SIZE; // DMA Next Counter registers
}
- samples++;
-
if (Handle15693SamplesFromTag(tagdata, &DecodeTag)) {
- gotFrame = true;
+ *eof_time = dma_start_time + samples*16 - DELAY_TAG_TO_ARM; // end of EOF
+ if (DecodeTag.lastBit == SOF_PART2) {
+ *eof_time -= 8*16; // needed 8 additional samples to confirm single SOF (iCLASS)
+ }
+ if (DecodeTag.len > DecodeTag.max_len) {
+ ret = -2; // buffer overflow
+ }
break;
}
if (samples > timeout && DecodeTag.state < STATE_TAG_RECEIVING_DATA) {
- DecodeTag.len = 0;
+ ret = -1; // timeout
break;
}
}
FpgaDisableSscDma();
- BigBuf_free();
- if (DEBUG) Dbprintf("samples = %d, gotFrame = %d, Decoder: state = %d, len = %d, bitCount = %d, posCount = %d",
- samples, gotFrame, DecodeTag.state, DecodeTag.len, DecodeTag.bitCount, DecodeTag.posCount);
+ if (DEBUG) Dbprintf("samples = %d, ret = %d, Decoder: state = %d, lastBit = %d, len = %d, bitCount = %d, posCount = %d",
+ samples, ret, DecodeTag.state, DecodeTag.lastBit, DecodeTag.len, DecodeTag.bitCount, DecodeTag.posCount);
- if (DecodeTag.len > 0) {
- LogTrace(DecodeTag.output, DecodeTag.len, 0, 0, NULL, false);
+ if (ret < 0) {
+ return ret;
}
+ uint32_t sof_time = *eof_time
+ - DecodeTag.len * 8 * 8 * 16 // time for byte transfers
+ - 32 * 16 // time for SOF transfer
+ - (DecodeTag.lastBit != SOF_PART2?32*16:0); // time for EOF transfer
+
+ if (DEBUG) Dbprintf("timing: sof_time = %d, eof_time = %d", sof_time, *eof_time);
+
+ LogTrace_ISO15693(DecodeTag.output, DecodeTag.len, sof_time*4, *eof_time*4, NULL, false);
+
return DecodeTag.len;
}
for (int i = 7; i >= 0; i--) {
if (Handle15693SampleFromReader((b >> i) & 0x01, &DecodeReader)) {
- *eof_time = dma_start_time + samples - DELAY_READER_TO_ARM_SIM; // end of EOF
+ *eof_time = dma_start_time + samples - DELAY_READER_TO_ARM; // end of EOF
gotFrame = true;
break;
}
- DecodeReader.byteCount * (DecodeReader.Coding==CODING_1_OUT_OF_4?128:2048) // time for byte transfers
- 32 // time for SOF transfer
- 16; // time for EOF transfer
- LogTrace(DecodeReader.output, DecodeReader.byteCount, sof_time, *eof_time, NULL, true);
+ LogTrace_ISO15693(DecodeReader.output, DecodeReader.byteCount, sof_time*32, *eof_time*32, NULL, true);
}
return DecodeReader.byteCount;
SpinDelay(100);
// Now send the command
- TransmitTo15693Tag(ToSend, ToSendMax, 0);
+ uint32_t start_time = 0;
+ TransmitTo15693Tag(ToSend, ToSendMax, &start_time);
// wait for last transfer to complete
while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXEMPTY)) ;
if (Handle15693SampleFromReader(snoopdata & 0x02, &DecodeReader)) {
FpgaDisableSscDma();
ExpectTagAnswer = true;
- LogTrace(DecodeReader.output, DecodeReader.byteCount, samples, samples, NULL, true);
+ LogTrace_ISO15693(DecodeReader.output, DecodeReader.byteCount, samples*64, samples*64, NULL, true);
/* And ready to receive another command. */
DecodeReaderReset(&DecodeReader);
/* And also reset the demod code, which might have been */
if (Handle15693SampleFromReader(snoopdata & 0x01, &DecodeReader)) {
FpgaDisableSscDma();
ExpectTagAnswer = true;
- LogTrace(DecodeReader.output, DecodeReader.byteCount, samples, samples, NULL, true);
+ LogTrace_ISO15693(DecodeReader.output, DecodeReader.byteCount, samples*64, samples*64, NULL, true);
/* And ready to receive another command. */
DecodeReaderReset(&DecodeReader);
/* And also reset the demod code, which might have been */
if (Handle15693SamplesFromTag(snoopdata >> 2, &DecodeTag)) {
FpgaDisableSscDma();
//Use samples as a time measurement
- LogTrace(DecodeTag.output, DecodeTag.len, samples, samples, NULL, false);
+ LogTrace_ISO15693(DecodeTag.output, DecodeTag.len, samples*64, samples*64, NULL, false);
// And ready to receive another response.
DecodeTagReset(&DecodeTag);
DecodeReaderReset(&DecodeReader);
// Initialize the proxmark as iso15k reader
-static void Iso15693InitReader() {
+void Iso15693InitReader() {
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
- // Setup SSC
- // FpgaSetupSsc();
// Start from off (no field generated)
LED_D_OFF();
// init ... should we initialize the reader?
// speed ... 0 low speed, 1 hi speed
// *recv will contain the tag's answer
-// return: lenght of received data
-int SendDataTag(uint8_t *send, int sendlen, bool init, int speed, uint8_t *recv, uint16_t max_recv_len, uint32_t start_time) {
+// return: length of received data, or -1 for timeout
+int SendDataTag(uint8_t *send, int sendlen, bool init, int speed, uint8_t *recv, uint16_t max_recv_len, uint32_t start_time, uint32_t *eof_time) {
LED_A_ON();
LED_B_OFF();
LED_C_OFF();
- if (init) Iso15693InitReader();
-
- int answerLen=0;
-
+ if (init) {
+ Iso15693InitReader();
+ StartCountSspClk();
+ }
+
+ int answerLen = 0;
+
if (!speed) {
// low speed (1 out of 256)
CodeIso15693AsReader256(send, sendlen);
CodeIso15693AsReader(send, sendlen);
}
- TransmitTo15693Tag(ToSend, ToSendMax, start_time);
+ if (start_time == 0) {
+ start_time = GetCountSspClk();
+ }
+ TransmitTo15693Tag(ToSend, ToSendMax, &start_time);
// Now wait for a response
if (recv != NULL) {
- answerLen = GetIso15693AnswerFromTag(recv, max_recv_len, DELAY_ISO15693_VCD_TO_VICC_READER * 2);
+ answerLen = GetIso15693AnswerFromTag(recv, max_recv_len, DELAY_ISO15693_VCD_TO_VICC_READER * 2, eof_time);
}
LED_A_OFF();
// Now send the IDENTIFY command
BuildIdentifyRequest();
- TransmitTo15693Tag(ToSend, ToSendMax, 0);
+ uint32_t start_time = 0;
+ TransmitTo15693Tag(ToSend, ToSendMax, &start_time);
// Now wait for a response
- answerLen = GetIso15693AnswerFromTag(answer, sizeof(answer), DELAY_ISO15693_VCD_TO_VICC_READER * 2) ;
- uint32_t start_time = GetCountSspClk() + DELAY_ISO15693_VICC_TO_VCD_READER;
+ uint32_t eof_time;
+ answerLen = GetIso15693AnswerFromTag(answer, sizeof(answer), DELAY_ISO15693_VCD_TO_VICC_READER * 2, &eof_time) ;
+ start_time = eof_time + DELAY_ISO15693_VICC_TO_VCD_READER;
if (answerLen >=12) // we should do a better check than this
{
if (answerLen >= 12 && DEBUG) {
for (int i = 0; i < 32; i++) { // sanity check, assume max 32 pages
BuildReadBlockRequest(TagUID, i);
- TransmitTo15693Tag(ToSend, ToSendMax, start_time);
- int answerLen = GetIso15693AnswerFromTag(answer, sizeof(answer), DELAY_ISO15693_VCD_TO_VICC_READER * 2);
- start_time = GetCountSspClk() + DELAY_ISO15693_VICC_TO_VCD_READER;
+ TransmitTo15693Tag(ToSend, ToSendMax, &start_time);
+ int answerLen = GetIso15693AnswerFromTag(answer, sizeof(answer), DELAY_ISO15693_VCD_TO_VICC_READER * 2, &eof_time);
+ start_time = eof_time + DELAY_ISO15693_VICC_TO_VCD_READER;
if (answerLen > 0) {
Dbprintf("READ SINGLE BLOCK %d returned %d octets:", i, answerLen);
DbdecodeIso15693Answer(answerLen, answer);
if ((cmd_len >= 5) && (cmd[0] & ISO15693_REQ_INVENTORY) && (cmd[1] == ISO15693_INVENTORY)) { // TODO: check more flags
bool slow = !(cmd[0] & ISO15693_REQ_DATARATE_HIGH);
- start_time = eof_time + DELAY_ISO15693_VCD_TO_VICC_SIM - DELAY_ARM_TO_READER_SIM;
+ start_time = eof_time + DELAY_ISO15693_VCD_TO_VICC_SIM;
TransmitTo15693Reader(ToSend, ToSendMax, &start_time, 0, slow);
}
uint8_t data[6];
uint8_t recv[ISO15693_MAX_RESPONSE_LENGTH];
-
- int datalen=0, recvlen=0;
-
- Iso15693InitReader();
- StartCountSspClk();
+ int datalen = 0, recvlen = 0;
+ uint32_t eof_time;
// first without AFI
// Tags should respond without AFI and with AFI=0 even when AFI is active
data[1] = ISO15693_INVENTORY;
data[2] = 0; // mask length
datalen = Iso15693AddCrc(data,3);
- recvlen = SendDataTag(data, datalen, false, speed, recv, sizeof(recv), 0);
- uint32_t start_time = GetCountSspClk() + DELAY_ISO15693_VICC_TO_VCD_READER;
+ uint32_t start_time = GetCountSspClk();
+ recvlen = SendDataTag(data, datalen, true, speed, recv, sizeof(recv), 0, &eof_time);
+ start_time = eof_time + DELAY_ISO15693_VICC_TO_VCD_READER;
WDT_HIT();
if (recvlen>=12) {
Dbprintf("NoAFI UID=%s", Iso15693sprintUID(NULL, &recv[2]));
for (int i = 0; i < 256; i++) {
data[2] = i & 0xFF;
datalen = Iso15693AddCrc(data,4);
- recvlen = SendDataTag(data, datalen, false, speed, recv, sizeof(recv), start_time);
- start_time = GetCountSspClk() + DELAY_ISO15693_VICC_TO_VCD_READER;
+ recvlen = SendDataTag(data, datalen, false, speed, recv, sizeof(recv), start_time, &eof_time);
+ start_time = eof_time + DELAY_ISO15693_VICC_TO_VCD_READER;
WDT_HIT();
if (recvlen >= 12) {
Dbprintf("AFI=%i UID=%s", i, Iso15693sprintUID(NULL, &recv[2]));
int recvlen = 0;
uint8_t recvbuf[ISO15693_MAX_RESPONSE_LENGTH];
-
+ uint32_t eof_time;
+
LED_A_ON();
if (DEBUG) {
Dbhexdump(datalen, data, false);
}
- recvlen = SendDataTag(data, datalen, true, speed, (recv?recvbuf:NULL), sizeof(recvbuf), 0);
+ recvlen = SendDataTag(data, datalen, true, speed, (recv?recvbuf:NULL), sizeof(recvbuf), 0, &eof_time);
+
+ // for the time being, switch field off to protect rdv4.0
+ // note: this prevents using hf 15 cmd with s option - which isn't implemented yet anyway
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LED_D_OFF();
if (recv) {
if (DEBUG) {
Dbprintf("RECV:");
- Dbhexdump(recvlen, recvbuf, false);
- DbdecodeIso15693Answer(recvlen, recvbuf);
+ if (recvlen > 0) {
+ Dbhexdump(recvlen, recvbuf, false);
+ DbdecodeIso15693Answer(recvlen, recvbuf);
+ }
}
-
- cmd_send(CMD_ACK, recvlen>ISO15693_MAX_RESPONSE_LENGTH?ISO15693_MAX_RESPONSE_LENGTH:recvlen, 0, 0, recvbuf, ISO15693_MAX_RESPONSE_LENGTH);
-
+ if (recvlen > ISO15693_MAX_RESPONSE_LENGTH) {
+ recvlen = ISO15693_MAX_RESPONSE_LENGTH;
+ }
+ cmd_send(CMD_ACK, recvlen, 0, 0, recvbuf, ISO15693_MAX_RESPONSE_LENGTH);
}
- // for the time being, switch field off to protect rdv4.0
- // note: this prevents using hf 15 cmd with s option - which isn't implemented yet anyway
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- LED_D_OFF();
-
LED_A_OFF();
}
int recvlen = 0;
uint8_t recvbuf[ISO15693_MAX_RESPONSE_LENGTH];
-
+ uint32_t eof_time;
+
LED_A_ON();
// Command 1 : 02213E00000000
cmd[3][5] = uid[1];
cmd[3][6] = uid[0];
- for (int i=0; i<4; i++) {
+ for (int i = 0; i < 4; i++) {
// Add the CRC
crc = Iso15693Crc(cmd[i], 7);
cmd[i][7] = crc & 0xff;
Dbhexdump(sizeof(cmd[i]), cmd[i], false);
}
- recvlen = SendDataTag(cmd[i], sizeof(cmd[i]), true, 1, recvbuf, sizeof(recvbuf), 0);
+ recvlen = SendDataTag(cmd[i], sizeof(cmd[i]), true, 1, recvbuf, sizeof(recvbuf), 0, &eof_time);
if (DEBUG) {
Dbprintf("RECV:");
- Dbhexdump(recvlen, recvbuf, false);
- DbdecodeIso15693Answer(recvlen, recvbuf);
+ if (recvlen > 0) {
+ Dbhexdump(recvlen, recvbuf, false);
+ DbdecodeIso15693Answer(recvlen, recvbuf);
+ }
}
cmd_send(CMD_ACK, recvlen>ISO15693_MAX_RESPONSE_LENGTH?ISO15693_MAX_RESPONSE_LENGTH:recvlen, 0, 0, recvbuf, ISO15693_MAX_RESPONSE_LENGTH);