#include "string.h"
#include "lfdemod.h"
#include "lfsampling.h"
-#include "usb_cdc.h"
+#include "protocols.h"
+#include "usb_cdc.h" // for usb_poll_validate_length
+#ifndef SHORT_COIL
+# define SHORT_COIL() LOW(GPIO_SSC_DOUT)
+#endif
+#ifndef OPEN_COIL
+# define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
+#endif
/**
* Function to do a modulation and then get samples.
* @param delay_off
- * @param period_0
- * @param period_1
+ * @param periods 0xFFFF0000 is period_0, 0x0000FFFF is period_1
+ * @param useHighFreg
* @param command
*/
-void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command)
+void ModThenAcquireRawAdcSamples125k(uint32_t delay_off, uint32_t periods, uint32_t useHighFreq, uint8_t *command)
{
+ /* Make sure the tag is reset */
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ SpinDelay(200);
- int divisor_used = 95; // 125 KHz
- // see if 'h' was specified
-
- if (command[strlen((char *) command) - 1] == 'h')
- divisor_used = 88; // 134.8 KHz
-
+ uint16_t period_0 = periods >> 16;
+ uint16_t period_1 = periods & 0xFFFF;
+
+ // 95 == 125 KHz 88 == 124.8 KHz
+ int divisor_used = (useHighFreq) ? 88 : 95;
sample_config sc = { 0,0,1, divisor_used, 0};
setSamplingConfig(&sc);
- /* Make sure the tag is reset */
- FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- SpinDelay(2500);
+ //clear read buffer
+ BigBuf_Clear_keep_EM();
LFSetupFPGAForADC(sc.divisor, 1);
// And a little more time for the tag to fully power up
- SpinDelay(2000);
+ SpinDelay(50);
// now modulate the reader field
while(*command != '\0' && *command != ' ') {
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
- SpinDelayUs(delay_off);
+ WaitUS(delay_off);
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
LED_D_ON();
if(*(command++) == '0')
- SpinDelayUs(period_0);
+ WaitUS(period_0);
else
- SpinDelayUs(period_1);
+ WaitUS(period_1);
}
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
- SpinDelayUs(delay_off);
+ WaitUS(delay_off);
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
-
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
// now do the read
DoAcquisition_config(false);
}
-
-
/* blank r/w tag data stream
...0000000000000000 01111111
1010101010101010101010101010101010101010101010101010101010101010
*/
void ReadTItag(void)
{
+ StartTicks();
// some hardcoded initial params
// when we read a TI tag we sample the zerocross line at 2Mhz
// TI tags modulate a 1 as 16 cycles of 123.2Khz
// TI tags modulate a 0 as 16 cycles of 134.2Khz
- #define FSAMPLE 2000000
- #define FREQLO 123200
- #define FREQHI 134200
+ #define FSAMPLE 2000000
+ #define FREQLO 123200
+ #define FREQHI 134200
signed char *dest = (signed char *)BigBuf_get_addr();
uint16_t n = BigBuf_max_traceLen();
crc = update_crc16(crc, (shift1>>16)&0xff);
crc = update_crc16(crc, (shift1>>24)&0xff);
- Dbprintf("Info: Tag data: %x%08x, crc=%x",
- (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
+ Dbprintf("Info: Tag data: %x%08x, crc=%x", (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
if (crc != (shift2&0xffff)) {
Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
} else {
DbpString("Info: CRC is good");
}
}
+ StopTicks();
}
void WriteTIbyte(uint8_t b)
// modulate 8 bits out to the antenna
for (i=0; i<8; i++)
{
- if (b&(1<<i)) {
- // stop modulating antenna
+ if ( b & ( 1 << i ) ) {
+ // stop modulating antenna 1ms
LOW(GPIO_SSC_DOUT);
- SpinDelayUs(1000);
- // modulate antenna
- HIGH(GPIO_SSC_DOUT);
- SpinDelayUs(1000);
+ WaitUS(1000);
+ // modulate antenna 1ms
+ HIGH(GPIO_SSC_DOUT);
+ WaitUS(1000);
} else {
- // stop modulating antenna
+ // stop modulating antenna 1ms
LOW(GPIO_SSC_DOUT);
- SpinDelayUs(300);
- // modulate antenna
+ WaitUS(300);
+ // modulate antenna 1m
HIGH(GPIO_SSC_DOUT);
- SpinDelayUs(1700);
+ WaitUS(1700);
}
}
}
int i, j, n;
// tag transmission is <20ms, sampling at 2M gives us 40K samples max
// each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
- #define TIBUFLEN 1250
+ #define TIBUFLEN 1250
// clear buffer
- uint32_t *BigBuf = (uint32_t *)BigBuf_get_addr();
- memset(BigBuf,0,BigBuf_max_traceLen()/sizeof(uint32_t));
+ uint32_t *buf = (uint32_t *)BigBuf_get_addr();
+
+ //clear buffer now so it does not interfere with timing later
+ BigBuf_Clear_ext(false);
// Set up the synchronous serial port
AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
AT91C_BASE_SSC->SSC_TCMR = 0;
AT91C_BASE_SSC->SSC_TFMR = 0;
-
+ // iceman, FpgaSetupSsc() ?? the code above? can it be replaced?
LED_D_ON();
// modulate antenna
HIGH(GPIO_SSC_DOUT);
// Charge TI tag for 50ms.
- SpinDelay(50);
+ WaitMS(50);
// stop modulating antenna and listen
LOW(GPIO_SSC_DOUT);
i = 0;
for(;;) {
if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
- BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
+ buf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
i++; if(i >= TIBUFLEN) break;
}
WDT_HIT();
AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
char *dest = (char *)BigBuf_get_addr();
- n = TIBUFLEN*32;
+ n = TIBUFLEN * 32;
+
// unpack buffer
- for (i=TIBUFLEN-1; i>=0; i--) {
- for (j=0; j<32; j++) {
- if(BigBuf[i] & (1 << j)) {
+ for (i = TIBUFLEN-1; i >= 0; i--) {
+ for (j = 0; j < 32; j++) {
+ if(buf[i] & (1 << j)) {
dest[--n] = 1;
} else {
dest[--n] = -1;
// if not provided a valid crc will be computed from the data and written.
void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
{
+ StartTicks();
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
if(crc == 0) {
crc = update_crc16(crc, (idlo)&0xff);
crc = update_crc16(crc, (idhi>>16)&0xff);
crc = update_crc16(crc, (idhi>>24)&0xff);
}
- Dbprintf("Writing to tag: %x%08x, crc=%x",
- (unsigned int) idhi, (unsigned int) idlo, crc);
+ Dbprintf("Writing to tag: %x%08x, crc=%x", (unsigned int) idhi, (unsigned int) idlo, crc);
// TI tags charge at 134.2Khz
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
// start by writing 0xBB (keyword) and 0xEB (password)
// then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
// finally end with 0x0300 (write frame)
- // all data is sent lsb firts
+ // all data is sent lsb first
// finish with 15ms programming time
// modulate antenna
HIGH(GPIO_SSC_DOUT);
- SpinDelay(50); // charge time
+ WaitMS(50); // charge time
WriteTIbyte(0xbb); // keyword
WriteTIbyte(0xeb); // password
WriteTIbyte(0x00); // write frame lo
WriteTIbyte(0x03); // write frame hi
HIGH(GPIO_SSC_DOUT);
- SpinDelay(50); // programming time
+ WaitMS(50); // programming time
LED_A_OFF();
AcquireTiType();
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- DbpString("Now use 'lf ti read' to check");
+ DbpString("Now use `lf ti read` to check");
+ StopTicks();
}
-void SimulateTagLowFrequency(uint16_t period, uint32_t gap, uint8_t ledcontrol)
+void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
{
- int i;
- uint8_t *tab = BigBuf_get_addr();
+ int i = 0;
+ uint8_t *buf = BigBuf_get_addr();
- FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_READER_FIELD);
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
-
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
- #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
- #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
+ StartTicks();
- i = 0;
for(;;) {
- //wait until SSC_CLK goes HIGH
+ WDT_HIT();
+
+ if (ledcontrol) LED_D_ON();
+
+ // wait until SSC_CLK goes HIGH
+ // used as a simple detection of a reader field?
while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
- if(BUTTON_PRESS() || usb_poll()) {
- DbpString("Stopped");
- return;
- }
WDT_HIT();
+ if ( usb_poll_validate_length() || BUTTON_PRESS() )
+ goto OUT;
}
- if (ledcontrol)
- LED_D_ON();
-
- if(tab[i])
+
+ if(buf[i])
OPEN_COIL();
else
SHORT_COIL();
- if (ledcontrol)
- LED_D_OFF();
+ if (ledcontrol) LED_D_OFF();
+
//wait until SSC_CLK goes LOW
while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
- if(BUTTON_PRESS()) {
- DbpString("Stopped");
- return;
- }
WDT_HIT();
+ if ( usb_poll_validate_length() || BUTTON_PRESS() )
+ goto OUT;
}
i++;
if(i == period) {
-
i = 0;
if (gap) {
+ WDT_HIT();
SHORT_COIL();
- SpinDelayUs(gap);
+ WaitUS(gap);
}
}
}
+OUT:
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ StopTicks();
+ LED_D_OFF();
+ return;
}
#define DEBUG_FRAME_CONTENTS 1
// simulate a HID tag until the button is pressed
void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
{
- int n=0, i=0;
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ set_tracing(FALSE);
+
+ int n = 0, i = 0;
/*
HID tag bitstream format
The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
*/
- if (hi>0xFFF) {
+ if (hi > 0xFFF) {
DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags");
return;
}
fc(8, &n); fc(10, &n); // high-low transition
}
}
-
- if (ledcontrol)
- LED_A_ON();
+ WDT_HIT();
+
+ if (ledcontrol) LED_A_ON();
SimulateTagLowFrequency(n, 0, ledcontrol);
-
- if (ledcontrol)
- LED_A_OFF();
+ if (ledcontrol) LED_A_OFF();
}
// prepare a waveform pattern in the buffer based on the ID given then
// arg1 contains fcHigh and fcLow, arg2 contains invert and clock
void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
{
- int ledcontrol=1;
- int n=0, i=0;
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+
+ // free eventually allocated BigBuf memory
+ BigBuf_free(); BigBuf_Clear_ext(false);
+ clear_trace();
+ set_tracing(FALSE);
+
+ int ledcontrol = 1, n = 0, i = 0;
uint8_t fcHigh = arg1 >> 8;
uint8_t fcLow = arg1 & 0xFF;
uint16_t modCnt = 0;
uint8_t invert = (arg2 >> 8) & 1;
for (i=0; i<size; i++){
- if (BitStream[i] == invert){
+
+ if (BitStream[i] == invert)
fcAll(fcLow, &n, clk, &modCnt);
- } else {
+ else
fcAll(fcHigh, &n, clk, &modCnt);
- }
}
- Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh, fcLow, clk, invert, n);
- /*Dbprintf("DEBUG: First 32:");
- uint8_t *dest = BigBuf_get_addr();
- i=0;
- Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
- i+=16;
- Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
- */
- if (ledcontrol)
- LED_A_ON();
+ WDT_HIT();
+
+ Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d", fcHigh, fcLow, clk, invert, n);
+ if (ledcontrol) LED_A_ON();
SimulateTagLowFrequency(n, 0, ledcontrol);
-
- if (ledcontrol)
- LED_A_OFF();
+ if (ledcontrol) LED_A_OFF();
}
// compose ask waveform for one bit(ASK)
memset(dest+(*n), c ^ *phase, clock);
*phase ^= 1;
}
+ *n += clock;
+}
+static void stAskSimBit(int *n, uint8_t clock) {
+ uint8_t *dest = BigBuf_get_addr();
+ uint8_t halfClk = clock/2;
+ //ST = .5 high .5 low 1.5 high .5 low 1 high
+ memset(dest+(*n), 1, halfClk);
+ memset(dest+(*n) + halfClk, 0, halfClk);
+ memset(dest+(*n) + clock, 1, clock + halfClk);
+ memset(dest+(*n) + clock*2 + halfClk, 0, halfClk);
+ memset(dest+(*n) + clock*3, 1, clock);
+ *n += clock*4;
}
// args clock, ask/man or askraw, invert, transmission separator
void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
{
- int ledcontrol = 1;
- int n=0, i=0;
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ set_tracing(FALSE);
+
+ int ledcontrol = 1, n = 0, i = 0;
uint8_t clk = (arg1 >> 8) & 0xFF;
- uint8_t encoding = arg1 & 1;
+ uint8_t encoding = arg1 & 0xFF;
uint8_t separator = arg2 & 1;
uint8_t invert = (arg2 >> 8) & 1;
- if (encoding==2){ //biphase
- uint8_t phase=0;
+ if (encoding == 2){ //biphase
+ uint8_t phase = 0;
for (i=0; i<size; i++){
biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
}
- if (BitStream[0]==BitStream[size-1]){ //run a second set inverted to keep phase in check
+ if (phase == 1) { //run a second set inverted to keep phase in check
for (i=0; i<size; i++){
biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
}
}
}
}
-
- if (separator==1) Dbprintf("sorry but separator option not yet available");
+ if (separator==1 && encoding == 1)
+ stAskSimBit(&n, clk);
+ else if (separator==1)
+ Dbprintf("sorry but separator option not yet available");
- Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk, invert, encoding, separator, n);
- //DEBUG
- //Dbprintf("First 32:");
- //uint8_t *dest = BigBuf_get_addr();
- //i=0;
- //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
- //i+=16;
- //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
-
- if (ledcontrol)
- LED_A_ON();
+ WDT_HIT();
- SimulateTagLowFrequency(n, 0, ledcontrol);
+ Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk, invert, encoding, separator, n);
- if (ledcontrol)
- LED_A_OFF();
+ if (ledcontrol) LED_A_ON();
+ SimulateTagLowFrequency(n, 0, ledcontrol);
+ if (ledcontrol) LED_A_OFF();
}
//carrier can be 2,4 or 8
// args clock, carrier, invert,
void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
{
- int ledcontrol=1;
- int n=0, i=0;
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ set_tracing(FALSE);
+
+ int ledcontrol = 1, n = 0, i = 0;
uint8_t clk = arg1 >> 8;
uint8_t carrier = arg1 & 0xFF;
uint8_t invert = arg2 & 0xFF;
pskSimBit(carrier, &n, clk, &curPhase, TRUE);
}
}
+
+ WDT_HIT();
+
Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n);
- //Dbprintf("DEBUG: First 32:");
- //uint8_t *dest = BigBuf_get_addr();
- //i=0;
- //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
- //i+=16;
- //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
- if (ledcontrol)
- LED_A_ON();
+ if (ledcontrol) LED_A_ON();
SimulateTagLowFrequency(n, 0, ledcontrol);
-
- if (ledcontrol)
- LED_A_OFF();
+ if (ledcontrol) LED_A_OFF();
}
// loop to get raw HID waveform then FSK demodulate the TAG ID from it
void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
{
uint8_t *dest = BigBuf_get_addr();
- //const size_t sizeOfBigBuff = BigBuf_max_traceLen();
size_t size = 0;
uint32_t hi2=0, hi=0, lo=0;
int idx=0;
// Configure to go in 125Khz listen mode
LFSetupFPGAForADC(95, true);
- while(!BUTTON_PRESS()) {
+ //clear read buffer
+ BigBuf_Clear_keep_EM();
+
+ while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
WDT_HIT();
if (ledcontrol) LED_A_ON();
DoAcquisition_default(-1,true);
// FSK demodulator
- //size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use
size = 50*128*2; //big enough to catch 2 sequences of largest format
idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo);
// go over previously decoded manchester data and decode into usable tag ID
if (hi2 != 0){ //extra large HID tags 88/192 bits
Dbprintf("TAG ID: %x%08x%08x (%d)",
- (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
- }else { //standard HID tags 44/96 bits
- //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
+ (unsigned int) hi2,
+ (unsigned int) hi,
+ (unsigned int) lo,
+ (unsigned int) (lo>>1) & 0xFFFF
+ );
+ } else { //standard HID tags 44/96 bits
uint8_t bitlen = 0;
uint32_t fc = 0;
uint32_t cardnum = 0;
+
if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
uint32_t lo2=0;
lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
fc = ((hi&0xF)<<12)|(lo>>20);
}
}
- //Dbprintf("TAG ID: %x%08x (%d)",
- // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
- (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
- (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
+ (unsigned int) hi,
+ (unsigned int) lo,
+ (unsigned int) (lo>>1) & 0xFFFF,
+ (unsigned int) bitlen,
+ (unsigned int) fc,
+ (unsigned int) cardnum);
}
if (findone){
if (ledcontrol) LED_A_OFF();
if (ledcontrol) LED_A_OFF();
}
+// loop to get raw HID waveform then FSK demodulate the TAG ID from it
+void CmdAWIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
+{
+ uint8_t *dest = BigBuf_get_addr();
+ size_t size;
+ int idx=0;
+ //clear read buffer
+ BigBuf_Clear_keep_EM();
+ // Configure to go in 125Khz listen mode
+ LFSetupFPGAForADC(95, true);
+
+ while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
+
+ WDT_HIT();
+ if (ledcontrol) LED_A_ON();
+
+ DoAcquisition_default(-1,true);
+ // FSK demodulator
+ size = 50*128*2; //big enough to catch 2 sequences of largest format
+ idx = AWIDdemodFSK(dest, &size);
+
+ if (idx<=0 || size!=96) continue;
+ // Index map
+ // 0 10 20 30 40 50 60
+ // | | | | | | |
+ // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
+ // -----------------------------------------------------------------------------
+ // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
+ // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
+ // |---26 bit---| |-----117----||-------------142-------------|
+ // b = format bit len, o = odd parity of last 3 bits
+ // f = facility code, c = card number
+ // w = wiegand parity
+ // (26 bit format shown)
+
+ //get raw ID before removing parities
+ uint32_t rawLo = bytebits_to_byte(dest+idx+64,32);
+ uint32_t rawHi = bytebits_to_byte(dest+idx+32,32);
+ uint32_t rawHi2 = bytebits_to_byte(dest+idx,32);
+
+ size = removeParity(dest, idx+8, 4, 1, 88);
+ if (size != 66) continue;
+
+ // Index map
+ // 0 10 20 30 40 50 60
+ // | | | | | | |
+ // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
+ // -----------------------------------------------------------------------------
+ // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
+ // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
+ // |26 bit| |-117--| |-----142------|
+ //
+ // 00110010 0 0000011111010000000000000001000100101000100001111 0 00000000
+ // bbbbbbbb w ffffffffffffffffccccccccccccccccccccccccccccccccc w xxxxxxxx
+ // |50 bit| |----4000------||-----------2248975-------------|
+ //
+ // b = format bit len, o = odd parity of last 3 bits
+ // f = facility code, c = card number
+ // w = wiegand parity
+
+ uint32_t fc = 0;
+ uint32_t cardnum = 0;
+ uint32_t code1 = 0;
+ uint32_t code2 = 0;
+ uint8_t fmtLen = bytebits_to_byte(dest,8);
+ switch(fmtLen) {
+ case 26:
+ fc = bytebits_to_byte(dest + 9, 8);
+ cardnum = bytebits_to_byte(dest + 17, 16);
+ code1 = bytebits_to_byte(dest + 8,fmtLen);
+ Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %u - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo);
+ break;
+ case 50:
+ fc = bytebits_to_byte(dest + 9, 16);
+ cardnum = bytebits_to_byte(dest + 25, 32);
+ code1 = bytebits_to_byte(dest + 8, (fmtLen-32) );
+ code2 = bytebits_to_byte(dest + 8 + (fmtLen-32), 32);
+ Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %u - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, code2, rawHi2, rawHi, rawLo);
+ break;
+ default:
+ if (fmtLen > 32 ) {
+ cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16);
+ code1 = bytebits_to_byte(dest+8,fmtLen-32);
+ code2 = bytebits_to_byte(dest+8+(fmtLen-32),32);
+ Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%u) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo);
+ } else {
+ cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16);
+ code1 = bytebits_to_byte(dest+8,fmtLen);
+ Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%u) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo);
+ }
+ break;
+ }
+ if (findone){
+ if (ledcontrol) LED_A_OFF();
+ return;
+ }
+ idx = 0;
+ WDT_HIT();
+ }
+ DbpString("Stopped");
+ if (ledcontrol) LED_A_OFF();
+}
+
void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
{
uint8_t *dest = BigBuf_get_addr();
int clk=0, invert=0, errCnt=0, maxErr=20;
uint32_t hi=0;
uint64_t lo=0;
+ //clear read buffer
+ BigBuf_Clear_keep_EM();
// Configure to go in 125Khz listen mode
LFSetupFPGAForADC(95, true);
- while(!BUTTON_PRESS()) {
+ while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
WDT_HIT();
if (ledcontrol) LED_A_ON();
size = BigBuf_max_traceLen();
//askdemod and manchester decode
if (size > 16385) size = 16385; //big enough to catch 2 sequences of largest format
- errCnt = askmandemod(dest, &size, &clk, &invert, maxErr);
+ errCnt = askdemod(dest, &size, &clk, &invert, maxErr, 0, 1);
WDT_HIT();
if (errCnt<0) continue;
uint16_t number=0;
uint8_t crc = 0;
uint16_t calccrc = 0;
+
+ //clear read buffer
+ BigBuf_Clear_keep_EM();
+
// Configure to go in 125Khz listen mode
LFSetupFPGAForADC(95, true);
- while(!BUTTON_PRESS()) {
+ while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
WDT_HIT();
if (ledcontrol) LED_A_ON();
DoAcquisition_default(-1,true);
code = bytebits_to_byte(dest+idx,32);
code2 = bytebits_to_byte(dest+idx+32,32);
version = bytebits_to_byte(dest+idx+27,8); //14,4
- facilitycode = bytebits_to_byte(dest+idx+18,8) ;
+ facilitycode = bytebits_to_byte(dest+idx+18,8);
number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
crc = bytebits_to_byte(dest+idx+54,8);
// if we're only looking for one tag
if (findone){
if (ledcontrol) LED_A_OFF();
- //LED_A_OFF();
*high=code;
*low=code2;
return;
}
/*------------------------------
- * T5555/T5557/T5567 routines
+ * T5555/T5557/T5567/T5577 routines
*------------------------------
- */
-
-/* T55x7 configuration register definitions */
-#define T55x7_POR_DELAY 0x00000001
-#define T55x7_ST_TERMINATOR 0x00000008
-#define T55x7_PWD 0x00000010
-#define T55x7_MAXBLOCK_SHIFT 5
-#define T55x7_AOR 0x00000200
-#define T55x7_PSKCF_RF_2 0
-#define T55x7_PSKCF_RF_4 0x00000400
-#define T55x7_PSKCF_RF_8 0x00000800
-#define T55x7_MODULATION_DIRECT 0
-#define T55x7_MODULATION_PSK1 0x00001000
-#define T55x7_MODULATION_PSK2 0x00002000
-#define T55x7_MODULATION_PSK3 0x00003000
-#define T55x7_MODULATION_FSK1 0x00004000
-#define T55x7_MODULATION_FSK2 0x00005000
-#define T55x7_MODULATION_FSK1a 0x00006000
-#define T55x7_MODULATION_FSK2a 0x00007000
-#define T55x7_MODULATION_MANCHESTER 0x00008000
-#define T55x7_MODULATION_BIPHASE 0x00010000
-#define T55x7_BITRATE_RF_8 0
-#define T55x7_BITRATE_RF_16 0x00040000
-#define T55x7_BITRATE_RF_32 0x00080000
-#define T55x7_BITRATE_RF_40 0x000C0000
-#define T55x7_BITRATE_RF_50 0x00100000
-#define T55x7_BITRATE_RF_64 0x00140000
-#define T55x7_BITRATE_RF_100 0x00180000
-#define T55x7_BITRATE_RF_128 0x001C0000
-
-/* T5555 (Q5) configuration register definitions */
-#define T5555_ST_TERMINATOR 0x00000001
-#define T5555_MAXBLOCK_SHIFT 0x00000001
-#define T5555_MODULATION_MANCHESTER 0
-#define T5555_MODULATION_PSK1 0x00000010
-#define T5555_MODULATION_PSK2 0x00000020
-#define T5555_MODULATION_PSK3 0x00000030
-#define T5555_MODULATION_FSK1 0x00000040
-#define T5555_MODULATION_FSK2 0x00000050
-#define T5555_MODULATION_BIPHASE 0x00000060
-#define T5555_MODULATION_DIRECT 0x00000070
-#define T5555_INVERT_OUTPUT 0x00000080
-#define T5555_PSK_RF_2 0
-#define T5555_PSK_RF_4 0x00000100
-#define T5555_PSK_RF_8 0x00000200
-#define T5555_USE_PWD 0x00000400
-#define T5555_USE_AOR 0x00000800
-#define T5555_BITRATE_SHIFT 12
-#define T5555_FAST_WRITE 0x00004000
-#define T5555_PAGE_SELECT 0x00008000
-
-/*
- * Relevant times in microsecond
+ * NOTE: T55x7/T5555 configuration register definitions moved to protocols.h
+ *
+ * Relevant communication times in microsecond
* To compensate antenna falling times shorten the write times
* and enlarge the gap ones.
+ * Q5 tags seems to have issues when these values changes.
*/
-#define START_GAP 50*8 // 10 - 50fc 250
-#define WRITE_GAP 20*8 // 8 - 30fc
-#define WRITE_0 24*8 // 16 - 31fc 24fc 192
-#define WRITE_1 54*8 // 48 - 63fc 54fc 432 for T55x7; 448 for E5550
+
+#define START_GAP 50*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (15fc)
+#define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (10fc)
+#define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (24fc)
+#define WRITE_1 54*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (56fc) 432 for T55x7; 448 for E5550
+#define READ_GAP 15*8
// VALUES TAKEN FROM EM4x function: SendForward
// START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
// WRITE_1 = 256 32*8; (32*8)
// These timings work for 4469/4269/4305 (with the 55*8 above)
-// WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
+// WRITE_0 = 23*8 , 9*8
// Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK)
// TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
// Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier)
// T0 = TIMER_CLOCK1 / 125000 = 192
-// 1 Cycle = 8 microseconds(us)
+// 1 Cycle = 8 microseconds(us) == 1 field clock
-#define T55xx_SAMPLES_SIZE 12000 // 32 x 32 x 10 (32 bit times numofblock (7), times clock skip..)
+// new timer:
+// = 1us = 1.5ticks
+// 1fc = 8us = 12ticks
+void TurnReadLFOn(uint32_t delay) {
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+
+ // measure antenna strength.
+ //int adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
+
+ // Give it a bit of time for the resonant antenna to settle.
+ WaitUS(delay);
+}
// Write one bit to card
-void T55xxWriteBit(int bit)
-{
- FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+void T55xxWriteBit(int bit) {
if (!bit)
- SpinDelayUs(WRITE_0);
+ TurnReadLFOn(WRITE_0);
else
- SpinDelayUs(WRITE_1);
+ TurnReadLFOn(WRITE_1);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- SpinDelayUs(WRITE_GAP);
+ WaitUS(WRITE_GAP);
+}
+
+// Send T5577 reset command then read stream (see if we can identify the start of the stream)
+void T55xxResetRead(void) {
+ LED_A_ON();
+ //clear buffer now so it does not interfere with timing later
+ BigBuf_Clear_keep_EM();
+
+ // Set up FPGA, 125kHz
+ LFSetupFPGAForADC(95, true);
+
+ // Trigger T55x7 in mode.
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ WaitUS(START_GAP);
+
+ // reset tag - op code 00
+ T55xxWriteBit(0);
+ T55xxWriteBit(0);
+
+ // Turn field on to read the response
+ TurnReadLFOn(READ_GAP);
+
+ // Acquisition
+ doT55x7Acquisition(BigBuf_max_traceLen());
+
+ // Turn the field off
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ cmd_send(CMD_ACK,0,0,0,0,0);
+ LED_A_OFF();
}
// Write one card block in page 0, no lock
-void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
-{
+void T55xxWriteBlockExt(uint32_t Data, uint8_t Block, uint32_t Pwd, uint8_t arg) {
+ LED_A_ON();
+ bool PwdMode = arg & 0x1;
+ uint8_t Page = (arg & 0x2)>>1;
uint32_t i = 0;
// Set up FPGA, 125kHz
- // Wait for config.. (192+8190xPOW)x8 == 67ms
- LFSetupFPGAForADC(0, true);
-
- // Now start writting
+ LFSetupFPGAForADC(95, true);
+
+ // Trigger T55x7 in mode.
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- SpinDelayUs(START_GAP);
+ WaitUS(START_GAP);
- // Opcode
+ // Opcode 10
T55xxWriteBit(1);
- T55xxWriteBit(0); //Page 0
- if (PwdMode == 1){
- // Pwd
+ T55xxWriteBit(Page); //Page 0
+ if (PwdMode){
+ // Send Pwd
for (i = 0x80000000; i != 0; i >>= 1)
T55xxWriteBit(Pwd & i);
}
- // Lock bit
+ // Send Lock bit
T55xxWriteBit(0);
- // Data
+ // Send Data
for (i = 0x80000000; i != 0; i >>= 1)
T55xxWriteBit(Data & i);
- // Block
+ // Send Block number
for (i = 0x04; i != 0; i >>= 1)
T55xxWriteBit(Block & i);
- // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
+ // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
// so wait a little more)
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
- SpinDelay(20);
+ TurnReadLFOn(20 * 1000);
+
+ //could attempt to do a read to confirm write took
+ // as the tag should repeat back the new block
+ // until it is reset, but to confirm it we would
+ // need to know the current block 0 config mode
+
+ // turn field off
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LED_A_OFF();
}
-void TurnReadLFOn(){
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
- // Give it a bit of time for the resonant antenna to settle.
- SpinDelayUs(8*150);
+// Write one card block in page 0, no lock
+void T55xxWriteBlock(uint32_t Data, uint8_t Block, uint32_t Pwd, uint8_t arg) {
+ T55xxWriteBlockExt(Data, Block, Pwd, arg);
+ cmd_send(CMD_ACK,0,0,0,0,0);
}
-
-// Read one card block in page 0
-void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
-{
+// Read one card block in page [page]
+void T55xxReadBlock(uint16_t arg0, uint8_t Block, uint32_t Pwd) {
+ LED_A_ON();
+ bool PwdMode = arg0 & 0x1;
+ uint8_t Page = (arg0 & 0x2) >> 1;
uint32_t i = 0;
- uint8_t *dest = BigBuf_get_addr();
- uint16_t bufferlength = BigBuf_max_traceLen();
- if ( bufferlength > T55xx_SAMPLES_SIZE )
- bufferlength = T55xx_SAMPLES_SIZE;
+ bool RegReadMode = (Block == 0xFF);
+
+ //clear buffer now so it does not interfere with timing later
+ BigBuf_Clear_keep_EM();
- // Clear destination buffer before sending the command
- memset(dest, 0x80, bufferlength);
+ //make sure block is at max 7
+ Block &= 0x7;
- // Set up FPGA, 125kHz
- // Wait for config.. (192+8190xPOW)x8 == 67ms
- LFSetupFPGAForADC(0, true);
+ // Set up FPGA, 125kHz to power up the tag
+ LFSetupFPGAForADC(95, true);
+ SpinDelay(3);
+
+ // Trigger T55x7 Direct Access Mode with start gap
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- SpinDelayUs(START_GAP);
-
- // Opcode
+ WaitUS(START_GAP);
+
+ // Opcode 1[page]
T55xxWriteBit(1);
- T55xxWriteBit(0); //Page 0
- if (PwdMode == 1){
- // Pwd
+ T55xxWriteBit(Page); //Page 0
+
+ if (PwdMode){
+ // Send Pwd
for (i = 0x80000000; i != 0; i >>= 1)
T55xxWriteBit(Pwd & i);
}
- // Lock bit
+ // Send a zero bit separation
T55xxWriteBit(0);
- // Block
- for (i = 0x04; i != 0; i >>= 1)
- T55xxWriteBit(Block & i);
+
+ // Send Block number (if direct access mode)
+ if (!RegReadMode)
+ for (i = 0x04; i != 0; i >>= 1)
+ T55xxWriteBit(Block & i);
// Turn field on to read the response
- TurnReadLFOn();
- // Now do the acquisition
- i = 0;
- for(;;) {
- if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
- AT91C_BASE_SSC->SSC_THR = 0x43;
- LED_D_ON();
- }
- if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
- dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
- i++;
- LED_D_OFF();
- if (i >= bufferlength) break;
- }
- }
-
- cmd_send(CMD_ACK,0,0,0,0,0);
+ TurnReadLFOn(READ_GAP);
+
+ // Acquisition
+ doT55x7Acquisition(12000);
+
+ // Turn the field off
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
- LED_D_OFF();
+ cmd_send(CMD_ACK,0,0,0,0,0);
+ LED_A_OFF();
}
-// Read card traceability data (page 1)
-void T55xxReadTrace(void){
-
+void T55xxWakeUp(uint32_t Pwd){
+ LED_B_ON();
uint32_t i = 0;
- uint8_t *dest = BigBuf_get_addr();
- uint16_t bufferlength = BigBuf_max_traceLen();
- if ( bufferlength > T55xx_SAMPLES_SIZE )
- bufferlength= T55xx_SAMPLES_SIZE;
-
- // Clear destination buffer before sending the command
- memset(dest, 0x80, bufferlength);
-
- LFSetupFPGAForADC(0, true);
+
+ // Set up FPGA, 125kHz
+ LFSetupFPGAForADC(95, true);
+
+ // Trigger T55x7 Direct Access Mode
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- SpinDelayUs(START_GAP);
-
- // Opcode
+ WaitUS(START_GAP);
+
+ // Opcode 10
T55xxWriteBit(1);
- T55xxWriteBit(1); //Page 1
-
- // Turn field on to read the response
- TurnReadLFOn();
-
- // Now do the acquisition
- for(;;) {
- if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
- AT91C_BASE_SSC->SSC_THR = 0x43;
- LED_D_ON();
- }
- if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
- dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
- i++;
- LED_D_OFF();
+ T55xxWriteBit(0); //Page 0
- if (i >= bufferlength) break;
- }
- }
+ // Send Pwd
+ for (i = 0x80000000; i != 0; i >>= 1)
+ T55xxWriteBit(Pwd & i);
- cmd_send(CMD_ACK,0,0,0,0,0);
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
- LED_D_OFF();
+ // Turn and leave field on to let the begin repeating transmission
+ TurnReadLFOn(20*1000);
}
/*-------------- Cloning routines -----------*/
+void WriteT55xx(uint32_t *blockdata, uint8_t startblock, uint8_t numblocks) {
+ // write last block first and config block last (if included)
+ for (uint8_t i = numblocks+startblock; i > startblock; i--)
+ T55xxWriteBlockExt(blockdata[i-1], i-1, 0, 0);
+}
+
// Copy HID id to card and setup block 0 config
-void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT)
-{
- int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format
- int last_block = 0;
+void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) {
+ uint32_t data[] = {0,0,0,0,0,0,0};
+ uint8_t last_block = 0;
if (longFMT){
// Ensure no more than 84 bits supplied
- if (hi2>0xFFFFF) {
+ if (hi2 > 0xFFFFF) {
DbpString("Tags can only have 84 bits.");
return;
}
// Build the 6 data blocks for supplied 84bit ID
last_block = 6;
- data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
- for (int i=0;i<4;i++) {
- if (hi2 & (1<<(19-i)))
- data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10
- else
- data1 |= (1<<((3-i)*2)); // 0 -> 01
- }
-
- data2 = 0;
- for (int i=0;i<16;i++) {
- if (hi2 & (1<<(15-i)))
- data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
- else
- data2 |= (1<<((15-i)*2)); // 0 -> 01
- }
-
- data3 = 0;
- for (int i=0;i<16;i++) {
- if (hi & (1<<(31-i)))
- data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
- else
- data3 |= (1<<((15-i)*2)); // 0 -> 01
- }
-
- data4 = 0;
- for (int i=0;i<16;i++) {
- if (hi & (1<<(15-i)))
- data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10
- else
- data4 |= (1<<((15-i)*2)); // 0 -> 01
- }
-
- data5 = 0;
- for (int i=0;i<16;i++) {
- if (lo & (1<<(31-i)))
- data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10
- else
- data5 |= (1<<((15-i)*2)); // 0 -> 01
- }
-
- data6 = 0;
- for (int i=0;i<16;i++) {
- if (lo & (1<<(15-i)))
- data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10
- else
- data6 |= (1<<((15-i)*2)); // 0 -> 01
- }
- }
- else {
+ // load preamble (1D) & long format identifier (9E manchester encoded)
+ data[1] = 0x1D96A900 | (manchesterEncode2Bytes((hi2 >> 16) & 0xF) & 0xFF);
+ // load raw id from hi2, hi, lo to data blocks (manchester encoded)
+ data[2] = manchesterEncode2Bytes(hi2 & 0xFFFF);
+ data[3] = manchesterEncode2Bytes(hi >> 16);
+ data[4] = manchesterEncode2Bytes(hi & 0xFFFF);
+ data[5] = manchesterEncode2Bytes(lo >> 16);
+ data[6] = manchesterEncode2Bytes(lo & 0xFFFF);
+ } else {
// Ensure no more than 44 bits supplied
- if (hi>0xFFF) {
+ if (hi > 0xFFF) {
DbpString("Tags can only have 44 bits.");
return;
}
-
// Build the 3 data blocks for supplied 44bit ID
last_block = 3;
-
- data1 = 0x1D000000; // load preamble
-
- for (int i=0;i<12;i++) {
- if (hi & (1<<(11-i)))
- data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10
- else
- data1 |= (1<<((11-i)*2)); // 0 -> 01
- }
-
- data2 = 0;
- for (int i=0;i<16;i++) {
- if (lo & (1<<(31-i)))
- data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
- else
- data2 |= (1<<((15-i)*2)); // 0 -> 01
- }
-
- data3 = 0;
- for (int i=0;i<16;i++) {
- if (lo & (1<<(15-i)))
- data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
- else
- data3 |= (1<<((15-i)*2)); // 0 -> 01
- }
+ // load preamble
+ data[1] = 0x1D000000 | (manchesterEncode2Bytes(hi) & 0xFFFFFF);
+ data[2] = manchesterEncode2Bytes(lo >> 16);
+ data[3] = manchesterEncode2Bytes(lo & 0xFFFF);
}
+ // load chip config block
+ data[0] = T55x7_BITRATE_RF_50 | T55x7_MODULATION_FSK2a | last_block << T55x7_MAXBLOCK_SHIFT;
+
+ //TODO add selection of chip for Q5 or T55x7
+ // data[0] = (((50-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT;
LED_D_ON();
// Program the data blocks for supplied ID
// and the block 0 for HID format
- T55xxWriteBlock(data1,1,0,0);
- T55xxWriteBlock(data2,2,0,0);
- T55xxWriteBlock(data3,3,0,0);
-
- if (longFMT) { // if long format there are 6 blocks
- T55xxWriteBlock(data4,4,0,0);
- T55xxWriteBlock(data5,5,0,0);
- T55xxWriteBlock(data6,6,0,0);
- }
-
- // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
- T55xxWriteBlock(T55x7_BITRATE_RF_50 |
- T55x7_MODULATION_FSK2a |
- last_block << T55x7_MAXBLOCK_SHIFT,
- 0,0,0);
+ WriteT55xx(data, 0, last_block+1);
LED_D_OFF();
DbpString("DONE!");
}
-void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT)
-{
- int data1=0, data2=0; //up to six blocks for long format
-
- data1 = hi; // load preamble
- data2 = lo;
+void CopyIOtoT55x7(uint32_t hi, uint32_t lo) {
+ uint32_t data[] = {T55x7_BITRATE_RF_64 | T55x7_MODULATION_FSK2a | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
+ //TODO add selection of chip for Q5 or T55x7
+ //t5555 (Q5) BITRATE = (RF-2)/2 (iceman)
+ // data[0] = (64 << T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | 2 << T5555_MAXBLOCK_SHIFT;
LED_D_ON();
// Program the data blocks for supplied ID
- // and the block 0 for HID format
- T55xxWriteBlock(data1,1,0,0);
- T55xxWriteBlock(data2,2,0,0);
-
- //Config Block
- T55xxWriteBlock(0x00147040,0,0,0);
+ // and the block 0 config
+ WriteT55xx(data, 0, 3);
LED_D_OFF();
+ DbpString("DONE!");
+}
+// Clone Indala 64-bit tag by UID to T55x7
+void CopyIndala64toT55x7(uint32_t hi, uint32_t lo) {
+ //Program the 2 data blocks for supplied 64bit UID
+ // and the Config for Indala 64 format (RF/32;PSK1 with RF/2;Maxblock=2)
+ uint32_t data[] = { T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
+ //TODO add selection of chip for Q5 or T55x7
+ // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 2 << T5555_MAXBLOCK_SHIFT;
+
+ WriteT55xx(data, 0, 3);
+ //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
+ // T5567WriteBlock(0x603E1042,0);
DbpString("DONE!");
}
+// Clone Indala 224-bit tag by UID to T55x7
+void CopyIndala224toT55x7(uint32_t uid1, uint32_t uid2, uint32_t uid3, uint32_t uid4, uint32_t uid5, uint32_t uid6, uint32_t uid7) {
+ //Program the 7 data blocks for supplied 224bit UID
+ uint32_t data[] = {0, uid1, uid2, uid3, uid4, uid5, uid6, uid7};
+ // and the block 0 for Indala224 format
+ //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
+ data[0] = T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (7 << T55x7_MAXBLOCK_SHIFT);
+ //TODO add selection of chip for Q5 or T55x7
+ // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 7 << T5555_MAXBLOCK_SHIFT;
+ WriteT55xx(data, 0, 8);
+ //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
+ // T5567WriteBlock(0x603E10E2,0);
+ DbpString("DONE!");
+}
+// clone viking tag to T55xx
+void CopyVikingtoT55xx(uint32_t block1, uint32_t block2, uint8_t Q5) {
+ uint32_t data[] = {T55x7_BITRATE_RF_32 | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT), block1, block2};
+ //t5555 (Q5) BITRATE = (RF-2)/2 (iceman)
+ if (Q5) data[0] = (32 << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | 2 << T5555_MAXBLOCK_SHIFT;
+ // Program the data blocks for supplied ID and the block 0 config
+ WriteT55xx(data, 0, 3);
+ LED_D_OFF();
+ cmd_send(CMD_ACK,0,0,0,0,0);
+}
// Define 9bit header for EM410x tags
#define EM410X_HEADER 0x1FF
#define EM410X_ID_LENGTH 40
-void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo)
-{
+void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) {
int i, id_bit;
uint64_t id = EM410X_HEADER;
uint64_t rev_id = 0; // reversed ID
LED_D_ON();
// Write EM410x ID
- T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0);
- T55xxWriteBlock((uint32_t)id, 2, 0, 0);
-
- // Config for EM410x (RF/64, Manchester, Maxblock=2)
- if (card) {
- // Clock rate is stored in bits 8-15 of the card value
- clock = (card & 0xFF00) >> 8;
- Dbprintf("Clock rate: %d", clock);
- switch (clock)
- {
- case 32:
- clock = T55x7_BITRATE_RF_32;
- break;
- case 16:
- clock = T55x7_BITRATE_RF_16;
- break;
- case 0:
- // A value of 0 is assumed to be 64 for backwards-compatibility
- // Fall through...
- case 64:
- clock = T55x7_BITRATE_RF_64;
- break;
- default:
+ uint32_t data[] = {0, (uint32_t)(id>>32), (uint32_t)(id & 0xFFFFFFFF)};
+
+ clock = (card & 0xFF00) >> 8;
+ clock = (clock == 0) ? 64 : clock;
+ Dbprintf("Clock rate: %d", clock);
+ if (card & 0xFF) { //t55x7
+ clock = GetT55xxClockBit(clock);
+ if (clock == 0) {
Dbprintf("Invalid clock rate: %d", clock);
return;
}
-
- // Writing configuration for T55x7 tag
- T55xxWriteBlock(clock |
- T55x7_MODULATION_MANCHESTER |
- 2 << T55x7_MAXBLOCK_SHIFT,
- 0, 0, 0);
+ data[0] = clock | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT);
+ } else { //t5555 (Q5)
+ clock = (clock-2)>>1; //n = (RF-2)/2
+ data[0] = (clock << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | (2 << T5555_MAXBLOCK_SHIFT);
}
- else
- // Writing configuration for T5555(Q5) tag
- T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT |
- T5555_MODULATION_MANCHESTER |
- 2 << T5555_MAXBLOCK_SHIFT,
- 0, 0, 0);
+
+ WriteT55xx(data, 0, 3);
LED_D_OFF();
- Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
- (uint32_t)(id >> 32), (uint32_t)id);
-}
-
-// Clone Indala 64-bit tag by UID to T55x7
-void CopyIndala64toT55x7(int hi, int lo)
-{
-
- //Program the 2 data blocks for supplied 64bit UID
- // and the block 0 for Indala64 format
- T55xxWriteBlock(hi,1,0,0);
- T55xxWriteBlock(lo,2,0,0);
- //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
- T55xxWriteBlock(T55x7_BITRATE_RF_32 |
- T55x7_MODULATION_PSK1 |
- 2 << T55x7_MAXBLOCK_SHIFT,
- 0, 0, 0);
- //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
- // T5567WriteBlock(0x603E1042,0);
-
- DbpString("DONE!");
-
-}
-
-void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7)
-{
-
- //Program the 7 data blocks for supplied 224bit UID
- // and the block 0 for Indala224 format
- T55xxWriteBlock(uid1,1,0,0);
- T55xxWriteBlock(uid2,2,0,0);
- T55xxWriteBlock(uid3,3,0,0);
- T55xxWriteBlock(uid4,4,0,0);
- T55xxWriteBlock(uid5,5,0,0);
- T55xxWriteBlock(uid6,6,0,0);
- T55xxWriteBlock(uid7,7,0,0);
- //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
- T55xxWriteBlock(T55x7_BITRATE_RF_32 |
- T55x7_MODULATION_PSK1 |
- 7 << T55x7_MAXBLOCK_SHIFT,
- 0,0,0);
- //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
- // T5567WriteBlock(0x603E10E2,0);
-
- DbpString("DONE!");
-
-}
-
-
-#define abs(x) ( ((x)<0) ? -(x) : (x) )
-#define max(x,y) ( x<y ? y:x)
-
-int DemodPCF7931(uint8_t **outBlocks) {
-
- uint8_t bits[256] = {0x00};
- uint8_t blocks[8][16];
- uint8_t *dest = BigBuf_get_addr();
-
- int GraphTraceLen = BigBuf_max_traceLen();
- if ( GraphTraceLen > 18000 )
- GraphTraceLen = 18000;
-
-
- int i, j, lastval, bitidx, half_switch;
- int clock = 64;
- int tolerance = clock / 8;
- int pmc, block_done;
- int lc, warnings = 0;
- int num_blocks = 0;
- int lmin=128, lmax=128;
- uint8_t dir;
-
- LFSetupFPGAForADC(95, true);
- DoAcquisition_default(0, true);
-
- lmin = 64;
- lmax = 192;
-
- i = 2;
-
- /* Find first local max/min */
- if(dest[1] > dest[0]) {
- while(i < GraphTraceLen) {
- if( !(dest[i] > dest[i-1]) && dest[i] > lmax)
- break;
- i++;
- }
- dir = 0;
- }
- else {
- while(i < GraphTraceLen) {
- if( !(dest[i] < dest[i-1]) && dest[i] < lmin)
- break;
- i++;
- }
- dir = 1;
- }
-
- lastval = i++;
- half_switch = 0;
- pmc = 0;
- block_done = 0;
-
- for (bitidx = 0; i < GraphTraceLen; i++)
- {
- if ( (dest[i-1] > dest[i] && dir == 1 && dest[i] > lmax) || (dest[i-1] < dest[i] && dir == 0 && dest[i] < lmin))
- {
- lc = i - lastval;
- lastval = i;
-
- // Switch depending on lc length:
- // Tolerance is 1/8 of clock rate (arbitrary)
- if (abs(lc-clock/4) < tolerance) {
- // 16T0
- if((i - pmc) == lc) { /* 16T0 was previous one */
- /* It's a PMC ! */
- i += (128+127+16+32+33+16)-1;
- lastval = i;
- pmc = 0;
- block_done = 1;
- }
- else {
- pmc = i;
- }
- } else if (abs(lc-clock/2) < tolerance) {
- // 32TO
- if((i - pmc) == lc) { /* 16T0 was previous one */
- /* It's a PMC ! */
- i += (128+127+16+32+33)-1;
- lastval = i;
- pmc = 0;
- block_done = 1;
- }
- else if(half_switch == 1) {
- bits[bitidx++] = 0;
- half_switch = 0;
- }
- else
- half_switch++;
- } else if (abs(lc-clock) < tolerance) {
- // 64TO
- bits[bitidx++] = 1;
- } else {
- // Error
- warnings++;
- if (warnings > 10)
- {
- Dbprintf("Error: too many detection errors, aborting.");
- return 0;
- }
- }
-
- if(block_done == 1) {
- if(bitidx == 128) {
- for(j=0; j<16; j++) {
- blocks[num_blocks][j] = 128*bits[j*8+7]+
- 64*bits[j*8+6]+
- 32*bits[j*8+5]+
- 16*bits[j*8+4]+
- 8*bits[j*8+3]+
- 4*bits[j*8+2]+
- 2*bits[j*8+1]+
- bits[j*8];
-
- }
- num_blocks++;
- }
- bitidx = 0;
- block_done = 0;
- half_switch = 0;
- }
- if(i < GraphTraceLen)
- dir =(dest[i-1] > dest[i]) ? 0 : 1;
- }
- if(bitidx==255)
- bitidx=0;
- warnings = 0;
- if(num_blocks == 4) break;
- }
- memcpy(outBlocks, blocks, 16*num_blocks);
- return num_blocks;
-}
-
-int IsBlock0PCF7931(uint8_t *Block) {
- // Assume RFU means 0 :)
- if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
- return 1;
- if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ?
- return 1;
- return 0;
-}
-
-int IsBlock1PCF7931(uint8_t *Block) {
- // Assume RFU means 0 :)
- if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0)
- if((Block[14] & 0x7f) <= 9 && Block[15] <= 9)
- return 1;
-
- return 0;
-}
-
-#define ALLOC 16
-
-void ReadPCF7931() {
- uint8_t Blocks[8][17];
- uint8_t tmpBlocks[4][16];
- int i, j, ind, ind2, n;
- int num_blocks = 0;
- int max_blocks = 8;
- int ident = 0;
- int error = 0;
- int tries = 0;
-
- memset(Blocks, 0, 8*17*sizeof(uint8_t));
-
- do {
- memset(tmpBlocks, 0, 4*16*sizeof(uint8_t));
- n = DemodPCF7931((uint8_t**)tmpBlocks);
- if(!n)
- error++;
- if(error==10 && num_blocks == 0) {
- Dbprintf("Error, no tag or bad tag");
- return;
- }
- else if (tries==20 || error==10) {
- Dbprintf("Error reading the tag");
- Dbprintf("Here is the partial content");
- goto end;
- }
-
- for(i=0; i<n; i++)
- Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
- tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7],
- tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]);
- if(!ident) {
- for(i=0; i<n; i++) {
- if(IsBlock0PCF7931(tmpBlocks[i])) {
- // Found block 0 ?
- if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) {
- // Found block 1!
- // \o/
- ident = 1;
- memcpy(Blocks[0], tmpBlocks[i], 16);
- Blocks[0][ALLOC] = 1;
- memcpy(Blocks[1], tmpBlocks[i+1], 16);
- Blocks[1][ALLOC] = 1;
- max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1;
- // Debug print
- Dbprintf("(dbg) Max blocks: %d", max_blocks);
- num_blocks = 2;
- // Handle following blocks
- for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) {
- if(j==n) j=0;
- if(j==i) break;
- memcpy(Blocks[ind2], tmpBlocks[j], 16);
- Blocks[ind2][ALLOC] = 1;
- }
- break;
- }
- }
- }
- }
- else {
- for(i=0; i<n; i++) { // Look for identical block in known blocks
- if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
- for(j=0; j<max_blocks; j++) {
- if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) {
- // Found an identical block
- for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) {
- if(ind2 < 0)
- ind2 = max_blocks;
- if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
- // Dbprintf("Tmp %d -> Block %d", ind, ind2);
- memcpy(Blocks[ind2], tmpBlocks[ind], 16);
- Blocks[ind2][ALLOC] = 1;
- num_blocks++;
- if(num_blocks == max_blocks) goto end;
- }
- }
- for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) {
- if(ind2 > max_blocks)
- ind2 = 0;
- if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
- // Dbprintf("Tmp %d -> Block %d", ind, ind2);
- memcpy(Blocks[ind2], tmpBlocks[ind], 16);
- Blocks[ind2][ALLOC] = 1;
- num_blocks++;
- if(num_blocks == max_blocks) goto end;
- }
- }
- }
- }
- }
- }
- }
- tries++;
- if (BUTTON_PRESS()) return;
- } while (num_blocks != max_blocks);
- end:
- Dbprintf("-----------------------------------------");
- Dbprintf("Memory content:");
- Dbprintf("-----------------------------------------");
- for(i=0; i<max_blocks; i++) {
- if(Blocks[i][ALLOC]==1)
- Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
- Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7],
- Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]);
- else
- Dbprintf("<missing block %d>", i);
- }
- Dbprintf("-----------------------------------------");
-
- return ;
+ Dbprintf("Tag %s written with 0x%08x%08x\n",
+ card ? "T55x7":"T5555",
+ (uint32_t)(id >> 32),
+ (uint32_t)id);
}
-
//-----------------------------------
// EM4469 / EM4305 routines
//-----------------------------------
-#define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
-#define FWD_CMD_WRITE 0xA
-#define FWD_CMD_READ 0x9
+#define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
+#define FWD_CMD_WRITE 0xA
+#define FWD_CMD_READ 0x9
#define FWD_CMD_DISABLE 0x5
-
uint8_t forwardLink_data[64]; //array of forwarded bits
uint8_t * forward_ptr; //ptr for forward message preparation
uint8_t fwd_bit_sz; //forwardlink bit counter
// see EM4469 spec
//====================================================================
//--------------------------------------------------------------------
+// VALUES TAKEN FROM EM4x function: SendForward
+// START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
+// WRITE_GAP = 128; (16*8)
+// WRITE_1 = 256 32*8; (32*8)
+
+// These timings work for 4469/4269/4305 (with the 55*8 above)
+// WRITE_0 = 23*8 , 9*8
+
uint8_t Prepare_Cmd( uint8_t cmd ) {
- //--------------------------------------------------------------------
*forward_ptr++ = 0; //start bit
*forward_ptr++ = 0; //second pause for 4050 code
// prepares address bits
// see EM4469 spec
//====================================================================
-
-//--------------------------------------------------------------------
uint8_t Prepare_Addr( uint8_t addr ) {
- //--------------------------------------------------------------------
register uint8_t line_parity;
// prepares data bits intreleaved with parity bits
// see EM4469 spec
//====================================================================
-
-//--------------------------------------------------------------------
uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
- //--------------------------------------------------------------------
register uint8_t line_parity;
register uint8_t column_parity;
LED_D_ON();
- //Field on
- FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
-
- // Give it a bit of time for the resonant antenna to settle.
- // And for the tag to fully power up
- SpinDelay(150);
-
+ // Set up FPGA, 125kHz
+ LFSetupFPGAForADC(95, true);
+
// force 1st mod pulse (start gap must be longer for 4305)
fwd_bit_sz--; //prepare next bit modulation
fwd_write_ptr++;
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
- SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ WaitUS(55*8); //55 cycles off (8us each)for 4305 // ICEMAN: problem with (us) clock is 21.3us increments
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
- SpinDelayUs(16*8); //16 cycles on (8us each)
+ WaitUS(16*8); //16 cycles on (8us each) // ICEMAN: problem with (us) clock is 21.3us increments
// now start writting
while(fwd_bit_sz-- > 0) { //prepare next bit modulation
if(((*fwd_write_ptr++) & 1) == 1)
- SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
+ WaitUS(32*8); //32 cycles at 125Khz (8us each) // ICEMAN: problem with (us) clock is 21.3us increments
else {
//These timings work for 4469/4269/4305 (with the 55*8 above)
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
- SpinDelayUs(23*8); //16-4 cycles off (8us each)
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ WaitUS(16*8); //16-4 cycles off (8us each) // ICEMAN: problem with (us) clock is 21.3us increments
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
- SpinDelayUs(9*8); //16 cycles on (8us each)
+ WaitUS(16*8); //16 cycles on (8us each) // ICEMAN: problem with (us) clock is 21.3us increments
}
}
}
void EM4xLogin(uint32_t Password) {
uint8_t fwd_bit_count;
-
forward_ptr = forwardLink_data;
fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
-
SendForward(fwd_bit_count);
//Wait for command to complete
- SpinDelay(20);
-
+ WaitMS(20);
}
void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
+ uint8_t fwd_bit_count;
uint8_t *dest = BigBuf_get_addr();
- uint16_t bufferlength = BigBuf_max_traceLen();
+ uint16_t bufsize = BigBuf_max_traceLen(); // ICEMAN: this tries to fill up all tracelog space
uint32_t i = 0;
- // Clear destination buffer before sending the command 0x80 = average.
- memset(dest, 0x80, bufferlength);
+ // Clear destination buffer before sending the command
+ BigBuf_Clear_ext(false);
- uint8_t fwd_bit_count;
-
//If password mode do login
if (PwdMode == 1) EM4xLogin(Pwd);
fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
fwd_bit_count += Prepare_Addr( Address );
- // Connect the A/D to the peak-detected low-frequency path.
- SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
- // Now set up the SSC to get the ADC samples that are now streaming at us.
- FpgaSetupSsc();
-
SendForward(fwd_bit_count);
// Now do the acquisition
+ // ICEMAN, change to the one in lfsampling.c
i = 0;
for(;;) {
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
++i;
- if (i >= bufferlength) break;
+ if (i >= bufsize) break;
}
}
-
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
cmd_send(CMD_ACK,0,0,0,0,0);
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
LED_D_OFF();
}
SendForward(fwd_bit_count);
//Wait for write to complete
- SpinDelay(20);
+ WaitMS(20);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
LED_D_OFF();
}