]> cvs.zerfleddert.de Git - proxmark3-svn/blobdiff - fpga/hi_read_rx_xcorr.v
start fixing hf 15: (#684)
[proxmark3-svn] / fpga / hi_read_rx_xcorr.v
index dece2db3195844ce9ce2d371d09a1ff7df0069bf..8233960f5df3ff6cd65cddff1cb403f032340d5a 100644 (file)
@@ -25,53 +25,18 @@ module hi_read_rx_xcorr(
 // Carrier is steady on through this, unless we're snooping.
 assign pwr_hi = ck_1356megb & (~snoop);
 assign pwr_oe1 = 1'b0;
-assign pwr_oe2 = 1'b0;
 assign pwr_oe3 = 1'b0;
 assign pwr_oe4 = 1'b0;
+// Unused.
+assign pwr_lo = 1'b0;
+assign pwr_oe2 = 1'b0;
 
-reg ssp_clk;
-reg ssp_frame;
-
-reg fc_div_2;
-always @(posedge ck_1356meg)
-    fc_div_2 = ~fc_div_2;
-
-reg fc_div_4;
-always @(posedge fc_div_2)
-    fc_div_4 = ~fc_div_4;
-
-reg fc_div_8;
-always @(posedge fc_div_4)
-    fc_div_8 = ~fc_div_8;
-
-reg adc_clk;
-
-always @(xcorr_is_848 or xcorr_quarter_freq or ck_1356meg)
-    if(~xcorr_quarter_freq)
-    begin
-           if(xcorr_is_848)
-               // The subcarrier frequency is fc/16; we will sample at fc, so that 
-               // means the subcarrier is 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 ...
-               adc_clk <= ck_1356meg;
-           else
-               // The subcarrier frequency is fc/32; we will sample at fc/2, and
-               // the subcarrier will look identical.
-               adc_clk <= fc_div_2;
-    end
-    else
-    begin
-           if(xcorr_is_848)
-               // The subcarrier frequency is fc/64
-               adc_clk <= fc_div_4;
-           else
-               // The subcarrier frequency is fc/128
-               adc_clk <= fc_div_8;
-       end
+assign adc_clk = ck_1356megb;  // sample frequency is 13,56 MHz
 
 // When we're a reader, we just need to do the BPSK demod; but when we're an
 // eavesdropper, we also need to pick out the commands sent by the reader,
 // using AM. Do this the same way that we do it for the simulated tag.
-reg after_hysteresis, after_hysteresis_prev;
+reg after_hysteresis, after_hysteresis_prev, after_hysteresis_prev_prev;
 reg [11:0] has_been_low_for;
 always @(negedge adc_clk)
 begin
@@ -94,60 +59,124 @@ begin
     end
 end
 
-// Let us report a correlation every 4 subcarrier cycles, or 4*16 samples,
-// so we need a 6-bit counter.
+
+// Let us report a correlation every 64 samples. I.e.
+// one Q/I pair after 4 subcarrier cycles for the 848kHz subcarrier,
+// one Q/I pair after 2 subcarrier cycles for the 424kHz subcarriers,
+// one Q/I pair for each subcarrier cyle for the 212kHz subcarrier.
+// We need a 6-bit counter for the timing.
 reg [5:0] corr_i_cnt;
-reg [5:0] corr_q_cnt;
-// And a couple of registers in which to accumulate the correlations.
-reg signed [15:0] corr_i_accum;
-reg signed [15:0] corr_q_accum;
+always @(negedge adc_clk)
+begin
+       corr_i_cnt <= corr_i_cnt + 1;
+end            
+
+// And a couple of registers in which to accumulate the correlations. From the 64 samples
+// we would add at most 32 times the difference between unmodulated and modulated signal. It should
+// be safe to assume that a tag will not be able to modulate the carrier signal by more than 25%.
+// 32 * 255 * 0,25 = 2040, which can be held in 11 bits. Add 1 bit for sign.
+// Temporary we might need more bits. For the 212kHz subcarrier we could possible add 32 times the
+// maximum signal value before a first subtraction would occur. 32 * 255 = 8160 can be held in 13 bits. 
+// Add one bit for sign -> need 14 bit registers but final result will fit into 12 bits.
+reg signed [13:0] corr_i_accum;
+reg signed [13:0] corr_q_accum;
+// we will report maximum 8 significant bits
 reg signed [7:0] corr_i_out;
 reg signed [7:0] corr_q_out;
+// clock and frame signal for communication to ARM
+reg ssp_clk;
+reg ssp_frame;
+
 
+// The subcarrier reference signals
+reg subcarrier_I;
+reg subcarrier_Q;
+
+always @(corr_i_cnt or xcorr_is_848 or xcorr_quarter_freq)
+begin
+       if (xcorr_is_848 & ~xcorr_quarter_freq)                         // 848 kHz
+               begin
+                       subcarrier_I = ~corr_i_cnt[3];
+                       subcarrier_Q = ~(corr_i_cnt[3] ^ corr_i_cnt[2]);
+               end
+       else if (xcorr_is_848 & xcorr_quarter_freq)                     // 212 kHz      
+               begin
+                       subcarrier_I = ~corr_i_cnt[5];
+                       subcarrier_Q = ~(corr_i_cnt[5] ^ corr_i_cnt[4]);
+               end
+       else
+               begin                                                                                   // 424 kHz
+                       subcarrier_I = ~corr_i_cnt[4];
+                       subcarrier_Q = ~(corr_i_cnt[4] ^ corr_i_cnt[3]);
+               end
+end
+       
 // ADC data appears on the rising edge, so sample it on the falling edge
 always @(negedge adc_clk)
 begin
     // These are the correlators: we correlate against in-phase and quadrature
     // versions of our reference signal, and keep the (signed) result to
     // send out later over the SSP.
-    if(corr_i_cnt == 7'd63)
+    if(corr_i_cnt == 6'd0)
     begin
         if(snoop)
         begin
-            corr_i_out <= {corr_i_accum[12:6], after_hysteresis_prev};
-            corr_q_out <= {corr_q_accum[12:6], after_hysteresis};
+                       // Send 7 most significant bits of tag signal (signed), plus 1 bit reader signal
+                       if (corr_i_accum[13:11] == 3'b000 || corr_i_accum[13:11] == 3'b111) 
+                               corr_i_out <= {corr_i_accum[11:5], after_hysteresis_prev_prev};
+                       else // truncate to maximum value
+                               if (corr_i_accum[13] == 1'b0)
+                                       corr_i_out <= {7'b0111111, after_hysteresis_prev_prev};
+                               else
+                                       corr_i_out <= {7'b1000000, after_hysteresis_prev_prev};
+                       if (corr_q_accum[13:11] == 3'b000 || corr_q_accum[13:11] == 3'b111) 
+                               corr_q_out <= {corr_q_accum[11:5], after_hysteresis_prev};
+                       else // truncate to maximum value
+                               if (corr_q_accum[13] == 1'b0)
+                                       corr_q_out <= {7'b0111111, after_hysteresis_prev};
+                               else
+                                       corr_q_out <= {7'b1000000, after_hysteresis_prev};
+                       after_hysteresis_prev_prev <= after_hysteresis;
         end
         else
         begin
-            // Only correlations need to be delivered.
-            corr_i_out <= corr_i_accum[13:6];
-            corr_q_out <= corr_q_accum[13:6];
+            // Send 8 bits of tag signal
+                       if (corr_i_accum[13:11] == 3'b000 || corr_i_accum[13:11] == 3'b111) 
+                               corr_i_out <= corr_i_accum[11:4];
+                       else // truncate to maximum value
+                               if (corr_i_accum[13] == 1'b0)
+                                       corr_i_out <= 8'b01111111;
+                               else
+                                       corr_i_out <= 8'b10000000;
+                       if (corr_q_accum[13:11] == 3'b000 || corr_q_accum[13:11] == 3'b111) 
+                               corr_q_out <= corr_q_accum[11:4];
+                       else // truncate to maximum value
+                               if (corr_q_accum[13] == 1'b0)
+                                       corr_q_out <= 8'b01111111;
+                               else
+                                       corr_q_out <= 8'b10000000;
         end
-
-        corr_i_accum <= adc_d;
-        corr_q_accum <= adc_d;
-        corr_q_cnt <= 4;
-        corr_i_cnt <= 0;
+               // Initialize next correlation. 
+               // Both I and Q reference signals are high when corr_i_nct == 0. Therefore need to accumulate.
+        corr_i_accum <= $signed({1'b0,adc_d});
+        corr_q_accum <= $signed({1'b0,adc_d});
     end
     else
     begin
-        if(corr_i_cnt[3])
-            corr_i_accum <= corr_i_accum - adc_d;
+        if (subcarrier_I)
+            corr_i_accum <= corr_i_accum + $signed({1'b0,adc_d});
         else
-            corr_i_accum <= corr_i_accum + adc_d;
+            corr_i_accum <= corr_i_accum - $signed({1'b0,adc_d});
 
-        if(corr_q_cnt[3])
-            corr_q_accum <= corr_q_accum - adc_d;
+        if (subcarrier_Q)
+            corr_q_accum <= corr_q_accum + $signed({1'b0,adc_d});
         else
-            corr_q_accum <= corr_q_accum + adc_d;
+            corr_q_accum <= corr_q_accum - $signed({1'b0,adc_d});
 
-        corr_i_cnt <= corr_i_cnt + 1;
-        corr_q_cnt <= corr_q_cnt + 1;
     end
 
-    // The logic in hi_simulate.v reports 4 samples per bit. We report two
-    // (I, Q) pairs per bit, so we should do 2 samples per pair.
-    if(corr_i_cnt == 6'd31)
+       // for each Q/I pair report two reader signal samples when sniffing
+    if(corr_i_cnt == 6'd32)
         after_hysteresis_prev <= after_hysteresis;
 
     // Then the result from last time is serialized and send out to the ARM.
@@ -161,14 +190,16 @@ begin
     begin
         ssp_clk <= 1'b1;
         // Don't shift if we just loaded new data, obviously.
-        if(corr_i_cnt != 7'd0)
+        if(corr_i_cnt != 6'd0)
         begin
             corr_i_out[7:0] <= {corr_i_out[6:0], corr_q_out[7]};
             corr_q_out[7:1] <= corr_q_out[6:0];
         end
     end
 
-    if(corr_i_cnt[5:2] == 4'b000 || corr_i_cnt[5:2] == 4'b1000)
+    // set ssp_frame signal for corr_i_cnt = 0..3
+    // (send one frame with 16 Bits)
+    if(corr_i_cnt[5:2] == 4'b0000)
         ssp_frame = 1'b1;
     else
         ssp_frame = 1'b0;
@@ -179,7 +210,4 @@ assign ssp_din = corr_i_out[7];
 
 assign dbg = corr_i_cnt[3];
 
-// Unused.
-assign pwr_lo = 1'b0;
-
 endmodule
Impressum, Datenschutz