else if(~(| adc_d[7:5])) after_hysteresis = 1'b0;
end
-// Divide 13.56 MHz by 32 to produce the SSP_CLK
-// The register is bigger to allow higher division factors of up to /128
-reg [6:0] ssp_clk_divider;
+
+// Divide 13.56 MHz to produce various frequencies for SSP_CLK
+// and modulation. 11 bits allow for factors of up to /128.
+reg [10:0] ssp_clk_divider;
+
always @(posedge adc_clk)
ssp_clk_divider <= (ssp_clk_divider + 1);
-assign ssp_clk = ssp_clk_divider[4];
+
+reg ssp_clk;
+
+always @(negedge adc_clk)
+begin
+ if(mod_type == 3'b101)
+ // Get bit every at 53KHz (every 8th carrier bit of 424kHz)
+ ssp_clk <= ssp_clk_divider[7];
+ else if(mod_type == 3'b010)
+ // Get next bit at 212kHz
+ ssp_clk <= ssp_clk_divider[5];
+ else
+ // Get next bit at 424Khz
+ ssp_clk <= ssp_clk_divider[4];
+end
+
// Divide SSP_CLK by 8 to produce the byte framing signal; the phase of
// this is arbitrary, because it's just a bitstream.
always @(negedge ssp_clk)
ssp_frame_divider_from_arm <= (ssp_frame_divider_from_arm + 1);
+
reg ssp_frame;
always @(ssp_frame_divider_to_arm or ssp_frame_divider_from_arm or mod_type)
if(mod_type == 3'b000) // not modulating, so listening, to ARM
always @(posedge ssp_clk)
ssp_din = after_hysteresis;
-// Modulating carrier frequency is fc/16, reuse ssp_clk divider for that
+// Modulating carrier frequency is fc/64 (212kHz) to fc/16 (848kHz). Reuse ssp_clk divider for that.
reg modulating_carrier;
always @(mod_type or ssp_clk or ssp_dout)
if(mod_type == 3'b000)
modulating_carrier <= ssp_dout ^ ssp_clk_divider[3]; // XOR means BPSK
else if(mod_type == 3'b010)
modulating_carrier <= ssp_dout & ssp_clk_divider[5]; // switch 212kHz subcarrier on/off
+ else if(mod_type == 3'b100 || mod_type == 3'b101)
+ modulating_carrier <= ssp_dout & ssp_clk_divider[4]; // switch 424kHz modulation on/off
else
modulating_carrier <= 1'b0; // yet unused
// This one is always on, so that we can watch the carrier.
assign pwr_oe3 = 1'b0;
-assign dbg = after_hysteresis;
+assign dbg = ssp_din;
endmodule