#include "mifareutil.h"
static uint32_t iso14a_timeout;
-uint8_t *trace = (uint8_t *) BigBuf+TRACE_OFFSET;
int rsamples = 0;
-int traceLen = 0;
int tracing = TRUE;
uint8_t trigger = 0;
// the block number for the ISO14443-4 PCB
}
void iso14a_clear_trace() {
- memset(trace, 0x44, TRACE_SIZE);
+ uint8_t *trace = BigBuf_get_addr();
+ uint16_t max_traceLen = BigBuf_max_traceLen();
+ memset(trace, 0x44, max_traceLen);
traceLen = 0;
}
{
if (!tracing) return FALSE;
+ uint8_t *trace = BigBuf_get_addr();
uint16_t num_paritybytes = (iLen-1)/8 + 1; // number of valid paritybytes in *parity
uint16_t duration = timestamp_end - timestamp_start;
// Return when trace is full
- if (traceLen + sizeof(iLen) + sizeof(timestamp_start) + sizeof(duration) + num_paritybytes + iLen >= TRACE_SIZE) {
+ uint16_t max_traceLen = BigBuf_max_traceLen();
+ if (traceLen + sizeof(iLen) + sizeof(timestamp_start) + sizeof(duration) + num_paritybytes + iLen >= max_traceLen) {
tracing = FALSE; // don't trace any more
return FALSE;
}
// bit 1 - trigger from first reader 7-bit request
LEDsoff();
- // init trace buffer
- iso14a_clear_trace();
- iso14a_set_tracing(TRUE);
// We won't start recording the frames that we acquire until we trigger;
// a good trigger condition to get started is probably when we see a
// triggered == FALSE -- to wait first for card
bool triggered = !(param & 0x03);
+ // Allocate memory from BigBuf for some buffers
+ // free all previous allocations first
+ BigBuf_free();
+
// The command (reader -> tag) that we're receiving.
- // The length of a received command will in most cases be no more than 18 bytes.
- // So 32 should be enough!
- uint8_t *receivedCmd = ((uint8_t *)BigBuf) + RECV_CMD_OFFSET;
- uint8_t *receivedCmdPar = ((uint8_t *)BigBuf) + RECV_CMD_PAR_OFFSET;
+ uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
+ uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
// The response (tag -> reader) that we're receiving.
- uint8_t *receivedResponse = ((uint8_t *)BigBuf) + RECV_RESP_OFFSET;
- uint8_t *receivedResponsePar = ((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET;
-
- // As we receive stuff, we copy it from receivedCmd or receivedResponse
- // into trace, along with its length and other annotations.
- //uint8_t *trace = (uint8_t *)BigBuf;
+ uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE);
+ uint8_t *receivedResponsePar = BigBuf_malloc(MAX_PARITY_SIZE);
// The DMA buffer, used to stream samples from the FPGA
- uint8_t *dmaBuf = ((uint8_t *)BigBuf) + DMA_BUFFER_OFFSET;
+ uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
+
+ // init trace buffer
+ iso14a_clear_trace();
+ iso14a_set_tracing(TRUE);
+
uint8_t *data = dmaBuf;
uint8_t previous_data = 0;
int maxDataLen = 0;
// test for length of buffer
if(dataLen > maxDataLen) {
maxDataLen = dataLen;
- if(dataLen > 400) {
+ if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
Dbprintf("blew circular buffer! dataLen=%d", dataLen);
break;
}
bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity);
-static uint8_t* free_buffer_pointer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
+static uint8_t* free_buffer_pointer;
typedef struct {
uint8_t* response;
uint32_t ProxToAirDuration;
} tag_response_info_t;
-void reset_free_buffer() {
- free_buffer_pointer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
-}
-
bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) {
// Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
// This will need the following byte array for a modulation sequence
// ----------- +
// 166 bytes, since every bit that needs to be send costs us a byte
//
-
+
+
// Prepare the tag modulation bits from the message
CodeIso14443aAsTag(response_info->response,response_info->response_n);
return true;
}
+
+// "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit.
+// Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
+// 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits
+// -> need 273 bytes buffer
+#define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 273
+
bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
// Retrieve and store the current buffer index
response_info->modulation = free_buffer_pointer;
// Determine the maximum size we can use from our buffer
- size_t max_buffer_size = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + FREE_BUFFER_SIZE) - free_buffer_pointer;
+ size_t max_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE;
// Forward the prepare tag modulation function to the inner function
- if (prepare_tag_modulation(response_info,max_buffer_size)) {
+ if (prepare_tag_modulation(response_info, max_buffer_size)) {
// Update the free buffer offset
free_buffer_pointer += ToSendMax;
return true;
//-----------------------------------------------------------------------------
void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
{
- // Enable and clear the trace
- iso14a_clear_trace();
- iso14a_set_tracing(TRUE);
-
uint8_t sak;
// The first response contains the ATQA (note: bytes are transmitted in reverse order).
}
// The second response contains the (mandatory) first 24 bits of the UID
- uint8_t response2[5];
+ uint8_t response2[5] = {0x00};
// Check if the uid uses the (optional) part
- uint8_t response2a[5];
+ uint8_t response2a[5] = {0x00};
+
if (uid_2nd) {
response2[0] = 0x88;
num_to_bytes(uid_1st,3,response2+1);
response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3];
// Prepare the mandatory SAK (for 4 and 7 byte UID)
- uint8_t response3[3];
+ uint8_t response3[3] = {0x00};
response3[0] = sak;
ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
// Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
- uint8_t response3a[3];
+ uint8_t response3a[3] = {0x00};
response3a[0] = sak & 0xFB;
ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
.modulation_n = 0
};
- // Reset the offset pointer of the free buffer
- reset_free_buffer();
-
+ BigBuf_free_keep_EM();
+
+ // allocate buffers:
+ uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
+ uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
+ free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE);
+
+ // clear trace
+ iso14a_clear_trace();
+ iso14a_set_tracing(TRUE);
+
// Prepare the responses of the anticollision phase
// there will be not enough time to do this at the moment the reader sends it REQA
for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) {
// We need to listen to the high-frequency, peak-detected path.
iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
- // buffers used on software Uart:
- uint8_t *receivedCmd = ((uint8_t *)BigBuf) + RECV_CMD_OFFSET;
- uint8_t *receivedCmdPar = ((uint8_t *)BigBuf) + RECV_CMD_PAR_OFFSET;
-
cmdsRecvd = 0;
tag_response_info_t* p_response;
Dbprintf("%x %x %x", happened, happened2, cmdsRecvd);
LED_A_OFF();
+ BigBuf_free_keep_EM();
}
uint8_t sel_all[] = { 0x93,0x20 };
uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
- uint8_t *resp = ((uint8_t *)BigBuf) + RECV_RESP_OFFSET;
- uint8_t *resp_par = ((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET;
+ uint8_t resp[MAX_FRAME_SIZE]; // theoretically. A usual RATS will be much smaller
+ uint8_t resp_par[MAX_PARITY_SIZE];
byte_t uid_resp[4];
size_t uid_resp_len;
Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point
uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
- uid_resp[uid_resp_bits & 0xf8] |= UIDbit << (uid_resp_bits % 8);
+ uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8);
}
uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position
uid_resp_bits++;
if (!ReaderReceive(resp, resp_par)) return 0;
sak = resp[0];
- // Test if more parts of the uid are comming
+ // Test if more parts of the uid are coming
if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) {
// Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
// http://www.nxp.com/documents/application_note/AN10927.pdf
uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
static uint8_t mf_nr_ar3;
- uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + RECV_RESP_OFFSET);
- uint8_t* receivedAnswerPar = (((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET);
+ uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
+ uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
+ // free eventually allocated BigBuf memory. We want all for tracing.
+ BigBuf_free();
+
iso14a_clear_trace();
iso14a_set_tracing(TRUE);
struct Crypto1State *pcs;
pcs = &mpcs;
uint32_t numReads = 0;//Counts numer of times reader read a block
- uint8_t* receivedCmd = get_bigbufptr_recvcmdbuf();
- uint8_t* receivedCmd_par = receivedCmd + MAX_FRAME_SIZE;
- uint8_t* response = get_bigbufptr_recvrespbuf();
- uint8_t* response_par = response + MAX_FRAME_SIZE;
+ uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
+ uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE];
+ uint8_t response[MAX_MIFARE_FRAME_SIZE];
+ uint8_t response_par[MAX_MIFARE_PARITY_SIZE];
uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0};
uint8_t ar_nr_collected = 0;
+ // free eventually allocated BigBuf memory but keep Emulator Memory
+ BigBuf_free_keep_EM();
// clear trace
iso14a_clear_trace();
iso14a_set_tracing(TRUE);
// The command (reader -> tag) that we're receiving.
// The length of a received command will in most cases be no more than 18 bytes.
// So 32 should be enough!
- uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
- uint8_t *receivedCmdPar = ((uint8_t *)BigBuf) + RECV_CMD_PAR_OFFSET;
+ uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
+ uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE];
// The response (tag -> reader) that we're receiving.
- uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RESP_OFFSET);
- uint8_t *receivedResponsePar = ((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET;
+ uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE];
+ uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE];
// As we receive stuff, we copy it from receivedCmd or receivedResponse
// into trace, along with its length and other annotations.
//uint8_t *trace = (uint8_t *)BigBuf;
- // The DMA buffer, used to stream samples from the FPGA
- uint8_t *dmaBuf = ((uint8_t *)BigBuf) + DMA_BUFFER_OFFSET;
+ // free eventually allocated BigBuf memory
+ BigBuf_free();
+ // allocate the DMA buffer, used to stream samples from the FPGA
+ uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
uint8_t *data = dmaBuf;
uint8_t previous_data = 0;
int maxDataLen = 0;
// test for length of buffer
if(dataLen > maxDataLen) { // we are more behind than ever...
maxDataLen = dataLen;
- if(dataLen > 400) {
+ if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
break;
}