// executes.
//-----------------------------------------------------------------------------
+#include <stdarg.h>
+
#include "usb_cdc.h"
#include "cmd.h"
-
#include "proxmark3.h"
#include "apps.h"
+#include "fpga.h"
#include "util.h"
#include "printf.h"
#include "string.h"
-
-#include <stdarg.h>
-
#include "legicrf.h"
-#include <hitag2.h>
+#include "legicrfsim.h"
+#include "hitag2.h"
+#include "hitagS.h"
#include "lfsampling.h"
#include "BigBuf.h"
#include "mifareutil.h"
+#include "pcf7931.h"
+#include "i2c.h"
#ifdef WITH_LCD
#include "LCD.h"
#endif
+
// Craig Young - 14a stand-alone code
-#ifdef WITH_ISO14443a_StandAlone
+#ifdef WITH_ISO14443a
#include "iso14443a.h"
#endif
-#define abs(x) ( ((x)<0) ? -(x) : (x) )
-
//=============================================================================
// A buffer where we can queue things up to be sent through the FPGA, for
// any purpose (fake tag, as reader, whatever). We go MSB first, since that
// return that.
//-----------------------------------------------------------------------------
static int ReadAdc(int ch)
-{
- uint32_t d;
-
- AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
- AT91C_BASE_ADC->ADC_MR =
- ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
- ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
- ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
-
+{
// Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
- // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
- // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
+ // AMPL_HI is a high impedance (10MOhm || 1MOhm) output, the input capacitance of the ADC is 12pF (typical). This results in a time constant
+ // of RC = (0.91MOhm) * 12pF = 10.9us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
//
// The maths are:
// If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
//
- // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
- //
- // Note: with the "historic" values in the comments above, the error was 34% !!!
-
- AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
+ // v_cap = v_in * (1 - exp(-SHTIM/RC)) = v_in * (1 - exp(-40us/10.9us)) = v_in * 0,97 (i.e. an error of 3%)
- AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
+ AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
+ AT91C_BASE_ADC->ADC_MR =
+ ADC_MODE_PRESCALE(63) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
+ ADC_MODE_STARTUP_TIME(1) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
+ ADC_MODE_SAMPLE_HOLD_TIME(15); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
- while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))
- ;
- d = AT91C_BASE_ADC->ADC_CDR[ch];
+ AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
+ AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
- return d;
+ while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch))) {};
+
+ return AT91C_BASE_ADC->ADC_CDR[ch] & 0x3ff;
}
int AvgAdc(int ch) // was static - merlok
return (a + 15) >> 5;
}
-void MeasureAntennaTuning(void)
+static int AvgAdc_Voltage_HF(void)
{
- uint8_t LF_Results[256];
- int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; //ptr = 0
- int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
+ int AvgAdc_Voltage_Low, AvgAdc_Voltage_High;
+
+ AvgAdc_Voltage_Low= (MAX_ADC_HF_VOLTAGE_LOW * AvgAdc(ADC_CHAN_HF_LOW)) >> 10;
+ // if voltage range is about to be exceeded, use high voltage ADC channel if available (RDV40 only)
+ if (AvgAdc_Voltage_Low > MAX_ADC_HF_VOLTAGE_LOW - 300) {
+ AvgAdc_Voltage_High = (MAX_ADC_HF_VOLTAGE_HIGH * AvgAdc(ADC_CHAN_HF_HIGH)) >> 10;
+ if (AvgAdc_Voltage_High >= AvgAdc_Voltage_Low) {
+ return AvgAdc_Voltage_High;
+ }
+ }
+ return AvgAdc_Voltage_Low;
+}
- LED_B_ON();
+static int AvgAdc_Voltage_LF(void)
+{
+ return (MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10;
+}
+
+void MeasureAntennaTuningLfOnly(int *vLf125, int *vLf134, int *peakf, int *peakv, uint8_t LF_Results[])
+{
+ int i, adcval = 0, peak = 0;
/*
* Sweeps the useful LF range of the proxmark from
* the resonating frequency of your LF antenna
* ( hopefully around 95 if it is tuned to 125kHz!)
*/
-
- FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+ SpinDelay(50);
+
for (i=255; i>=19; i--) {
- WDT_HIT();
+ WDT_HIT();
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
SpinDelay(20);
- adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
- if (i==95) vLf125 = adcval; // voltage at 125Khz
- if (i==89) vLf134 = adcval; // voltage at 134Khz
+ adcval = AvgAdc_Voltage_LF();
+ if (i==95) *vLf125 = adcval; // voltage at 125Khz
+ if (i==89) *vLf134 = adcval; // voltage at 134Khz
- LF_Results[i] = adcval>>8; // scale int to fit in byte for graphing purposes
+ LF_Results[i] = adcval >> 9; // scale int to fit in byte for graphing purposes
if(LF_Results[i] > peak) {
- peakv = adcval;
+ *peakv = adcval;
peak = LF_Results[i];
- peakf = i;
+ *peakf = i;
//ptr = i;
}
}
for (i=18; i >= 0; i--) LF_Results[i] = 0;
-
- LED_A_ON();
+
+ return;
+}
+
+void MeasureAntennaTuningHfOnly(int *vHf)
+{
// Let the FPGA drive the high-frequency antenna around 13.56 MHz.
- FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+ LED_A_ON();
+ FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
SpinDelay(20);
- vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
+ *vHf = AvgAdc_Voltage_HF();
+ LED_A_OFF();
+ return;
+}
+
+void MeasureAntennaTuning(int mode)
+{
+ uint8_t LF_Results[256] = {0};
+ int peakv = 0, peakf = 0;
+ int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
+
+ LED_B_ON();
+
+ if (((mode & FLAG_TUNE_ALL) == FLAG_TUNE_ALL) && (FpgaGetCurrent() == FPGA_BITSTREAM_HF)) {
+ // Reverse "standard" order if HF already loaded, to avoid unnecessary swap.
+ MeasureAntennaTuningHfOnly(&vHf);
+ MeasureAntennaTuningLfOnly(&vLf125, &vLf134, &peakf, &peakv, LF_Results);
+ } else {
+ if (mode & FLAG_TUNE_LF) {
+ MeasureAntennaTuningLfOnly(&vLf125, &vLf134, &peakf, &peakv, LF_Results);
+ }
+ if (mode & FLAG_TUNE_HF) {
+ MeasureAntennaTuningHfOnly(&vHf);
+ }
+ }
- cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125 | (vLf134<<16), vHf, peakf | (peakv<<16), LF_Results, 256);
+ cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125>>1 | (vLf134>>1<<16), vHf, peakf | (peakv>>1<<16), LF_Results, 256);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- LED_A_OFF();
LED_B_OFF();
return;
}
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
for (;;) {
- SpinDelay(20);
- vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
+ SpinDelay(500);
+ vHf = AvgAdc_Voltage_HF();
Dbprintf("%d mV",vHf);
if (BUTTON_PRESS()) break;
extern struct version_information version_information;
/* bootrom version information is pointed to from _bootphase1_version_pointer */
extern char *_bootphase1_version_pointer, _flash_start, _flash_end, _bootrom_start, _bootrom_end, __data_src_start__;
+
+
void SendVersion(void)
{
char temp[USB_CMD_DATA_SIZE]; /* Limited data payload in USB packets */
FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
- FpgaGatherVersion(FPGA_BITSTREAM_LF, temp, sizeof(temp));
- strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
- FpgaGatherVersion(FPGA_BITSTREAM_HF, temp, sizeof(temp));
- strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
-
+ for (int i = 0; i < fpga_bitstream_num; i++) {
+ strncat(VersionString, fpga_version_information[i], sizeof(VersionString) - strlen(VersionString) - 1);
+ strncat(VersionString, "\n", sizeof(VersionString) - strlen(VersionString) - 1);
+ }
+
+ // test availability of SmartCard slot
+ if (I2C_is_available()) {
+ strncat(VersionString, "SmartCard Slot: available\n", sizeof(VersionString) - strlen(VersionString) - 1);
+ } else {
+ strncat(VersionString, "SmartCard Slot: not available\n", sizeof(VersionString) - strlen(VersionString) - 1);
+ }
+
// Send Chip ID and used flash memory
uint32_t text_and_rodata_section_size = (uint32_t)&__data_src_start__ - (uint32_t)&_flash_start;
uint32_t compressed_data_section_size = common_area.arg1;
// measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
// Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
-void printUSBSpeed(uint32_t SpeedTestBufferSize)
+void printUSBSpeed(void)
{
Dbprintf("USB Speed:");
- Dbprintf(" Sending %d bytes payload...", SpeedTestBufferSize);
+ Dbprintf(" Sending USB packets to client...");
+ #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
uint8_t *test_data = BigBuf_get_addr();
+ uint32_t end_time;
- uint32_t start_time = GetTickCount();
-
+ uint32_t start_time = end_time = GetTickCount();
+ uint32_t bytes_transferred = 0;
+
LED_B_ON();
- for(size_t i=0; i<SpeedTestBufferSize; i += USB_CMD_DATA_SIZE) {
- size_t len = MIN((SpeedTestBufferSize - i), USB_CMD_DATA_SIZE);
- cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,0,len,0,test_data,len);
+ while(end_time < start_time + USB_SPEED_TEST_MIN_TIME) {
+ cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K, 0, USB_CMD_DATA_SIZE, 0, test_data, USB_CMD_DATA_SIZE);
+ end_time = GetTickCount();
+ bytes_transferred += USB_CMD_DATA_SIZE;
}
LED_B_OFF();
- uint32_t end_time = GetTickCount();
-
- Dbprintf(" Time elapsed: %dms, USB Transfer Speed PM3 -> Client = %d Bytes/s",
- end_time - start_time,
- 1000* SpeedTestBufferSize / (end_time - start_time));
+ Dbprintf(" Time elapsed: %dms", end_time - start_time);
+ Dbprintf(" Bytes transferred: %d", bytes_transferred);
+ Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
+ 1000 * bytes_transferred / (end_time - start_time));
}
/**
* Prints runtime information about the PM3.
**/
-void SendStatus(uint32_t SpeedTestBufferSize)
+void SendStatus(void)
{
BigBuf_print_status();
Fpga_print_status();
+#ifdef WITH_SMARTCARD
+ I2C_print_status();
+#endif
printConfig(); //LF Sampling config
- printUSBSpeed(SpeedTestBufferSize);
+ printUSBSpeed();
Dbprintf("Various");
- Dbprintf(" MF_DBGLEVEL......%d", MF_DBGLEVEL);
- Dbprintf(" ToSendMax........%d",ToSendMax);
- Dbprintf(" ToSendBit........%d",ToSendBit);
+ Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL);
+ Dbprintf(" ToSendMax..........%d", ToSendMax);
+ Dbprintf(" ToSendBit..........%d", ToSendBit);
cmd_send(CMD_ACK,1,0,0,0,0);
}
-#if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
+#if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF_StandAlone)
#define OPTS 2
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
int selected = 0;
- int playing = 0, iGotoRecord = 0, iGotoClone = 0;
- int cardRead[OPTS] = {0};
+ bool playing = false, GotoRecord = false, GotoClone = false;
+ bool cardRead[OPTS] = {false};
uint8_t readUID[10] = {0};
uint32_t uid_1st[OPTS]={0};
uint32_t uid_2nd[OPTS]={0};
WDT_HIT();
SpinDelay(300);
- if (iGotoRecord == 1 || cardRead[selected] == 0)
+ if (GotoRecord || !cardRead[selected])
{
- iGotoRecord = 0;
+ GotoRecord = false;
LEDsoff();
LED(selected + 1, 0);
LED(LED_RED2, 0);
else if (cardRead[(selected+1)%OPTS]) {
Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected, (selected+1)%OPTS);
selected = (selected+1)%OPTS;
- break; // playing = 1;
+ break;
}
else {
Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
SpinDelay(300);
}
}
- if (!iso14443a_select_card(uid, &hi14a_card[selected], &cuid))
+ if (!iso14443a_select_card(uid, &hi14a_card[selected], &cuid, true, 0, true))
continue;
else
{
LED(selected + 1, 0);
// Next state is replay:
- playing = 1;
+ playing = true;
- cardRead[selected] = 1;
+ cardRead[selected] = true;
}
/* MF Classic UID clone */
- else if (iGotoClone==1)
+ else if (GotoClone)
{
- iGotoClone=0;
+ GotoClone=false;
LEDsoff();
LED(selected + 1, 0);
LED(LED_ORANGE, 250);
MifareCGetBlock(0x3F, 1, 0, oldBlock0);
if (oldBlock0[0] == 0 && oldBlock0[0] == oldBlock0[1] && oldBlock0[1] == oldBlock0[2] && oldBlock0[2] == oldBlock0[3]) {
Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected);
- playing = 1;
+ playing = true;
}
else {
Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0[0],oldBlock0[1],oldBlock0[2],oldBlock0[3]);
if (memcmp(testBlock0,newBlock0,16)==0)
{
DbpString("Cloned successfull!");
- cardRead[selected] = 0; // Only if the card was cloned successfully should we clear it
- playing = 0;
- iGotoRecord = 1;
+ cardRead[selected] = false; // Only if the card was cloned successfully should we clear it
+ playing = false;
+ GotoRecord = true;
selected = (selected+1) % OPTS;
}
else {
Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected);
- playing = 1;
+ playing = true;
}
}
LEDsoff();
}
// Change where to record (or begin playing)
- else if (playing==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
+ else if (playing) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
{
LEDsoff();
LED(selected + 1, 0);
// Begin transmitting
- if (playing)
- {
- LED(LED_GREEN, 0);
- DbpString("Playing");
- for ( ; ; ) {
- WDT_HIT();
- int button_action = BUTTON_HELD(1000);
- if (button_action == 0) { // No button action, proceed with sim
- uint8_t data[512] = {0}; // in case there is a read command received we shouldn't break
- Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st[selected],uid_2nd[selected],selected);
- if (hi14a_card[selected].sak == 8 && hi14a_card[selected].atqa[0] == 4 && hi14a_card[selected].atqa[1] == 0) {
- DbpString("Mifare Classic");
- SimulateIso14443aTag(1,uid_1st[selected], uid_2nd[selected], data); // Mifare Classic
- }
- else if (hi14a_card[selected].sak == 0 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 0) {
- DbpString("Mifare Ultralight");
- SimulateIso14443aTag(2,uid_1st[selected],uid_2nd[selected],data); // Mifare Ultralight
- }
- else if (hi14a_card[selected].sak == 20 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 3) {
- DbpString("Mifare DESFire");
- SimulateIso14443aTag(3,uid_1st[selected],uid_2nd[selected],data); // Mifare DESFire
- }
- else {
- Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
- SimulateIso14443aTag(1,uid_1st[selected], uid_2nd[selected], data);
- }
+ LED(LED_GREEN, 0);
+ DbpString("Playing");
+ for ( ; ; ) {
+ WDT_HIT();
+ int button_action = BUTTON_HELD(1000);
+ if (button_action == 0) { // No button action, proceed with sim
+ uint8_t data[512] = {0}; // in case there is a read command received we shouldn't break
+ Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st[selected],uid_2nd[selected],selected);
+ if (hi14a_card[selected].sak == 8 && hi14a_card[selected].atqa[0] == 4 && hi14a_card[selected].atqa[1] == 0) {
+ DbpString("Mifare Classic");
+ SimulateIso14443aTag(1,uid_1st[selected], uid_2nd[selected], data); // Mifare Classic
}
- else if (button_action == BUTTON_SINGLE_CLICK) {
- selected = (selected + 1) % OPTS;
- Dbprintf("Done playing. Switching to record mode on bank %d",selected);
- iGotoRecord = 1;
- break;
+ else if (hi14a_card[selected].sak == 0 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 0) {
+ DbpString("Mifare Ultralight");
+ SimulateIso14443aTag(2,uid_1st[selected],uid_2nd[selected],data); // Mifare Ultralight
}
- else if (button_action == BUTTON_HOLD) {
- Dbprintf("Playtime over. Begin cloning...");
- iGotoClone = 1;
- break;
+ else if (hi14a_card[selected].sak == 20 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 3) {
+ DbpString("Mifare DESFire");
+ SimulateIso14443aTag(3,uid_1st[selected],uid_2nd[selected],data); // Mifare DESFire
+ }
+ else {
+ Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
+ SimulateIso14443aTag(1,uid_1st[selected], uid_2nd[selected], data);
}
- WDT_HIT();
}
-
- /* We pressed a button so ignore it here with a delay */
- SpinDelay(300);
- LEDsoff();
- LED(selected + 1, 0);
+ else if (button_action == BUTTON_SINGLE_CLICK) {
+ selected = (selected + 1) % OPTS;
+ Dbprintf("Done playing. Switching to record mode on bank %d",selected);
+ GotoRecord = true;
+ break;
+ }
+ else if (button_action == BUTTON_HOLD) {
+ Dbprintf("Playtime over. Begin cloning...");
+ GotoClone = true;
+ break;
+ }
+ WDT_HIT();
}
- else
- while(BUTTON_PRESS())
- WDT_HIT();
+
+ /* We pressed a button so ignore it here with a delay */
+ SpinDelay(300);
+ LEDsoff();
+ LED(selected + 1, 0);
}
}
}
-#elif WITH_LF
+#elif WITH_LF_StandAlone
// samy's sniff and repeat routine
void SamyRun()
{
StandAloneMode();
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
- int high[OPTS], low[OPTS];
+ int tops[OPTS], high[OPTS], low[OPTS];
int selected = 0;
int playing = 0;
int cardRead = 0;
/* need this delay to prevent catching some weird data */
SpinDelay(500);
- CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
- Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]);
+ CmdHIDdemodFSK(1, &tops[selected], &high[selected], &low[selected], 0);
+ if (tops[selected] > 0)
+ Dbprintf("Recorded %x %x%08x%08x", selected, tops[selected], high[selected], low[selected]);
+ else
+ Dbprintf("Recorded %x %x%08x", selected, high[selected], low[selected]);
LEDsoff();
LED(selected + 1, 0);
LED(LED_ORANGE, 0);
// record
- Dbprintf("Cloning %x %x %x", selected, high[selected], low[selected]);
+ if (tops[selected] > 0)
+ Dbprintf("Cloning %x %x%08x%08x", selected, tops[selected], high[selected], low[selected]);
+ else
+ Dbprintf("Cloning %x %x%08x", selected, high[selected], low[selected]);
// wait for button to be released
while(BUTTON_PRESS())
/* need this delay to prevent catching some weird data */
SpinDelay(500);
- CopyHIDtoT55x7(high[selected], low[selected], 0, 0);
- Dbprintf("Cloned %x %x %x", selected, high[selected], low[selected]);
+ CopyHIDtoT55x7(tops[selected] & 0x000FFFFF, high[selected], low[selected], (tops[selected] != 0 && ((high[selected]& 0xFFFFFFC0) != 0)));
+ if (tops[selected] > 0)
+ Dbprintf("Cloned %x %x%08x%08x", selected, tops[selected], high[selected], low[selected]);
+ else
+ Dbprintf("Cloned %x %x%08x", selected, high[selected], low[selected]);
LEDsoff();
LED(selected + 1, 0);
// wait for button to be released
while(BUTTON_PRESS())
WDT_HIT();
- Dbprintf("%x %x %x", selected, high[selected], low[selected]);
- CmdHIDsimTAG(high[selected], low[selected], 0);
+ if (tops[selected] > 0)
+ Dbprintf("%x %x%08x%08x", selected, tops[selected], high[selected], low[selected]);
+ else
+ Dbprintf("%x %x%08x", selected, high[selected], low[selected]);
+
+ CmdHIDsimTAG(tops[selected], high[selected], low[selected], 0);
DbpString("Done playing");
if (BUTTON_HELD(1000) > 0)
{
void ListenReaderField(int limit)
{
- int lf_av, lf_av_new, lf_baseline= 0, lf_max;
- int hf_av, hf_av_new, hf_baseline= 0, hf_max;
+ int lf_av, lf_av_new=0, lf_baseline= 0, lf_max;
+ int hf_av, hf_av_new=0, hf_baseline= 0, hf_max;
int mode=1, display_val, display_max, i;
-#define LF_ONLY 1
-#define HF_ONLY 2
-#define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
+#define LF_ONLY 1
+#define HF_ONLY 2
+#define REPORT_CHANGE_PERCENT 5 // report new values only if they have changed at least by REPORT_CHANGE_PERCENT
+#define MIN_HF_FIELD 300 // in mode 1 signal HF field greater than MIN_HF_FIELD above baseline
+#define MIN_LF_FIELD 1200 // in mode 1 signal LF field greater than MIN_LF_FIELD above baseline
// switch off FPGA - we don't want to measure our own signal
LEDsoff();
- lf_av = lf_max = AvgAdc(ADC_CHAN_LF);
+ lf_av = lf_max = AvgAdc_Voltage_LF();
if(limit != HF_ONLY) {
- Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE * lf_av) >> 10);
+ Dbprintf("LF 125/134kHz Baseline: %dmV", lf_av);
lf_baseline = lf_av;
}
- hf_av = hf_max = AvgAdc(ADC_CHAN_HF);
-
+ hf_av = hf_max = AvgAdc_Voltage_HF();
+
if (limit != LF_ONLY) {
- Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE * hf_av) >> 10);
+ Dbprintf("HF 13.56MHz Baseline: %dmV", hf_av);
hf_baseline = hf_av;
}
for(;;) {
+ SpinDelay(500);
if (BUTTON_PRESS()) {
- SpinDelay(500);
switch (mode) {
case 1:
mode=2;
return;
break;
}
+ while (BUTTON_PRESS());
}
WDT_HIT();
if (limit != HF_ONLY) {
if(mode == 1) {
- if (abs(lf_av - lf_baseline) > REPORT_CHANGE)
+ if (lf_av - lf_baseline > MIN_LF_FIELD)
LED_D_ON();
else
LED_D_OFF();
}
- lf_av_new = AvgAdc(ADC_CHAN_LF);
+ lf_av_new = AvgAdc_Voltage_LF();
// see if there's a significant change
- if(abs(lf_av - lf_av_new) > REPORT_CHANGE) {
- Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE * lf_av_new) >> 10);
+ if (ABS((lf_av - lf_av_new)*100/(lf_av?lf_av:1)) > REPORT_CHANGE_PERCENT) {
+ Dbprintf("LF 125/134kHz Field Change: %5dmV", lf_av_new);
lf_av = lf_av_new;
if (lf_av > lf_max)
lf_max = lf_av;
if (limit != LF_ONLY) {
if (mode == 1){
- if (abs(hf_av - hf_baseline) > REPORT_CHANGE)
+ if (hf_av - hf_baseline > MIN_HF_FIELD)
LED_B_ON();
else
LED_B_OFF();
}
- hf_av_new = AvgAdc(ADC_CHAN_HF);
+ hf_av_new = AvgAdc_Voltage_HF();
+
// see if there's a significant change
- if(abs(hf_av - hf_av_new) > REPORT_CHANGE) {
- Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE * hf_av_new) >> 10);
+ if (ABS((hf_av - hf_av_new)*100/(hf_av?hf_av:1)) > REPORT_CHANGE_PERCENT) {
+ Dbprintf("HF 13.56MHz Field Change: %5dmV", hf_av_new);
hf_av = hf_av_new;
if (hf_av > hf_max)
hf_max = hf_av;
setSamplingConfig((sample_config *) c->d.asBytes);
break;
case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
- cmd_send(CMD_ACK,SampleLF(c->arg[0]),0,0,0,0);
+ cmd_send(CMD_ACK,SampleLF(c->arg[0], c->arg[1]),0,0,0,0);
break;
case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
cmd_send(CMD_ACK,SnoopLF(),0,0,0,0);
break;
case CMD_HID_DEMOD_FSK:
- CmdHIDdemodFSK(c->arg[0], 0, 0, 1);
+ CmdHIDdemodFSK(c->arg[0], 0, 0, 0, 1);
break;
case CMD_HID_SIM_TAG:
- CmdHIDsimTAG(c->arg[0], c->arg[1], 1);
+ CmdHIDsimTAG(c->arg[0], c->arg[1], c->arg[2], 1);
break;
case CMD_FSK_SIM_TAG:
CmdFSKsimTAG(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
CmdIOdemodFSK(c->arg[0], 0, 0, 1);
break;
case CMD_IO_CLONE_TAG:
- CopyIOtoT55x7(c->arg[0], c->arg[1], c->d.asBytes[0]);
+ CopyIOtoT55x7(c->arg[0], c->arg[1]);
break;
case CMD_EM410X_DEMOD:
CmdEM410xdemod(c->arg[0], 0, 0, 1);
CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
break;
case CMD_T55XX_READ_BLOCK:
- T55xxReadBlock(c->arg[1], c->arg[2],c->d.asBytes[0]);
+ T55xxReadBlock(c->arg[0], c->arg[1], c->arg[2]);
break;
case CMD_T55XX_WRITE_BLOCK:
T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
- cmd_send(CMD_ACK,0,0,0,0,0);
break;
- case CMD_T55XX_READ_TRACE:
- T55xxReadTrace();
+ case CMD_T55XX_WAKEUP:
+ T55xxWakeUp(c->arg[0]);
+ break;
+ case CMD_T55XX_RESET_READ:
+ T55xxResetRead();
break;
case CMD_PCF7931_READ:
ReadPCF7931();
- cmd_send(CMD_ACK,0,0,0,0,0);
+ break;
+ case CMD_PCF7931_WRITE:
+ WritePCF7931(c->d.asBytes[0],c->d.asBytes[1],c->d.asBytes[2],c->d.asBytes[3],c->d.asBytes[4],c->d.asBytes[5],c->d.asBytes[6], c->d.asBytes[9], c->d.asBytes[7]-128,c->d.asBytes[8]-128, c->arg[0], c->arg[1], c->arg[2]);
break;
case CMD_EM4X_READ_WORD:
- EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]);
+ EM4xReadWord(c->arg[0], c->arg[1],c->arg[2]);
break;
case CMD_EM4X_WRITE_WORD:
- EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
+ EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2]);
break;
case CMD_AWID_DEMOD_FSK: // Set realtime AWID demodulation
CmdAWIDdemodFSK(c->arg[0], 0, 0, 1);
- break;
+ break;
+ case CMD_VIKING_CLONE_TAG:
+ CopyVikingtoT55xx(c->arg[0], c->arg[1], c->arg[2]);
+ break;
+ case CMD_COTAG:
+ Cotag(c->arg[0]);
+ break;
#endif
#ifdef WITH_HITAG
case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
break;
+ case CMD_SIMULATE_HITAG_S:// Simulate Hitag s tag, args = memory content
+ SimulateHitagSTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
+ break;
+ case CMD_TEST_HITAGS_TRACES:// Tests every challenge within the given file
+ check_challenges_cmd((bool)c->arg[0], (byte_t*)c->d.asBytes, (uint8_t)c->arg[1]);
+ break;
+ case CMD_READ_HITAG_S://Reader for only Hitag S tags, args = key or challenge
+ ReadHitagSCmd((hitag_function)c->arg[0], (hitag_data*)c->d.asBytes, (uint8_t)c->arg[1], (uint8_t)c->arg[2], false);
+ break;
+ case CMD_READ_HITAG_S_BLK:
+ ReadHitagSCmd((hitag_function)c->arg[0], (hitag_data*)c->d.asBytes, (uint8_t)c->arg[1], (uint8_t)c->arg[2], true);
+ break;
+ case CMD_WR_HITAG_S://writer for Hitag tags args=data to write,page and key or challenge
+ if ((hitag_function)c->arg[0] < 10) {
+ WritePageHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes,c->arg[2]);
+ }
+ else if ((hitag_function)c->arg[0] >= 10) {
+ WriterHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes, c->arg[2]);
+ }
+ break;
#endif
#ifdef WITH_ISO15693
#ifdef WITH_LEGICRF
case CMD_SIMULATE_TAG_LEGIC_RF:
- LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
+ LegicRfSimulate(c->arg[0]);
break;
case CMD_WRITER_LEGIC_RF:
case CMD_MIFAREU_WRITEBL:
MifareUWriteBlock(c->arg[0], c->arg[1], c->d.asBytes);
break;
+ case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES:
+ MifareAcquireEncryptedNonces(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+ break;
case CMD_MIFARE_NESTED:
MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
break;
// Work with "magic Chinese" card
+ case CMD_MIFARE_CWIPE:
+ MifareCWipe(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+ break;
case CMD_MIFARE_CSETBLOCK:
MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
ReaderIClass(c->arg[0]);
break;
case CMD_READER_ICLASS_REPLAY:
- ReaderIClass_Replay(c->arg[0], c->d.asBytes);
+ ReaderIClass_Replay(c->arg[0], c->d.asBytes);
break;
- case CMD_ICLASS_EML_MEMSET:
+ case CMD_ICLASS_EML_MEMSET:
emlSet(c->d.asBytes,c->arg[0], c->arg[1]);
break;
+ case CMD_ICLASS_WRITEBLOCK:
+ iClass_WriteBlock(c->arg[0], c->d.asBytes);
+ break;
+ case CMD_ICLASS_READCHECK: // auth step 1
+ iClass_ReadCheck(c->arg[0], c->arg[1]);
+ break;
+ case CMD_ICLASS_READBLOCK:
+ iClass_ReadBlk(c->arg[0]);
+ break;
+ case CMD_ICLASS_AUTHENTICATION: //check
+ iClass_Authentication(c->d.asBytes);
+ break;
+ case CMD_ICLASS_DUMP:
+ iClass_Dump(c->arg[0], c->arg[1]);
+ break;
+ case CMD_ICLASS_CLONE:
+ iClass_Clone(c->arg[0], c->arg[1], c->d.asBytes);
+ break;
+#endif
+#ifdef WITH_HFSNOOP
+ case CMD_HF_SNIFFER:
+ HfSnoop(c->arg[0], c->arg[1]);
+ break;
+#endif
+#ifdef WITH_SMARTCARD
+ case CMD_SMART_ATR: {
+ SmartCardAtr();
+ break;
+ }
+ case CMD_SMART_SETCLOCK:{
+ SmartCardSetClock(c->arg[0]);
+ break;
+ }
+ case CMD_SMART_RAW: {
+ SmartCardRaw(c->arg[0], c->arg[1], c->d.asBytes);
+ break;
+ }
+ case CMD_SMART_UPLOAD: {
+ // upload file from client
+ uint8_t *mem = BigBuf_get_addr();
+ memcpy( mem + c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
+ cmd_send(CMD_ACK,1,0,0,0,0);
+ break;
+ }
+ case CMD_SMART_UPGRADE: {
+ SmartCardUpgrade(c->arg[0]);
+ break;
+ }
#endif
case CMD_BUFF_CLEAR:
break;
case CMD_MEASURE_ANTENNA_TUNING:
- MeasureAntennaTuning();
+ MeasureAntennaTuning(c->arg[0]);
break;
case CMD_MEASURE_ANTENNA_TUNING_HF:
break;
case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
+ // iceman; since changing fpga_bitstreams clears bigbuff, Its better to call it before.
+ // to be able to use this one for uploading data to device
+ // arg1 = 0 upload for LF usage
+ // 1 upload for HF usage
+ if (c->arg[1] == 0)
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ else
+ FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+
uint8_t *b = BigBuf_get_addr();
memcpy(b+c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
cmd_send(CMD_ACK,0,0,0,0,0);
break;
case CMD_SET_LF_DIVISOR:
- FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
break;
SendVersion();
break;
case CMD_STATUS:
- SendStatus(c->arg[0]);
+ SendStatus();
break;
case CMD_PING:
cmd_send(CMD_ACK,0,0,0,0,0);
LED_A_OFF();
// Init USB device
- usb_enable();
+ usb_enable();
// The FPGA gets its clock from us from PCK0 output, so set that up.
AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
// PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
- AT91C_PMC_PRES_CLK_4;
+ AT91C_PMC_PRES_CLK_4; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
// Reset SPI
}
WDT_HIT();
-#ifdef WITH_LF
+#ifdef WITH_LF_StandAlone
#ifndef WITH_ISO14443a_StandAlone
if (BUTTON_HELD(1000) > 0)
SamyRun();