// DROP_FIRST_HALF,
} state;
uint16_t shiftReg;
- int16_t bitCount;
+ int16_t bitCount;
uint16_t len;
uint16_t byteCntMax;
uint16_t posCnt;
uint8_t parityLen;
uint32_t fourBits;
uint32_t startTime, endTime;
- uint8_t *output;
+ uint8_t *output;
uint8_t *parity;
} tUart;
//
// minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
#define REQUEST_GUARD_TIME (7000/16 + 1)
-// minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
-#define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
+// minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
+#define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
// bool LastCommandWasRequest = false;
//
// 8 ticks until bit_to_arm is assigned from curbit
// 8*16 ticks for the transfer from FPGA to ARM
// 4*16 ticks until we measure the time
-// - 8*16 ticks because we measure the time of the previous transfer
-#define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
+// - 8*16 ticks because we measure the time of the previous transfer
+#define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
// When the PM acts as a reader and is sending, it takes
// 4*16 ticks until we can write data to the sending hold register
// 8 ticks until the SSC samples the first data
// 7*16 ticks to complete the transfer from FPGA to ARM
// 8 ticks until the next ssp_clk rising edge
-// 4*16 ticks until we measure the time
-// - 8*16 ticks because we measure the time of the previous transfer
+// 4*16 ticks until we measure the time
+// - 8*16 ticks because we measure the time of the previous transfer
#define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
-
+
// The FPGA will report its internal sending delay in
uint16_t FpgaSendQueueDelay;
// the 5 first bits are the number of bits buffered in mod_sig_buf
// 8 ticks (on average) until the result is stored in to_arm
// + the delays in transferring data - which is the same for
// sniffing reader and tag data and therefore not relevant
-#define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
-
+#define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
+
// When the PM acts as sniffer and is receiving reader data, it takes
-// 2 ticks delay in analogue RF receiver (for the falling edge of the
+// 2 ticks delay in analogue RF receiver (for the falling edge of the
// start bit, which marks the start of the communication)
// 3 ticks A/D conversion
// 8 ticks on average until the data is stored in to_arm.
// + the delays in transferring data - which is the same for
// sniffing reader and tag data and therefore not relevant
-#define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
+#define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
//variables used for timing purposes:
//these are in ssp_clk cycles:
// Sequence X: 00001100 drop after half a period
// Sequence Y: 00000000 no drop
// Sequence Z: 11000000 drop at start
-#define SEC_D 0xf0
-#define SEC_E 0x0f
-#define SEC_F 0x00
-#define SEC_X 0x0c
-#define SEC_Y 0x00
-#define SEC_Z 0xc0
+#define SEC_D 0xf0
+#define SEC_E 0x0f
+#define SEC_F 0x00
+#define SEC_X 0x0c
+#define SEC_Y 0x00
+#define SEC_Z 0xc0
void iso14a_set_trigger(bool enable) {
trigger = enable;
// Generate the parity bits
parityBits |= ((oddparity8(pbtCmd[i])) << (7-paritybit_cnt));
if (paritybit_cnt == 7) {
- par[paritybyte_cnt] = parityBits; // save 8 Bits parity
- parityBits = 0; // and advance to next Parity Byte
+ par[paritybyte_cnt] = parityBits; // save 8 Bits parity
+ parityBits = 0; // and advance to next Parity Byte
paritybyte_cnt++;
paritybit_cnt = 0;
} else {
// save remaining parity bits
par[paritybyte_cnt] = parityBits;
-
+
}
void AppendCrc14443a(uint8_t* data, int len)
//=============================================================================
// Basics:
// This decoder is used when the PM3 acts as a tag.
-// The reader will generate "pauses" by temporarily switching of the field.
-// At the PM3 antenna we will therefore measure a modulated antenna voltage.
+// The reader will generate "pauses" by temporarily switching of the field.
+// At the PM3 antenna we will therefore measure a modulated antenna voltage.
// The FPGA does a comparison with a threshold and would deliver e.g.:
// ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
// The Miller decoder needs to identify the following sequences:
-// 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
-// 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
-// 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
+// 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
+// 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
+// 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
// Note 1: the bitstream may start at any time. We therefore need to sync.
// Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
//-----------------------------------------------------------------------------
{
Uart.state = STATE_UNSYNCD;
Uart.bitCount = 0;
- Uart.len = 0; // number of decoded data bytes
- Uart.parityLen = 0; // number of decoded parity bytes
- Uart.shiftReg = 0; // shiftreg to hold decoded data bits
- Uart.parityBits = 0; // holds 8 parity bits
- Uart.startTime = 0;
- Uart.endTime = 0;
+ Uart.len = 0; // number of decoded data bytes
+ Uart.parityLen = 0; // number of decoded parity bytes
+ Uart.shiftReg = 0; // shiftreg to hold decoded data bits
+ Uart.parityBits = 0; // holds 8 parity bits
}
static void UartInit(uint8_t *data, uint8_t *parity)
{
Uart.output = data;
Uart.parity = parity;
- Uart.fourBits = 0x00000000; // clear the buffer for 4 Bits
+ Uart.fourBits = 0x00000000; // clear the buffer for 4 Bits
+ Uart.startTime = 0;
+ Uart.endTime = 0;
UartReset();
}
{
Uart.fourBits = (Uart.fourBits << 8) | bit;
-
- if (Uart.state == STATE_UNSYNCD) { // not yet synced
-
- Uart.syncBit = 9999; // not set
+
+ if (Uart.state == STATE_UNSYNCD) { // not yet synced
+
+ Uart.syncBit = 9999; // not set
// The start bit is one ore more Sequence Y followed by a Sequence Z (... 11111111 00x11111). We need to distinguish from
// Sequence X followed by Sequence Y followed by Sequence Z (111100x1 11111111 00x11111)
- // we therefore look for a ...xx11111111111100x11111xxxxxx... pattern
+ // we therefore look for a ...xx11111111111100x11111xxxxxx... pattern
// (12 '1's followed by 2 '0's, eventually followed by another '0', followed by 5 '1's)
- #define ISO14443A_STARTBIT_MASK 0x07FFEF80 // mask is 00000111 11111111 11101111 10000000
- #define ISO14443A_STARTBIT_PATTERN 0x07FF8F80 // pattern is 00000111 11111111 10001111 10000000
- if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 0)) == ISO14443A_STARTBIT_PATTERN >> 0) Uart.syncBit = 7;
+ #define ISO14443A_STARTBIT_MASK 0x07FFEF80 // mask is 00000111 11111111 11101111 10000000
+ #define ISO14443A_STARTBIT_PATTERN 0x07FF8F80 // pattern is 00000111 11111111 10001111 10000000
+ if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 0)) == ISO14443A_STARTBIT_PATTERN >> 0) Uart.syncBit = 7;
else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 1)) == ISO14443A_STARTBIT_PATTERN >> 1) Uart.syncBit = 6;
else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 2)) == ISO14443A_STARTBIT_PATTERN >> 2) Uart.syncBit = 5;
else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 3)) == ISO14443A_STARTBIT_PATTERN >> 3) Uart.syncBit = 4;
else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 6)) == ISO14443A_STARTBIT_PATTERN >> 6) Uart.syncBit = 1;
else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 7)) == ISO14443A_STARTBIT_PATTERN >> 7) Uart.syncBit = 0;
- if (Uart.syncBit != 9999) { // found a sync bit
+ if (Uart.syncBit != 9999) { // found a sync bit
Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
Uart.startTime -= Uart.syncBit;
Uart.endTime = Uart.startTime;
} else {
- if (IsMillerModulationNibble1(Uart.fourBits >> Uart.syncBit)) {
- if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation in both halves - error
+ if (IsMillerModulationNibble1(Uart.fourBits >> Uart.syncBit)) {
+ if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation in both halves - error
LED_B_OFF();
UartReset();
- } else { // Modulation in first half = Sequence Z = logic "0"
- if (Uart.state == STATE_MILLER_X) { // error - must not follow after X
+ } else { // Modulation in first half = Sequence Z = logic "0"
+ if (Uart.state == STATE_MILLER_X) { // error - must not follow after X
LED_B_OFF();
UartReset();
} else {
Uart.bitCount++;
- Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
+ Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
Uart.state = STATE_MILLER_Z;
Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 6;
- if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
+ if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
- Uart.parityBits <<= 1; // make room for the parity bit
- Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
+ Uart.parityBits <<= 1; // make room for the parity bit
+ Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
Uart.bitCount = 0;
Uart.shiftReg = 0;
- if((Uart.len&0x0007) == 0) { // every 8 data bytes
- Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
+ if((Uart.len&0x0007) == 0) { // every 8 data bytes
+ Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
Uart.parityBits = 0;
}
}
}
}
} else {
- if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1"
+ if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1"
Uart.bitCount++;
- Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg
+ Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg
Uart.state = STATE_MILLER_X;
Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 2;
- if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
+ if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
- Uart.parityBits <<= 1; // make room for the new parity bit
- Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
+ Uart.parityBits <<= 1; // make room for the new parity bit
+ Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
Uart.bitCount = 0;
Uart.shiftReg = 0;
- if ((Uart.len&0x0007) == 0) { // every 8 data bytes
- Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
+ if ((Uart.len&0x0007) == 0) { // every 8 data bytes
+ Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
Uart.parityBits = 0;
}
}
- } else { // no modulation in both halves - Sequence Y
- if (Uart.state == STATE_MILLER_Z || Uart.state == STATE_MILLER_Y) { // Y after logic "0" - End of Communication
+ } else { // no modulation in both halves - Sequence Y
+ if (Uart.state == STATE_MILLER_Z || Uart.state == STATE_MILLER_Y) { // Y after logic "0" - End of Communication
LED_B_OFF();
Uart.state = STATE_UNSYNCD;
- Uart.bitCount--; // last "0" was part of EOC sequence
- Uart.shiftReg <<= 1; // drop it
- if(Uart.bitCount > 0) { // if we decoded some bits
- Uart.shiftReg >>= (9 - Uart.bitCount); // right align them
- Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); // add last byte to the output
- Uart.parityBits <<= 1; // add a (void) parity bit
- Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align parity bits
- Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store it
+ Uart.bitCount--; // last "0" was part of EOC sequence
+ Uart.shiftReg <<= 1; // drop it
+ if(Uart.bitCount > 0) { // if we decoded some bits
+ Uart.shiftReg >>= (9 - Uart.bitCount); // right align them
+ Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); // add last byte to the output
+ Uart.parityBits <<= 1; // add a (void) parity bit
+ Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align parity bits
+ Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store it
return true;
- } else if (Uart.len & 0x0007) { // there are some parity bits to store
- Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align remaining parity bits
- Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store them
+ } else if (Uart.len & 0x0007) { // there are some parity bits to store
+ Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align remaining parity bits
+ Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store them
}
if (Uart.len) {
- return true; // we are finished with decoding the raw data sequence
+ return true; // we are finished with decoding the raw data sequence
} else {
- UartReset(); // Nothing received - start over
+ UartReset(); // Nothing received - start over
}
}
- if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC
+ if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC
LED_B_OFF();
UartReset();
- } else { // a logic "0"
+ } else { // a logic "0"
Uart.bitCount++;
- Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
+ Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
Uart.state = STATE_MILLER_Y;
- if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
+ if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
- Uart.parityBits <<= 1; // make room for the parity bit
- Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
+ Uart.parityBits <<= 1; // make room for the parity bit
+ Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
Uart.bitCount = 0;
Uart.shiftReg = 0;
- if ((Uart.len&0x0007) == 0) { // every 8 data bytes
- Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
+ if ((Uart.len&0x0007) == 0) { // every 8 data bytes
+ Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
Uart.parityBits = 0;
}
}
}
}
}
-
- }
- return false; // not finished yet, need more data
+ }
+
+ return false; // not finished yet, need more data
}
// at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
// ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
// The Manchester decoder needs to identify the following sequences:
-// 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
-// 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
-// 8 ticks unmodulated: Sequence F = end of communication
-// 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
+// 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
+// 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
+// 8 ticks unmodulated: Sequence F = end of communication
+// 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
// Note 1: the bitstream may start at any time. We therefore need to sync.
// Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
static tDemod Demod;
static void DemodReset()
{
Demod.state = DEMOD_UNSYNCD;
- Demod.len = 0; // number of decoded data bytes
+ Demod.len = 0; // number of decoded data bytes
Demod.parityLen = 0;
- Demod.shiftReg = 0; // shiftreg to hold decoded data bits
- Demod.parityBits = 0; //
- Demod.collisionPos = 0; // Position of collision bit
- Demod.twoBits = 0xffff; // buffer for 2 Bits
+ Demod.shiftReg = 0; // shiftreg to hold decoded data bits
+ Demod.parityBits = 0; //
+ Demod.collisionPos = 0; // Position of collision bit
+ Demod.twoBits = 0xffff; // buffer for 2 Bits
Demod.highCnt = 0;
Demod.startTime = 0;
Demod.endTime = 0;
{
Demod.twoBits = (Demod.twoBits << 8) | bit;
-
+
if (Demod.state == DEMOD_UNSYNCD) {
- if (Demod.highCnt < 2) { // wait for a stable unmodulated signal
+ if (Demod.highCnt < 2) { // wait for a stable unmodulated signal
if (Demod.twoBits == 0x0000) {
Demod.highCnt++;
} else {
Demod.highCnt = 0;
}
} else {
- Demod.syncBit = 0xFFFF; // not set
- if ((Demod.twoBits & 0x7700) == 0x7000) Demod.syncBit = 7;
+ Demod.syncBit = 0xFFFF; // not set
+ if ((Demod.twoBits & 0x7700) == 0x7000) Demod.syncBit = 7;
else if ((Demod.twoBits & 0x3B80) == 0x3800) Demod.syncBit = 6;
else if ((Demod.twoBits & 0x1DC0) == 0x1C00) Demod.syncBit = 5;
else if ((Demod.twoBits & 0x0EE0) == 0x0E00) Demod.syncBit = 4;
if (Demod.syncBit != 0xFFFF) {
Demod.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
Demod.startTime -= Demod.syncBit;
- Demod.bitCount = offset; // number of decoded data bits
+ Demod.bitCount = offset; // number of decoded data bits
Demod.state = DEMOD_MANCHESTER_DATA;
LED_C_ON();
}
} else {
- if (IsManchesterModulationNibble1(Demod.twoBits >> Demod.syncBit)) { // modulation in first half
- if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // ... and in second half = collision
+ if (IsManchesterModulationNibble1(Demod.twoBits >> Demod.syncBit)) { // modulation in first half
+ if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // ... and in second half = collision
if (!Demod.collisionPos) {
Demod.collisionPos = (Demod.len << 3) + Demod.bitCount;
}
- } // modulation in first half only - Sequence D = 1
+ } // modulation in first half only - Sequence D = 1
Demod.bitCount++;
- Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // in both cases, add a 1 to the shiftreg
- if(Demod.bitCount == 9) { // if we decoded a full byte (including parity)
+ Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // in both cases, add a 1 to the shiftreg
+ if(Demod.bitCount == 9) { // if we decoded a full byte (including parity)
Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
- Demod.parityBits <<= 1; // make room for the parity bit
- Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
+ Demod.parityBits <<= 1; // make room for the parity bit
+ Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
Demod.bitCount = 0;
Demod.shiftReg = 0;
- if((Demod.len&0x0007) == 0) { // every 8 data bytes
- Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits
+ if((Demod.len&0x0007) == 0) { // every 8 data bytes
+ Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits
Demod.parityBits = 0;
}
}
Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1) - 4;
- } else { // no modulation in first half
- if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // and modulation in second half = Sequence E = 0
+ } else { // no modulation in first half
+ if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // and modulation in second half = Sequence E = 0
Demod.bitCount++;
- Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg
- if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity)
+ Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg
+ if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity)
Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
- Demod.parityBits <<= 1; // make room for the new parity bit
+ Demod.parityBits <<= 1; // make room for the new parity bit
Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
Demod.bitCount = 0;
Demod.shiftReg = 0;
- if ((Demod.len&0x0007) == 0) { // every 8 data bytes
- Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits1
+ if ((Demod.len&0x0007) == 0) { // every 8 data bytes
+ Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits1
Demod.parityBits = 0;
}
}
Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1);
- } else { // no modulation in both halves - End of communication
+ } else { // no modulation in both halves - End of communication
LED_C_OFF();
- if(Demod.bitCount > 0) { // there are some remaining data bits
- Demod.shiftReg >>= (9 - Demod.bitCount); // right align the decoded bits
- Demod.output[Demod.len++] = Demod.shiftReg & 0xff; // and add them to the output
- Demod.parityBits <<= 1; // add a (void) parity bit
- Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
- Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
+ if(Demod.bitCount > 0) { // there are some remaining data bits
+ Demod.shiftReg >>= (9 - Demod.bitCount); // right align the decoded bits
+ Demod.output[Demod.len++] = Demod.shiftReg & 0xff; // and add them to the output
+ Demod.parityBits <<= 1; // add a (void) parity bit
+ Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
+ Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
return true;
- } else if (Demod.len & 0x0007) { // there are some parity bits to store
- Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
- Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
+ } else if (Demod.len & 0x0007) { // there are some parity bits to store
+ Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
+ Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
}
if (Demod.len) {
- return true; // we are finished with decoding the raw data sequence
- } else { // nothing received. Start over
+ return true; // we are finished with decoding the raw data sequence
+ } else { // nothing received. Start over
DemodReset();
}
}
}
-
- }
- return false; // not finished yet, need more data
+ }
+
+ return false; // not finished yet, need more data
}
//=============================================================================
// param:
// bit 0 - trigger from first card answer
// bit 1 - trigger from first reader 7-bit request
-
+
LEDsoff();
LED_A_ON();
// The command (reader -> tag) that we're receiving.
uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
-
+
// The response (tag -> reader) that we're receiving.
uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE);
uint8_t *receivedResponsePar = BigBuf_malloc(MAX_PARITY_SIZE);
-
+
// The DMA buffer, used to stream samples from the FPGA
uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
int dataLen = 0;
bool TagIsActive = false;
bool ReaderIsActive = false;
-
+
// Set up the demodulator for tag -> reader responses.
DemodInit(receivedResponse, receivedResponsePar);
-
+
// Set up the demodulator for the reader -> tag commands
UartInit(receivedCmd, receivedCmdPar);
-
+
// Setup and start DMA.
FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
-
+
// We won't start recording the frames that we acquire until we trigger;
// a good trigger condition to get started is probably when we see a
// response from the tag.
// triggered == false -- to wait first for card
- bool triggered = !(param & 0x03);
-
+ bool triggered = !(param & 0x03);
+
// And now we loop, receiving samples.
- for(uint32_t rsamples = 0; true; ) {
+ for (uint32_t rsamples = 0; true; ) {
- if(BUTTON_PRESS()) {
+ if (BUTTON_PRESS()) {
DbpString("cancelled by button");
break;
}
AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
}
- if (rsamples & 0x01) { // Need two samples to feed Miller and Manchester-Decoder
+ if (rsamples & 0x01) { // Need two samples to feed Miller and Manchester-Decoder
- if(!TagIsActive) { // no need to try decoding reader data if the tag is sending
+ if(!TagIsActive) { // no need to try decoding reader data if the tag is sending
uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
if (MillerDecoding(readerdata, (rsamples-1)*4)) {
// check - if there is a short 7bit request from reader
triggered = true;
}
if(triggered) {
- if (!LogTrace(receivedCmd,
- Uart.len,
+ if (!LogTrace(receivedCmd,
+ Uart.len,
Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
- Uart.parity,
+ Uart.parity,
true)) break;
}
/* And ready to receive another command. */
ReaderIsActive = (Uart.state != STATE_UNSYNCD);
}
- if (!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
+ if (!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
if (ManchesterDecoding(tagdata, 0, (rsamples-1)*4)) {
- if (!LogTrace(receivedResponse,
- Demod.len,
- Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
+ if (!LogTrace(receivedResponse,
+ Demod.len,
+ Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
Demod.parity,
false)) break;
DemodReset();
// And reset the Miller decoder including itS (now outdated) input buffer
UartInit(receivedCmd, receivedCmdPar);
- }
+ }
TagIsActive = (Demod.state != DEMOD_UNSYNCD);
}
}
ToSendStuffBit(0);
ToSendStuffBit(0);
ToSendStuffBit(0);
-
+
// Send startbit
ToSend[++ToSendMax] = SEC_D;
LastProxToAirDuration = 8 * ToSendMax - 4;
- for(uint16_t i = 0; i < len; i++) {
+ for (uint16_t i = 0; i < len; i++) {
uint8_t b = cmd[i];
// Data bits
- for(uint16_t j = 0; j < 8; j++) {
+ for (uint16_t j = 0; j < 8; j++) {
if(b & 1) {
ToSend[++ToSendMax] = SEC_D;
} else {
ToSend[++ToSendMax] = SEC_D;
uint8_t b = cmd;
- for(i = 0; i < 4; i++) {
+ for (i = 0; i < 4; i++) {
if(b & 1) {
ToSend[++ToSendMax] = SEC_D;
LastProxToAirDuration = 8 * ToSendMax - 4;
LastReaderTraceTime[3] = (reader_StartTime >> 24) & 0xff;
}
-
+
static void EmLogTraceTag(uint8_t *tag_data, uint16_t tag_len, uint8_t *tag_Parity, uint32_t ProxToAirDuration) {
uint32_t tag_StartTime = LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG;
uint32_t tag_EndTime = (LastTimeProxToAirStart + ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG;
//-----------------------------------------------------------------------------
static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int *len)
{
- // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
- // only, since we are receiving, not transmitting).
- // Signal field is off with the appropriate LED
- LED_D_OFF();
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
+ // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
+ // only, since we are receiving, not transmitting).
+ // Signal field is off with the appropriate LED
+ LED_D_OFF();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
- // Now run a `software UART' on the stream of incoming samples.
+ // Now run a `software UART' on the stream of incoming samples.
UartInit(received, parity);
// clear RXRDY:
- uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+ uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+
+ for (;;) {
+ WDT_HIT();
- for(;;) {
- WDT_HIT();
+ if(BUTTON_PRESS()) return false;
- if(BUTTON_PRESS()) return false;
-
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
- b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+ b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
if(MillerDecoding(b, 0)) {
*len = Uart.len;
EmLogTraceReader();
return true;
}
- }
- }
+ }
+ }
}
-static int EmSend4bitEx(uint8_t resp);
int EmSend4bit(uint8_t resp);
static int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, uint8_t *par);
-int EmSendCmdEx(uint8_t *resp, uint16_t respLen);
+int EmSendCmd(uint8_t *resp, uint16_t respLen);
int EmSendPrecompiledCmd(tag_response_info_t *response_info);
// ----------- +
// 166 bytes, since every bit that needs to be send costs us a byte
//
-
-
+
+
// Prepare the tag modulation bits from the message
GetParity(response_info->response, response_info->response_n, &(response_info->par));
CodeIso14443aAsTagPar(response_info->response,response_info->response_n, &(response_info->par));
-
+
// Make sure we do not exceed the free buffer space
if (ToSendMax > max_buffer_size) {
- Dbprintf("Out of memory, when modulating bits for tag answer:");
- Dbhexdump(response_info->response_n, response_info->response, false);
- return false;
+ Dbprintf("Out of memory, when modulating bits for tag answer:");
+ Dbhexdump(response_info->response_n, response_info->response, false);
+ return false;
}
-
+
// Copy the byte array, used for this modulation to the buffer position
memcpy(response_info->modulation, ToSend, ToSendMax);
-
+
// Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
response_info->modulation_n = ToSendMax;
response_info->ProxToAirDuration = LastProxToAirDuration;
-
+
return true;
}
// "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit.
-// Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
+// Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
// 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits for the modulation
// -> need 273 bytes buffer
#define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 273
// Retrieve and store the current buffer index
response_info->modulation = *buffer;
-
+
// Forward the prepare tag modulation function to the inner function
if (prepare_tag_modulation(response_info, *max_buffer_size)) {
- // Update the free buffer offset and the remaining buffer size
- *buffer += ToSendMax;
+ // Update the free buffer offset and the remaining buffer size
+ *buffer += ToSendMax;
*max_buffer_size -= ToSendMax;
- return true;
+ return true;
} else {
- return false;
+ return false;
}
}
// The first response contains the ATQA (note: bytes are transmitted in reverse order).
uint8_t response1[2];
-
+
switch (tagType) {
case 1: { // MIFARE Classic
// Says: I am Mifare 1k - original line
response1[0] = 0x01;
response1[1] = 0x0f;
sak = 0x01;
- } break;
+ } break;
default: {
Dbprintf("Error: unkown tagtype (%d)",tagType);
return;
} break;
}
-
+
// The second response contains the (mandatory) first 24 bits of the UID
uint8_t response2[5] = {0x00};
// Check if the uid uses the (optional) part
uint8_t response2a[5] = {0x00};
-
+
if (uid_2nd) {
response2[0] = 0x88;
num_to_bytes(uid_1st,3,response2+1);
ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
- uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS:
- // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present,
+ uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS:
+ // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present,
// TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
// TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
// TC(1) = 0x02: CID supported, NAD not supported
.modulation = dynamic_modulation_buffer,
.modulation_n = 0
};
-
+
// We need to listen to the high-frequency, peak-detected path.
iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
tag_response_info_t* p_response;
LED_A_ON();
- for(;;) {
+ for (;;) {
// Clean receive command buffer
if(!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)) {
DbpString("Button press");
}
p_response = NULL;
-
+
// Okay, look at the command now.
lastorder = order;
if(receivedCmd[0] == 0x26) { // Received a REQUEST
p_response = &responses[0]; order = 1;
} else if(receivedCmd[0] == 0x52) { // Received a WAKEUP
p_response = &responses[0]; order = 6;
- } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // Received request for UID (cascade 1)
+ } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // Received request for UID (cascade 1)
p_response = &responses[1]; order = 2;
- } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2)
+ } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2)
p_response = &responses[2]; order = 20;
- } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) { // Received a SELECT (cascade 1)
+ } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) { // Received a SELECT (cascade 1)
p_response = &responses[3]; order = 3;
- } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2)
+ } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2)
p_response = &responses[4]; order = 30;
- } else if(receivedCmd[0] == 0x30) { // Received a (plain) READ
- EmSendCmdEx(data+(4*receivedCmd[1]),16);
+ } else if(receivedCmd[0] == 0x30) { // Received a (plain) READ
+ EmSendCmd(data+(4*receivedCmd[1]),16);
// Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
// We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
p_response = NULL;
- } else if(receivedCmd[0] == 0x50) { // Received a HALT
+ } else if(receivedCmd[0] == 0x50) { // Received a HALT
p_response = NULL;
- } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request
+ } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request
p_response = &responses[5]; order = 7;
- } else if(receivedCmd[0] == 0xE0) { // Received a RATS request
- if (tagType == 1 || tagType == 2) { // RATS not supported
+ } else if(receivedCmd[0] == 0xE0) { // Received a RATS request
+ if (tagType == 1 || tagType == 2) { // RATS not supported
EmSend4bit(CARD_NACK_NA);
p_response = NULL;
} else {
dynamic_response_info.response[0] = receivedCmd[0] ^ 0x11;
dynamic_response_info.response_n = 2;
} break;
-
+
case 0xBA: { //
memcpy(dynamic_response_info.response,"\xAB\x00",2);
dynamic_response_info.response_n = 2;
dynamic_response_info.response_n = 0;
} break;
}
-
+
if (dynamic_response_info.response_n > 0) {
// Copy the CID from the reader query
dynamic_response_info.response[1] = receivedCmd[1];
// Add CRC bytes, always used in ISO 14443A-4 compliant cards
AppendCrc14443a(dynamic_response_info.response,dynamic_response_info.response_n);
dynamic_response_info.response_n += 2;
-
+
if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) {
Dbprintf("Error preparing tag response");
break;
if (p_response != NULL) {
EmSendPrecompiledCmd(p_response);
}
-
+
if (!get_tracing()) {
Dbprintf("Trace Full. Simulation stopped.");
break;
uint8_t bitmask = 0;
uint8_t bits_to_shift = 0;
uint8_t bits_shifted = 0;
-
+
delay &= 0x07;
if (delay) {
for (uint16_t i = 0; i < delay; i++) {
// Transmit the command (to the tag) that was placed in ToSend[].
// Parameter timing:
// if NULL: transfer at next possible time, taking into account
-// request guard time, startup frame guard time and frame delay time
-// if == 0: transfer immediately and return time of transfer
+// request guard time, startup frame guard time and frame delay time
+// if == 0: transfer immediately and return time of transfer
// if != 0: delay transfer until time specified
//-------------------------------------------------------------------------------------
static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing)
{
+ LED_B_ON();
LED_D_ON();
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
uint32_t ThisTransferTime = 0;
if (timing) {
- if(*timing == 0) { // Measure time
+ if(*timing == 0) { // Measure time
*timing = (GetCountSspClk() + 8) & 0xfffffff8;
} else {
- PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
+ PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
}
if(MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
- while(GetCountSspClk() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
+ while (GetCountSspClk() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
LastTimeProxToAirStart = *timing;
} else {
ThisTransferTime = ((MAX(NextTransferTime, GetCountSspClk()) & 0xfffffff8) + 8);
- while(GetCountSspClk() < ThisTransferTime);
+ while (GetCountSspClk() < ThisTransferTime);
LastTimeProxToAirStart = ThisTransferTime;
}
-
+
// clear TXRDY
AT91C_BASE_SSC->SSC_THR = SEC_Y;
uint16_t c = 0;
- for(;;) {
+ for (;;) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = cmd[c];
c++;
}
}
}
-
+
NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME);
+ LED_B_OFF();
}
//-----------------------------------------------------------------------------
int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
{
+ uint32_t field_off_time = -1;
+ uint32_t samples = 0;
+ int ret = 0;
+ uint8_t b = 0;;
+ uint8_t dmaBuf[DMA_BUFFER_SIZE];
+ uint8_t *upTo = dmaBuf;
+
*len = 0;
- uint32_t timer = 0, vtime = 0;
- int analogCnt = 0;
- int analogAVG = 0;
+ // Run a 'software UART' on the stream of incoming samples.
+ UartInit(received, parity);
- // Set ADC to read field strength
- AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
- AT91C_BASE_ADC->ADC_MR =
- ADC_MODE_PRESCALE(63) |
- ADC_MODE_STARTUP_TIME(1) |
- ADC_MODE_SAMPLE_HOLD_TIME(15);
- AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF_LOW);
// start ADC
AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
-
- // Run a 'software UART' on the stream of incoming samples.
- UartInit(received, parity);
// Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN
- do {
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
- AT91C_BASE_SSC->SSC_THR = SEC_F;
- uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; (void) b;
- }
- } while (GetCountSspClk() < LastTimeProxToAirStart + LastProxToAirDuration + (FpgaSendQueueDelay>>3));
+ while (GetCountSspClk() < LastTimeProxToAirStart + LastProxToAirDuration + (FpgaSendQueueDelay>>3) - 8 - 3) /* wait */ ;
// Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
// only, since we are receiving, not transmitting).
- // Signal field is off with the appropriate LED
- LED_D_OFF();
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
+ // clear receive register, measure time of next transfer
+ uint32_t temp = AT91C_BASE_SSC->SSC_RHR; (void) temp;
+ while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)) ;
+ uint32_t start_time = GetCountSspClk() & 0xfffffff8;
+
+ // Setup and start DMA.
+ FpgaSetupSscDma(dmaBuf, DMA_BUFFER_SIZE);
+
for(;;) {
- WDT_HIT();
+ uint16_t behindBy = ((uint8_t*)AT91C_BASE_PDC_SSC->PDC_RPR - upTo) & (DMA_BUFFER_SIZE-1);
- if (BUTTON_PRESS()) return 1;
+ if (behindBy == 0) continue;
- // test if the field exists
- if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF_LOW)) {
- analogCnt++;
- analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF_LOW];
- AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
- if (analogCnt >= 32) {
- if ((MAX_ADC_HF_VOLTAGE_LOW * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
- vtime = GetTickCount();
- if (!timer) timer = vtime;
- // 50ms no field --> card to idle state
- if (vtime - timer > 50) return 2;
- } else
- if (timer) timer = 0;
- analogCnt = 0;
- analogAVG = 0;
+ b = *upTo++;
+
+ if(upTo >= dmaBuf + DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content.
+ upTo = dmaBuf; // start reading the circular buffer from the beginning
+ if(behindBy > (9*DMA_BUFFER_SIZE/10)) {
+ Dbprintf("About to blow circular buffer - aborted! behindBy=%d", behindBy);
+ ret = 1;
+ break;
}
}
+ if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_ENDRX)) { // DMA Counter Register had reached 0, already rotated.
+ AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; // refresh the DMA Next Buffer and
+ AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; // DMA Next Counter registers
+ }
- // receive and test the miller decoding
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
- uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
- if(MillerDecoding(b, 0)) {
- *len = Uart.len;
- EmLogTraceReader();
- return 0;
+ if (BUTTON_PRESS()) {
+ ret = 1;
+ break;
+ }
+
+ // check reader's HF field
+ if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF_LOW)) {
+ if ((MAX_ADC_HF_VOLTAGE_LOW * AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF_LOW]) >> 10 < MF_MINFIELDV) {
+ if (GetTickCount() - field_off_time > 50) {
+ ret = 2; // reader has switched off HF field for more than 50ms. Timeout
+ break;
+ }
+ } else {
+ field_off_time = GetTickCount(); // HF field is still there. Reset timer
}
- }
+ AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; // restart ADC
+ }
+
+ if (MillerDecoding(b, start_time + samples*8)) {
+ *len = Uart.len;
+ EmLogTraceReader();
+ ret = 0;
+ break;
+ }
+ samples++;
}
+
+ FpgaDisableSscDma();
+ return ret;
}
static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen)
{
+ LED_C_ON();
+
uint8_t b;
uint16_t i = 0;
bool correctionNeeded;
// Modulate Manchester
- LED_D_OFF();
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
// include correction bit if necessary
correctionNeeded = Uart.parity[(Uart.len-1)/8] & (0x80 >> ((Uart.len-1) & 7));
}
- if(correctionNeeded) {
+ if (correctionNeeded) {
// 1236, so correction bit needed
i = 0;
} else {
i = 1;
}
- // clear receiving shift register and holding register
- while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
+ // clear receiving shift register and holding register
b = AT91C_BASE_SSC->SSC_RHR; (void) b;
- while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
+ while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
b = AT91C_BASE_SSC->SSC_RHR; (void) b;
-
+
// wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
- for (uint16_t j = 0; j < 5; j++) { // allow timeout - better late than never
- while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
+ for (uint16_t j = 0; j < 5; j++) { // allow timeout - better late than never
+ while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
if (AT91C_BASE_SSC->SSC_RHR) break;
}
LastTimeProxToAirStart = (GetCountSspClk() & 0xfffffff8) + (correctionNeeded?8:0);
// send cycle
- for(; i < respLen; ) {
+ for (; i < respLen; ) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = resp[i++];
FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
}
-
+
if(BUTTON_PRESS()) {
break;
}
}
+ LED_C_OFF();
return 0;
}
-static int EmSend4bitEx(uint8_t resp){
+int EmSend4bit(uint8_t resp){
Code4bitAnswerAsTag(resp);
int res = EmSendCmd14443aRaw(ToSend, ToSendMax);
- // do the tracing for the previous reader request and this tag answer:
+ // Log this tag answer and fix timing of previous reader command:
EmLogTraceTag(&resp, 1, NULL, LastProxToAirDuration);
return res;
}
-int EmSend4bit(uint8_t resp){
- return EmSend4bitEx(resp);
-}
-
-
static int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, uint8_t *par){
CodeIso14443aAsTagPar(resp, respLen, par);
int res = EmSendCmd14443aRaw(ToSend, ToSendMax);
- // do the tracing for the previous reader request and this tag answer:
+ // Log this tag answer and fix timing of previous reader command:
EmLogTraceTag(resp, respLen, par, LastProxToAirDuration);
return res;
}
-int EmSendCmdEx(uint8_t *resp, uint16_t respLen){
- uint8_t par[MAX_PARITY_SIZE];
- GetParity(resp, respLen, par);
- return EmSendCmdExPar(resp, respLen, par);
-}
-
-
int EmSendCmd(uint8_t *resp, uint16_t respLen){
uint8_t par[MAX_PARITY_SIZE];
GetParity(resp, respLen, par);
int EmSendPrecompiledCmd(tag_response_info_t *response_info) {
int ret = EmSendCmd14443aRaw(response_info->modulation, response_info->modulation_n);
- // do the tracing for the previous reader request and this tag answer:
+ // Log this tag answer and fix timing of previous reader command:
EmLogTraceTag(response_info->response, response_info->response_n, &(response_info->par), response_info->ProxToAirDuration);
return ret;
}
static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset)
{
uint32_t c;
-
+
// Set FPGA mode to "reader listen mode", no modulation (listen
// only, since we are receiving, not transmitting).
// Signal field is on with the appropriate LED
LED_D_ON();
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
-
+
// Now get the answer from the card
DemodInit(receivedResponse, receivedResponsePar);
// clear RXRDY:
- uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+ uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
c = 0;
- for(;;) {
+ for (;;) {
WDT_HIT();
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD);
return true;
} else if (c++ > iso14a_timeout && Demod.state == DEMOD_UNSYNCD) {
- return false;
+ return false;
}
}
}
void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing)
{
CodeIso14443aBitsAsReaderPar(frame, bits, par);
-
+
// Send command to tag
TransmitFor14443a(ToSend, ToSendMax, timing);
if(trigger)
LED_A_ON();
-
+
// Log reader command in trace buffer
LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, true);
}
static void iso14a_set_ATS_times(uint8_t *ats) {
uint8_t tb1;
- uint8_t fwi, sfgi;
+ uint8_t fwi, sfgi;
uint32_t fwt, sfgt;
-
- if (ats[0] > 1) { // there is a format byte T0
- if ((ats[1] & 0x20) == 0x20) { // there is an interface byte TB(1)
- if ((ats[1] & 0x10) == 0x10) { // there is an interface byte TA(1) preceding TB(1)
+
+ if (ats[0] > 1) { // there is a format byte T0
+ if ((ats[1] & 0x20) == 0x20) { // there is an interface byte TB(1)
+ if ((ats[1] & 0x10) == 0x10) { // there is an interface byte TA(1) preceding TB(1)
tb1 = ats[3];
} else {
tb1 = ats[2];
}
- fwi = (tb1 & 0xf0) >> 4; // frame waiting time integer (FWI)
+ fwi = (tb1 & 0xf0) >> 4; // frame waiting time integer (FWI)
if (fwi != 15) {
- fwt = 256 * 16 * (1 << fwi); // frame waiting time (FWT) in 1/fc
+ fwt = 256 * 16 * (1 << fwi); // frame waiting time (FWT) in 1/fc
iso14a_set_timeout(fwt/(8*16));
}
- sfgi = tb1 & 0x0f; // startup frame guard time integer (SFGI)
+ sfgi = tb1 & 0x0f; // startup frame guard time integer (SFGI)
if (sfgi != 0 && sfgi != 15) {
- sfgt = 256 * 16 * (1 << sfgi); // startup frame guard time (SFGT) in 1/fc
+ sfgt = 256 * 16 * (1 << sfgi); // startup frame guard time (SFGT) in 1/fc
NextTransferTime = MAX(NextTransferTime, Demod.endTime + (sfgt - DELAY_AIR2ARM_AS_READER - DELAY_ARM2AIR_AS_READER)/16);
}
}
static int GetATQA(uint8_t *resp, uint8_t *resp_par) {
-#define WUPA_RETRY_TIMEOUT 10 // 10ms
+#define WUPA_RETRY_TIMEOUT 10 // 10ms
uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
uint32_t save_iso14a_timeout = iso14a_get_timeout();
- iso14a_set_timeout(1236/(16*8)+1); // response to WUPA is expected at exactly 1236/fc. No need to wait longer.
-
+ iso14a_set_timeout(1236/(16*8)+1); // response to WUPA is expected at exactly 1236/fc. No need to wait longer.
+
uint32_t start_time = GetTickCount();
int len;
-
+
// we may need several tries if we did send an unknown command or a wrong authentication before...
do {
// Broadcast for a card, WUPA (0x52) will force response from all cards in the field
// Receive the ATQA
len = ReaderReceive(resp, resp_par);
} while (len == 0 && GetTickCount() <= start_time + WUPA_RETRY_TIMEOUT);
-
+
iso14a_set_timeout(save_iso14a_timeout);
return len;
}
// performs iso14443a anticollision (optional) and card select procedure
// fills the uid and cuid pointer unless NULL
// fills the card info record unless NULL
-// if anticollision is false, then the UID must be provided in uid_ptr[]
+// if anticollision is false, then the UID must be provided in uid_ptr[]
// and num_cascades must be set (1: 4 Byte UID, 2: 7 Byte UID, 3: 10 Byte UID)
// requests ATS unless no_rats is true
int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr, bool anticollision, uint8_t num_cascades, bool no_rats) {
if ((resp[0] & 0x1F) == 0) {
return 3;
}
-
+
// OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
// which case we need to make a cascade 2 request and select - this is a long UID
- // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
- for(; sak & 0x04; cascade_level++) {
+ // While the UID is not complete, the 3rd bit (from the right) is set in the SAK.
+ for (; sak & 0x04; cascade_level++) {
// SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
return 0;
}
- if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit
+ if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit
memset(uid_resp, 0, 4);
uint16_t uid_resp_bits = 0;
uint16_t collision_answer_offset = 0;
// anti-collision-loop:
while (Demod.collisionPos) {
Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
- for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point
+ for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point
uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8);
}
- uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position
+ uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position
uid_resp_bits++;
// construct anticollosion command:
- sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits
+ sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits
for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
sel_uid[2+i] = uid_resp[i];
}
uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
}
- } else { // no collision, use the response to SELECT_ALL as current uid
+ } else { // no collision, use the response to SELECT_ALL as current uid
memcpy(uid_resp, resp, 4);
}
} else {
}
// Construct SELECT UID command
- sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
- memcpy(sel_uid+2, uid_resp, 4); // the UID received during anticollision, or the provided UID
- sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC
- AppendCrc14443a(sel_uid, 7); // calculate and add CRC
+ sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
+ memcpy(sel_uid+2, uid_resp, 4); // the UID received during anticollision, or the provided UID
+ sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC
+ AppendCrc14443a(sel_uid, 7); // calculate and add CRC
ReaderTransmit(sel_uid, sizeof(sel_uid), NULL);
// Receive the SAK
return 0;
}
sak = resp[0];
-
+
// Test if more parts of the uid are coming
if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) {
// Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
// http://www.nxp.com/documents/application_note/AN10927.pdf
uid_resp[0] = uid_resp[1];
uid_resp[1] = uid_resp[2];
- uid_resp[2] = uid_resp[3];
+ uid_resp[2] = uid_resp[3];
uid_resp_len = 3;
}
}
// PICC compilant with iso14443a-4 ---> (SAK & 0x20 != 0)
- if( (sak & 0x20) == 0) return 2;
+ if( (sak & 0x20) == 0) return 2;
if (!no_rats) {
// Request for answer to select
// set default timeout and delay next transfer based on ATS
iso14a_set_ATS_times(resp);
-
+
}
- return 1;
+ return 1;
}
}
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode);
+ // Set ADC to read field strength
+ AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
+ AT91C_BASE_ADC->ADC_MR =
+ ADC_MODE_PRESCALE(63) |
+ ADC_MODE_STARTUP_TIME(1) |
+ ADC_MODE_SAMPLE_HOLD_TIME(15);
+ AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF_LOW);
+
// Start the timer
StartCountSspClk();
-
+
DemodReset();
UartReset();
+ LastTimeProxToAirStart = 0;
+ FpgaSendQueueDelay = 0;
+ LastProxToAirDuration = 20; // arbitrary small value. Avoid lock in EmGetCmd()
NextTransferTime = 2*DELAY_ARM2AIR_AS_READER;
iso14a_set_timeout(1060); // 10ms default
}
b5 = ACK/NACK
Coding of S-block:
b8 b7 b6 b5 b4 b3 b2 b1
-1 1 x x x 0 1 0
+1 1 x x x 0 1 0
b5,b6 = 00 - DESELECT
- 11 - WTX
-*/
+ 11 - WTX
+*/
int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, bool send_chaining, void *data, uint8_t *res) {
uint8_t parity[MAX_PARITY_SIZE];
uint8_t real_cmd[cmd_len + 4];
-
+
if (cmd_len) {
// ISO 14443 APDU frame: PCB [CID] [NAD] APDU CRC PCB=0x02
- real_cmd[0] = 0x02; // bnr,nad,cid,chn=0; i-block(0x00)
+ real_cmd[0] = 0x02; // bnr,nad,cid,chn=0; i-block(0x00)
if (send_chaining) {
real_cmd[0] |= 0x10;
}
memcpy(real_cmd + 1, cmd, cmd_len);
} else {
// R-block. ACK
- real_cmd[0] = 0xA2; // r-block + ACK
+ real_cmd[0] = 0xA2; // r-block + ACK
real_cmd[0] |= iso14_pcb_blocknum;
}
AppendCrc14443a(real_cmd, cmd_len + 1);
-
+
ReaderTransmit(real_cmd, cmd_len + 3, NULL);
size_t len = ReaderReceive(data, parity);
if (!len) {
return 0; //DATA LINK ERROR
- } else{
- // S-Block WTX
- while(len && ((data_bytes[0] & 0xF2) == 0xF2)) {
+ } else {
+ // S-Block WTX
+ while (len && ((data_bytes[0] & 0xF2) == 0xF2)) {
uint32_t save_iso14a_timeout = iso14a_get_timeout();
// temporarily increase timeout
iso14a_set_timeout(MAX((data_bytes[1] & 0x3f) * save_iso14a_timeout, MAX_ISO14A_TIMEOUT));
- // Transmit WTX back
+ // Transmit WTX back
// byte1 - WTXM [1..59]. command FWT=FWT*WTXM
data_bytes[1] = data_bytes[1] & 0x3f; // 2 high bits mandatory set to 0b
// now need to fix CRC.
AppendCrc14443a(data_bytes, len - 2);
// transmit S-Block
ReaderTransmit(data_bytes, len, NULL);
- // retrieve the result again (with increased timeout)
+ // retrieve the result again (with increased timeout)
len = ReaderReceive(data, parity);
data_bytes = data;
// restore timeout
// if we received an I- or R(ACK)-Block with a block number equal to the
// current block number, toggle the current block number
if (len >= 3 // PCB+CRC = 3 bytes
- && ((data_bytes[0] & 0xC0) == 0 // I-Block
- || (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
- && (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers
+ && ((data_bytes[0] & 0xC0) == 0 // I-Block
+ || (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
+ && (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers
{
iso14_pcb_blocknum ^= 1;
}
-
+
// if we received I-block with chaining we need to send ACK and receive another block of data
if (res)
*res = data_bytes[0];
if (len >= 3 && !CheckCrc14443(CRC_14443_A, data_bytes, len)) {
return -1;
}
-
+
}
-
+
if (len) {
// cut frame byte
len -= 1;
for (int i = 0; i < len; i++)
data_bytes[i] = data_bytes[i + 1];
}
-
+
return len;
}
byte_t buf[USB_CMD_DATA_SIZE] = {0};
uint8_t par[MAX_PARITY_SIZE];
bool cantSELECT = false;
-
+
set_tracing(true);
-
+
if(param & ISO14A_CLEAR_TRACE) {
clear_trace();
}
len += 2;
if (lenbits) lenbits += 16;
}
- if(lenbits>0) { // want to send a specific number of bits (e.g. short commands)
+ if(lenbits>0) { // want to send a specific number of bits (e.g. short commands)
if(param & ISO14A_TOPAZMODE) {
int bits_to_send = lenbits;
uint16_t i = 0;
- ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 7), NULL, NULL); // first byte is always short (7bits) and no parity
+ ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 7), NULL, NULL); // first byte is always short (7bits) and no parity
bits_to_send -= 7;
while (bits_to_send > 0) {
- ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 8), NULL, NULL); // following bytes are 8 bit and no parity
+ ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 8), NULL, NULL); // following bytes are 8 bit and no parity
bits_to_send -= 8;
}
} else {
GetParity(cmd, lenbits/8, par);
- ReaderTransmitBitsPar(cmd, lenbits, par, NULL); // bytes are 8 bit with odd parity
+ ReaderTransmitBitsPar(cmd, lenbits, par, NULL); // bytes are 8 bit with odd parity
}
- } else { // want to send complete bytes only
+ } else { // want to send complete bytes only
if(param & ISO14A_TOPAZMODE) {
uint16_t i = 0;
- ReaderTransmitBitsPar(&cmd[i++], 7, NULL, NULL); // first byte: 7 bits, no paritiy
+ ReaderTransmitBitsPar(&cmd[i++], 7, NULL, NULL); // first byte: 7 bits, no paritiy
while (i < len) {
- ReaderTransmitBitsPar(&cmd[i++], 8, NULL, NULL); // following bytes: 8 bits, no paritiy
+ ReaderTransmitBitsPar(&cmd[i++], 8, NULL, NULL); // following bytes: 8 bits, no paritiy
}
} else {
- ReaderTransmit(cmd,len, NULL); // 8 bits, odd parity
+ ReaderTransmit(cmd,len, NULL); // 8 bits, odd parity
}
}
arg0 = ReaderReceive(buf, par);
nttmp1 = nt1;
nttmp2 = nt2;
-
+
for (i = 1; i < 32768; i++) {
nttmp1 = prng_successor(nttmp1, 1);
if (nttmp1 == nt2) return i;
nttmp2 = prng_successor(nttmp2, 1);
if (nttmp2 == nt1) return -i;
}
-
+
return(-99999); // either nt1 or nt2 are invalid nonces
}
uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
-
+
// free eventually allocated BigBuf memory. We want all for tracing.
BigBuf_free();
-
+
clear_trace();
set_tracing(true);
uint8_t nt_diff = 0;
- uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
+ uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
static uint8_t par_low = 0;
bool led_on = true;
uint8_t uid[10] ={0};
uint16_t consecutive_resyncs = 0;
int isOK = 0;
- if (first_try) {
+ if (first_try) {
mf_nr_ar3 = 0;
par[0] = par_low = 0;
- sync_cycles = PRNG_SEQUENCE_LENGTH; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the tag nonces).
+ sync_cycles = PRNG_SEQUENCE_LENGTH; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the tag nonces).
nt_attacked = 0;
}
else {
LED_A_ON();
LED_B_OFF();
LED_C_OFF();
-
- #define MAX_UNEXPECTED_RANDOM 4 // maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up.
- #define MAX_SYNC_TRIES 32
- #define SYNC_TIME_BUFFER 16 // if there is only SYNC_TIME_BUFFER left before next planned sync, wait for next PRNG cycle
- #define NUM_DEBUG_INFOS 8 // per strategy
- #define MAX_STRATEGY 3
+
+ #define MAX_UNEXPECTED_RANDOM 4 // maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up.
+ #define MAX_SYNC_TRIES 32
+ #define SYNC_TIME_BUFFER 16 // if there is only SYNC_TIME_BUFFER left before next planned sync, wait for next PRNG cycle
+ #define NUM_DEBUG_INFOS 8 // per strategy
+ #define MAX_STRATEGY 3
uint16_t unexpected_random = 0;
uint16_t sync_tries = 0;
int16_t debug_info_nr = -1;
int32_t debug_info[MAX_STRATEGY][NUM_DEBUG_INFOS];
uint32_t select_time;
uint32_t halt_time;
-
- for(uint16_t i = 0; true; i++) {
-
+
+ for (uint16_t i = 0; true; i++) {
+
LED_C_ON();
WDT_HIT();
isOK = -1;
break;
}
-
+
if (strategy == 2) {
// test with additional hlt command
halt_time = 0;
iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
SpinDelay(100);
}
-
+
if(!iso14443a_select_card(uid, NULL, &cuid, true, 0, true)) {
- if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card");
+ if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card");
continue;
}
select_time = GetCountSspClk();
sync_time = (sync_time & 0xfffffff8) + sync_cycles;
}
- // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
+ // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
} else {
// collect some information on tag nonces for debugging:
- #define DEBUG_FIXED_SYNC_CYCLES PRNG_SEQUENCE_LENGTH
+ #define DEBUG_FIXED_SYNC_CYCLES PRNG_SEQUENCE_LENGTH
if (strategy == 0) {
// nonce distances at fixed time after card select:
sync_time = select_time + DEBUG_FIXED_SYNC_CYCLES;
sync_time = DEBUG_FIXED_SYNC_CYCLES;
}
ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
- }
+ }
// Receive the (4 Byte) "random" nonce
if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) {
- if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
+ if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
continue;
}
if (nt_distance == -99999) { // invalid nonce received
unexpected_random++;
if (unexpected_random > MAX_UNEXPECTED_RANDOM) {
- isOK = -3; // Card has an unpredictable PRNG. Give up
+ isOK = -3; // Card has an unpredictable PRNG. Give up
break;
} else {
- continue; // continue trying...
+ continue; // continue trying...
}
}
if (++sync_tries > MAX_SYNC_TRIES) {
if (strategy > MAX_STRATEGY || MF_DBGLEVEL < 3) {
- isOK = -4; // Card's PRNG runs at an unexpected frequency or resets unexpectedly
+ isOK = -4; // Card's PRNG runs at an unexpected frequency or resets unexpectedly
break;
- } else { // continue for a while, just to collect some debug info
+ } else { // continue for a while, just to collect some debug info
debug_info[strategy][debug_info_nr] = nt_distance;
debug_info_nr++;
if (debug_info_nr == NUM_DEBUG_INFOS) {
}
}
- if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again...
+ if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again...
catch_up_cycles = -dist_nt(nt_attacked, nt);
- if (catch_up_cycles == 99999) { // invalid nonce received. Don't resync on that one.
+ if (catch_up_cycles == 99999) { // invalid nonce received. Don't resync on that one.
catch_up_cycles = 0;
continue;
}
}
else {
last_catch_up = catch_up_cycles;
- consecutive_resyncs = 0;
+ consecutive_resyncs = 0;
}
if (consecutive_resyncs < 3) {
if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs);
}
- else {
+ else {
sync_cycles = sync_cycles + catch_up_cycles;
if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
last_catch_up = 0;
}
continue;
}
-
+
consecutive_resyncs = 0;
-
+
// Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
if (ReaderReceive(receivedAnswer, receivedAnswerPar)) {
- catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
-
+ catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
+
if (nt_diff == 0) {
par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
}
if (nt_diff == 0 && first_try)
{
par[0]++;
- if (par[0] == 0x00) { // tried all 256 possible parities without success. Card doesn't send NACK.
+ if (par[0] == 0x00) { // tried all 256 possible parities without success. Card doesn't send NACK.
isOK = -2;
break;
}
if (isOK == -4) {
if (MF_DBGLEVEL >= 3) {
for (uint16_t i = 0; i <= MAX_STRATEGY; i++) {
- for(uint16_t j = 0; j < NUM_DEBUG_INFOS; j++) {
+ for (uint16_t j = 0; j < NUM_DEBUG_INFOS; j++) {
Dbprintf("collected debug info[%d][%d] = %d", i, j, debug_info[i][j]);
}
}
}
}
-
+
FpgaDisableTracing();
uint8_t buf[32];
memcpy(buf + 8, par_list, 8);
memcpy(buf + 16, ks_list, 8);
memcpy(buf + 24, mf_nr_ar, 8);
-
+
cmd_send(CMD_ACK, isOK, 0, 0, buf, 32);
// Thats it...
//-----------------------------------------------------------------------------
-// MIFARE sniffer.
-//
+// MIFARE sniffer.
+//
//-----------------------------------------------------------------------------
void RAMFUNC SniffMifare(uint8_t param) {
// param:
// C(red) A(yellow) B(green)
LEDsoff();
LED_A_ON();
-
+
// init trace buffer
clear_trace();
set_tracing(true);
MfSniffInit();
// And now we loop, receiving samples.
- for(uint32_t sniffCounter = 0; true; ) {
-
+ for (uint32_t sniffCounter = 0; true; ) {
+
if(BUTTON_PRESS()) {
DbpString("Canceled by button.");
break;
}
WDT_HIT();
-
- if ((sniffCounter & 0x0000FFFF) == 0) { // from time to time
+
+ if ((sniffCounter & 0x0000FFFF) == 0) { // from time to time
// check if a transaction is completed (timeout after 2000ms).
// if yes, stop the DMA transfer and send what we have so far to the client
- if (MfSniffSend(2000)) {
+ if (MfSniffSend(2000)) {
// Reset everything - we missed some sniffed data anyway while the DMA was stopped
sniffCounter = 0;
data = dmaBuf;
FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
}
}
-
- int register readBufDataP = data - dmaBuf; // number of bytes we have processed so far
+
+ int register readBufDataP = data - dmaBuf; // number of bytes we have processed so far
int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; // number of bytes already transferred
- if (readBufDataP <= dmaBufDataP){ // we are processing the same block of data which is currently being transferred
- dataLen = dmaBufDataP - readBufDataP; // number of bytes still to be processed
- } else {
+ if (readBufDataP <= dmaBufDataP){ // we are processing the same block of data which is currently being transferred
+ dataLen = dmaBufDataP - readBufDataP; // number of bytes still to be processed
+ } else {
dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed
}
// test for length of buffer
- if(dataLen > maxDataLen) { // we are more behind than ever...
- maxDataLen = dataLen;
+ if(dataLen > maxDataLen) { // we are more behind than ever...
+ maxDataLen = dataLen;
if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
break;
if (sniffCounter & 0x01) {
- if(!TagIsActive) { // no need to try decoding tag data if the reader is sending
+ if(!TagIsActive) { // no need to try decoding tag data if the reader is sending
uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
if(MillerDecoding(readerdata, (sniffCounter-1)*4)) {
/* And ready to receive another command. */
UartInit(receivedCmd, receivedCmdPar);
-
+
/* And also reset the demod code */
DemodReset();
}
ReaderIsActive = (Uart.state != STATE_UNSYNCD);
}
-
- if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending
+
+ if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending
uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) {
DbpString("COMMAND FINISHED.");
MfSniffEnd();
-
+
Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
}