+
+//by marshmellow
+//take 11 10 01 11 00 and make 01100 ... miller decoding
+//check for phase errors - should never have half a 1 or 0 by itself and should never exceed 1111 or 0000 in a row
+//decodes miller encoded binary
+//NOTE askrawdemod will NOT demod miller encoded ask unless the clock is manually set to 1/2 what it is detected as!
+int millerRawDecode(uint8_t *BitStream, size_t *size, int invert) {
+ if (*size < 16) return -1;
+ uint16_t MaxBits = 512, errCnt = 0;
+ size_t i, bitCnt=0;
+ uint8_t alignCnt = 0, curBit = BitStream[0], alignedIdx = 0;
+ uint8_t halfClkErr = 0;
+ //find alignment, needs 4 1s or 0s to properly align
+ for (i=1; i < *size-1; i++) {
+ alignCnt = (BitStream[i] == curBit) ? alignCnt+1 : 0;
+ curBit = BitStream[i];
+ if (alignCnt == 4) break;
+ }
+ // for now error if alignment not found. later add option to run it with multiple offsets...
+ if (alignCnt != 4) {
+ if (g_debugMode) prnt("ERROR MillerDecode: alignment not found so either your bitstream is not miller or your data does not have a 101 in it");
+ return -1;
+ }
+ alignedIdx = (i-1) % 2;
+ for (i=alignedIdx; i < *size-3; i+=2) {
+ halfClkErr = (uint8_t)((halfClkErr << 1 | BitStream[i]) & 0xFF);
+ if ( (halfClkErr & 0x7) == 5 || (halfClkErr & 0x7) == 2 || (i > 2 && (halfClkErr & 0x7) == 0) || (halfClkErr & 0x1F) == 0x1F) {
+ errCnt++;
+ BitStream[bitCnt++] = 7;
+ continue;
+ }
+ BitStream[bitCnt++] = BitStream[i] ^ BitStream[i+1] ^ invert;
+
+ if (bitCnt > MaxBits) break;
+ }
+ *size = bitCnt;
+ return errCnt;
+}
+
+//by marshmellow
+//take 01 or 10 = 1 and 11 or 00 = 0
+//check for phase errors - should never have 111 or 000 should be 01001011 or 10110100 for 1010
+//decodes biphase or if inverted it is AKA conditional dephase encoding AKA differential manchester encoding
+int BiphaseRawDecode(uint8_t *BitStream, size_t *size, int offset, int invert) {
+ uint16_t bitnum = 0;
+ uint16_t errCnt = 0;
+ size_t i = offset;
+ uint16_t MaxBits=512;
+ //if not enough samples - error
+ if (*size < 51) return -1;
+ //check for phase change faults - skip one sample if faulty
+ uint8_t offsetA = 1, offsetB = 1;
+ for (; i<48; i+=2){
+ if (BitStream[i+1]==BitStream[i+2]) offsetA=0;
+ if (BitStream[i+2]==BitStream[i+3]) offsetB=0;
+ }
+ if (!offsetA && offsetB) offset++;
+ for (i=offset; i<*size-3; i+=2){
+ //check for phase error
+ if (BitStream[i+1]==BitStream[i+2]) {
+ BitStream[bitnum++]=7;
+ errCnt++;
+ }
+ if((BitStream[i]==1 && BitStream[i+1]==0) || (BitStream[i]==0 && BitStream[i+1]==1)){
+ BitStream[bitnum++]=1^invert;
+ } else if((BitStream[i]==0 && BitStream[i+1]==0) || (BitStream[i]==1 && BitStream[i+1]==1)){
+ BitStream[bitnum++]=invert;
+ } else {
+ BitStream[bitnum++]=7;
+ errCnt++;
+ }
+ if(bitnum>MaxBits) break;
+ }
+ *size=bitnum;
+ return errCnt;
+}
+
+//by marshmellow
+//take 10 and 01 and manchester decode
+//run through 2 times and take least errCnt
+int manrawdecode(uint8_t * BitStream, size_t *size, uint8_t invert, uint8_t *alignPos) {
+ uint16_t bitnum=0, MaxBits = 512, errCnt = 0;
+ size_t i, ii;
+ uint16_t bestErr = 1000, bestRun = 0;
+ if (*size < 16) return -1;
+ //find correct start position [alignment]
+ for (ii=0;ii<2;++ii){
+ for (i=ii; i<*size-3; i+=2)
+ if (BitStream[i]==BitStream[i+1])
+ errCnt++;
+
+ if (bestErr>errCnt){
+ bestErr=errCnt;
+ bestRun=ii;
+ }
+ errCnt=0;
+ }
+ *alignPos=bestRun;
+ //decode
+ for (i=bestRun; i < *size-3; i+=2){
+ if(BitStream[i] == 1 && (BitStream[i+1] == 0)){
+ BitStream[bitnum++]=invert;
+ } else if((BitStream[i] == 0) && BitStream[i+1] == 1){
+ BitStream[bitnum++]=invert^1;
+ } else {
+ BitStream[bitnum++]=7;
+ }
+ if(bitnum>MaxBits) break;
+ }
+ *size=bitnum;
+ return bestErr;
+}
+
+//by marshmellow
+//demodulates strong heavily clipped samples
+int cleanAskRawDemod(uint8_t *BinStream, size_t *size, int clk, int invert, int high, int low, int *startIdx)
+{
+ *startIdx=0;
+ size_t bitCnt=0, smplCnt=1, errCnt=0;
+ bool waveHigh = (BinStream[0] >= high);
+ for (size_t i=1; i < *size; i++){
+ if (BinStream[i] >= high && waveHigh){
+ smplCnt++;
+ } else if (BinStream[i] <= low && !waveHigh){
+ smplCnt++;
+ } else { //transition
+ if ((BinStream[i] >= high && !waveHigh) || (BinStream[i] <= low && waveHigh)){
+ if (smplCnt > clk-(clk/4)-1) { //full clock
+ if (smplCnt > clk + (clk/4)+1) { //too many samples
+ errCnt++;
+ if (g_debugMode==2) prnt("DEBUG ASK: Modulation Error at: %u", i);
+ BinStream[bitCnt++] = 7;
+ } else if (waveHigh) {
+ BinStream[bitCnt++] = invert;
+ BinStream[bitCnt++] = invert;
+ } else if (!waveHigh) {
+ BinStream[bitCnt++] = invert ^ 1;
+ BinStream[bitCnt++] = invert ^ 1;
+ }
+ if (*startIdx==0) *startIdx = i-clk;
+ waveHigh = !waveHigh;
+ smplCnt = 0;
+ } else if (smplCnt > (clk/2) - (clk/4)-1) { //half clock
+ if (waveHigh) {
+ BinStream[bitCnt++] = invert;
+ } else if (!waveHigh) {
+ BinStream[bitCnt++] = invert ^ 1;
+ }
+ if (*startIdx==0) *startIdx = i-(clk/2);
+ waveHigh = !waveHigh;
+ smplCnt = 0;
+ } else {
+ smplCnt++;
+ //transition bit oops
+ }
+ } else { //haven't hit new high or new low yet
+ smplCnt++;
+ }
+ }
+ }
+ *size = bitCnt;
+ return errCnt;
+}
+
+//by marshmellow
+//attempts to demodulate ask modulations, askType == 0 for ask/raw, askType==1 for ask/manchester
+int askdemod_ext(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr, uint8_t amp, uint8_t askType, int *startIdx) {
+ if (*size==0) return -1;
+ int start = DetectASKClock(BinStream, *size, clk, maxErr); //clock default
+ if (*clk==0 || start < 0) return -3;
+ if (*invert != 1) *invert = 0;
+ if (amp==1) askAmp(BinStream, *size);
+ if (g_debugMode==2) prnt("DEBUG ASK: clk %d, beststart %d, amp %d", *clk, start, amp);
+
+ //start pos from detect ask clock is 1/2 clock offset
+ // NOTE: can be negative (demod assumes rest of wave was there)
+ *startIdx = start - (*clk/2);
+ uint8_t initLoopMax = 255;
+ if (initLoopMax > *size) initLoopMax = *size;
+ // Detect high and lows
+ //25% clip in case highs and lows aren't clipped [marshmellow]
+ int high, low;
+ if (getHiLo(BinStream, initLoopMax, &high, &low, 75, 75) < 1)
+ return -2; //just noise
+
+ size_t errCnt = 0;
+ // if clean clipped waves detected run alternate demod
+ if (DetectCleanAskWave(BinStream, *size, high, low)) {
+ if (g_debugMode==2) prnt("DEBUG ASK: Clean Wave Detected - using clean wave demod");
+ errCnt = cleanAskRawDemod(BinStream, size, *clk, *invert, high, low, startIdx);
+ if (askType) { //askman
+ uint8_t alignPos = 0;
+ errCnt = manrawdecode(BinStream, size, 0, &alignPos);
+ *startIdx += *clk/2 * alignPos;
+ if (g_debugMode) prnt("DEBUG ASK CLEAN: startIdx %i, alignPos %u", *startIdx, alignPos);
+ return errCnt;
+ } else { //askraw
+ return errCnt;
+ }
+ }
+ if (g_debugMode) prnt("DEBUG ASK WEAK: startIdx %i", *startIdx);
+ if (g_debugMode==2) prnt("DEBUG ASK: Weak Wave Detected - using weak wave demod");
+
+ int lastBit; //set first clock check - can go negative
+ size_t i, bitnum = 0; //output counter
+ uint8_t midBit = 0;
+ uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
+ if (*clk <= 32) tol = 1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
+ size_t MaxBits = 3072; //max bits to collect
+ lastBit = start - *clk;
+
+ for (i = start; i < *size; ++i) {
+ if (i-lastBit >= *clk-tol){
+ if (BinStream[i] >= high) {
+ BinStream[bitnum++] = *invert;
+ } else if (BinStream[i] <= low) {
+ BinStream[bitnum++] = *invert ^ 1;
+ } else if (i-lastBit >= *clk+tol) {
+ if (bitnum > 0) {
+ if (g_debugMode==2) prnt("DEBUG ASK: Modulation Error at: %u", i);
+ BinStream[bitnum++]=7;
+ errCnt++;
+ }
+ } else { //in tolerance - looking for peak
+ continue;
+ }
+ midBit = 0;
+ lastBit += *clk;
+ } else if (i-lastBit >= (*clk/2-tol) && !midBit && !askType){
+ if (BinStream[i] >= high) {
+ BinStream[bitnum++] = *invert;
+ } else if (BinStream[i] <= low) {
+ BinStream[bitnum++] = *invert ^ 1;
+ } else if (i-lastBit >= *clk/2+tol) {
+ BinStream[bitnum] = BinStream[bitnum-1];
+ bitnum++;
+ } else { //in tolerance - looking for peak
+ continue;
+ }
+ midBit = 1;
+ }
+ if (bitnum >= MaxBits) break;
+ }
+ *size = bitnum;
+ return errCnt;
+}
+
+int askdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr, uint8_t amp, uint8_t askType) {
+ int start = 0;
+ return askdemod_ext(BinStream, size, clk, invert, maxErr, amp, askType, &start);
+}
+
+// by marshmellow - demodulate NRZ wave - requires a read with strong signal
+// peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak
+int nrzRawDemod(uint8_t *dest, size_t *size, int *clk, int *invert, int *startIdx) {
+ if (justNoise(dest, *size)) return -1;
+ size_t clkStartIdx = 0;
+ *clk = DetectNRZClock(dest, *size, *clk, &clkStartIdx);
+ if (*clk==0) return -2;
+ size_t i, gLen = 4096;
+ if (gLen>*size) gLen = *size-20;
+ int high, low;
+ if (getHiLo(dest, gLen, &high, &low, 75, 75) < 1) return -3; //25% fuzz on high 25% fuzz on low
+
+ uint8_t bit=0;
+ //convert wave samples to 1's and 0's
+ for(i=20; i < *size-20; i++){
+ if (dest[i] >= high) bit = 1;
+ if (dest[i] <= low) bit = 0;
+ dest[i] = bit;
+ }
+ //now demod based on clock (rf/32 = 32 1's for one 1 bit, 32 0's for one 0 bit)
+ size_t lastBit = 0;
+ size_t numBits = 0;
+ for(i=21; i < *size-20; i++) {
+ //if transition detected or large number of same bits - store the passed bits
+ if (dest[i] != dest[i-1] || (i-lastBit) == (10 * *clk)) {
+ memset(dest+numBits, dest[i-1] ^ *invert, (i - lastBit + (*clk/4)) / *clk);
+ numBits += (i - lastBit + (*clk/4)) / *clk;
+ if (lastBit == 0) {
+ *startIdx = i - (numBits * *clk);
+ if (g_debugMode==2) prnt("DEBUG NRZ: startIdx %i", *startIdx);
+ }
+ lastBit = i-1;
+ }
+ }
+ *size = numBits;
+ return 0;
+}
+
+//translate wave to 11111100000 (1 for each short wave [higher freq] 0 for each long wave [lower freq])
+size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow, int *startIdx) {
+ size_t last_transition = 0;
+ size_t idx = 1;
+ if (fchigh==0) fchigh=10;
+ if (fclow==0) fclow=8;
+ //set the threshold close to 0 (graph) or 128 std to avoid static
+ size_t preLastSample = 0;
+ size_t LastSample = 0;
+ size_t currSample = 0;
+ if ( size < 1024 ) return 0; // not enough samples
+
+ //find start of modulating data in trace
+ idx = findModStart(dest, size, fchigh);
+ // Need to threshold first sample
+ if(dest[idx] < FSK_PSK_THRESHOLD) dest[0] = 0;
+ else dest[0] = 1;
+
+ last_transition = idx;
+ idx++;
+ size_t numBits = 0;
+ // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
+ // or 10 (fc/10) cycles but in practice due to noise etc we may end up with anywhere
+ // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
+ // (could also be fc/5 && fc/7 for fsk1 = 4-9)
+ for(; idx < size; idx++) {
+ // threshold current value
+ if (dest[idx] < FSK_PSK_THRESHOLD) dest[idx] = 0;
+ else dest[idx] = 1;
+
+ // Check for 0->1 transition
+ if (dest[idx-1] < dest[idx]) {
+ preLastSample = LastSample;
+ LastSample = currSample;
+ currSample = idx-last_transition;
+ if (currSample < (fclow-2)) { //0-5 = garbage noise (or 0-3)
+ //do nothing with extra garbage
+ } else if (currSample < (fchigh-1)) { //6-8 = 8 sample waves (or 3-6 = 5)
+ //correct previous 9 wave surrounded by 8 waves (or 6 surrounded by 5)
+ if (numBits > 1 && LastSample > (fchigh-2) && (preLastSample < (fchigh-1))){
+ dest[numBits-1]=1;
+ }
+ dest[numBits++]=1;
+ if (numBits > 0 && *startIdx==0) *startIdx = idx - fclow;
+ } else if (currSample > (fchigh+1) && numBits < 3) { //12 + and first two bit = unusable garbage
+ //do nothing with beginning garbage and reset.. should be rare..
+ numBits = 0;
+ } else if (currSample == (fclow+1) && LastSample == (fclow-1)) { // had a 7 then a 9 should be two 8's (or 4 then a 6 should be two 5's)
+ dest[numBits++]=1;
+ if (numBits > 0 && *startIdx==0) *startIdx = idx - fclow;
+ } else { //9+ = 10 sample waves (or 6+ = 7)
+ dest[numBits++]=0;
+ if (numBits > 0 && *startIdx==0) *startIdx = idx - fchigh;
+ }
+ last_transition = idx;
+ }
+ }
+ return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
+}
+
+//translate 11111100000 to 10
+//rfLen = clock, fchigh = larger field clock, fclow = smaller field clock
+size_t aggregate_bits(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow, int *startIdx) {
+ uint8_t lastval=dest[0];
+ size_t idx=0;
+ size_t numBits=0;
+ uint32_t n=1;
+ for( idx=1; idx < size; idx++) {
+ n++;
+ if (dest[idx]==lastval) continue; //skip until we hit a transition
+
+ //find out how many bits (n) we collected (use 1/2 clk tolerance)
+ //if lastval was 1, we have a 1->0 crossing
+ if (dest[idx-1]==1) {
+ n = (n * fclow + rfLen/2) / rfLen;
+ } else {// 0->1 crossing
+ n = (n * fchigh + rfLen/2) / rfLen;
+ }
+ if (n == 0) n = 1;
+
+ //first transition - save startidx
+ if (numBits == 0) {
+ if (lastval == 1) { //high to low
+ *startIdx += (fclow * idx) - (n*rfLen);
+ if (g_debugMode==2) prnt("DEBUG FSK: startIdx %i, fclow*idx %i, n*rflen %u", *startIdx, fclow*(idx), n*rfLen);
+ } else {
+ *startIdx += (fchigh * idx) - (n*rfLen);
+ if (g_debugMode==2) prnt("DEBUG FSK: startIdx %i, fchigh*idx %i, n*rflen %u", *startIdx, fchigh*(idx), n*rfLen);
+ }
+ }
+
+ //add to our destination the bits we collected
+ memset(dest+numBits, dest[idx-1]^invert , n);
+ numBits += n;
+ n=0;
+ lastval=dest[idx];
+ }//end for
+ // if valid extra bits at the end were all the same frequency - add them in
+ if (n > rfLen/fchigh) {
+ if (dest[idx-2]==1) {
+ n = (n * fclow + rfLen/2) / rfLen;
+ } else {
+ n = (n * fchigh + rfLen/2) / rfLen;
+ }
+ memset(dest+numBits, dest[idx-1]^invert , n);
+ numBits += n;
+ }
+ return numBits;
+}
+
+//by marshmellow (from holiman's base)
+// full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod)
+int fskdemod_ext(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow, int *startIdx) {
+ // FSK demodulator
+ size = fsk_wave_demod(dest, size, fchigh, fclow, startIdx);
+ size = aggregate_bits(dest, size, rfLen, invert, fchigh, fclow, startIdx);
+ return size;
+}
+
+int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow) {
+ int startIdx=0;
+ return fskdemod_ext(dest, size, rfLen, invert, fchigh, fclow, &startIdx);
+}
+
+// by marshmellow
+// convert psk1 demod to psk2 demod
+// only transition waves are 1s
+void psk1TOpsk2(uint8_t *BitStream, size_t size) {
+ size_t i=1;
+ uint8_t lastBit=BitStream[0];
+ for (; i<size; i++){
+ if (BitStream[i]==7){
+ //ignore errors
+ } else if (lastBit!=BitStream[i]){
+ lastBit=BitStream[i];
+ BitStream[i]=1;
+ } else {
+ BitStream[i]=0;
+ }
+ }
+ return;
+}
+
+// by marshmellow
+// convert psk2 demod to psk1 demod
+// from only transition waves are 1s to phase shifts change bit
+void psk2TOpsk1(uint8_t *BitStream, size_t size) {
+ uint8_t phase=0;
+ for (size_t i=0; i<size; i++){
+ if (BitStream[i]==1){
+ phase ^=1;
+ }
+ BitStream[i]=phase;
+ }
+ return;
+}
+
+//by marshmellow - demodulate PSK1 wave
+//uses wave lengths (# Samples)
+int pskRawDemod_ext(uint8_t dest[], size_t *size, int *clock, int *invert, int *startIdx) {
+ if (*size < 170) return -1;
+
+ uint8_t curPhase = *invert;
+ uint8_t fc=0;
+ size_t i=0, numBits=0, waveStart=1, waveEnd=0, firstFullWave=0, lastClkBit=0;
+ uint16_t fullWaveLen=0, waveLenCnt=0, avgWaveVal;
+ uint16_t errCnt=0, errCnt2=0;
+
+ *clock = DetectPSKClock(dest, *size, *clock, &firstFullWave, &curPhase, &fc);
+ if (*clock <= 0) return -1;
+ //if clock detect found firstfullwave...
+ uint16_t tol = fc/2;
+ if (firstFullWave == 0) {
+ //find start of modulating data in trace
+ i = findModStart(dest, *size, fc);
+ //find first phase shift
+ firstFullWave = pskFindFirstPhaseShift(dest, *size, &curPhase, i, fc, &fullWaveLen);
+ if (firstFullWave == 0) {
+ // no phase shift detected - could be all 1's or 0's - doesn't matter where we start
+ // so skip a little to ensure we are past any Start Signal
+ firstFullWave = 160;
+ memset(dest, curPhase, firstFullWave / *clock);
+ } else {
+ memset(dest, curPhase^1, firstFullWave / *clock);
+ }
+ } else {
+ memset(dest, curPhase^1, firstFullWave / *clock);
+ }
+ //advance bits
+ numBits += (firstFullWave / *clock);
+ *startIdx = firstFullWave - (*clock * numBits)+2;
+ //set start of wave as clock align
+ lastClkBit = firstFullWave;
+ if (g_debugMode==2) prnt("DEBUG PSK: firstFullWave: %u, waveLen: %u, startIdx %i",firstFullWave,fullWaveLen, *startIdx);
+ if (g_debugMode==2) prnt("DEBUG PSK: clk: %d, lastClkBit: %u, fc: %u", *clock, lastClkBit,(unsigned int) fc);
+ waveStart = 0;
+ dest[numBits++] = curPhase; //set first read bit
+ for (i = firstFullWave + fullWaveLen - 1; i < *size-3; i++) {
+ //top edge of wave = start of new wave
+ if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]) {
+ if (waveStart == 0) {
+ waveStart = i+1;
+ waveLenCnt = 0;
+ avgWaveVal = dest[i+1];
+ } else { //waveEnd
+ waveEnd = i+1;
+ waveLenCnt = waveEnd-waveStart;
+ if (waveLenCnt > fc) {
+ //this wave is a phase shift
+ //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc);
+ if (i+1 >= lastClkBit + *clock - tol) { //should be a clock bit
+ curPhase ^= 1;
+ dest[numBits++] = curPhase;
+ lastClkBit += *clock;
+ } else if (i < lastClkBit+10+fc) {
+ //noise after a phase shift - ignore
+ } else { //phase shift before supposed to based on clock
+ errCnt++;
+ dest[numBits++] = 7;
+ }
+ } else if (i+1 > lastClkBit + *clock + tol + fc) {
+ lastClkBit += *clock; //no phase shift but clock bit
+ dest[numBits++] = curPhase;
+ } else if (waveLenCnt < fc - 1) { //wave is smaller than field clock (shouldn't happen often)
+ errCnt2++;
+ if(errCnt2 > 101) return errCnt2;
+ avgWaveVal += dest[i+1];
+ continue;
+ }
+ avgWaveVal = 0;
+ waveStart = i+1;
+ }
+ }
+ avgWaveVal += dest[i+1];
+ }
+ *size = numBits;
+ return errCnt;
+}
+
+int pskRawDemod(uint8_t dest[], size_t *size, int *clock, int *invert) {
+ int startIdx = 0;
+ return pskRawDemod_ext(dest, size, clock, invert, &startIdx);
+}
+
+//**********************************************************************************************
+//-----------------Tag format detection section-------------------------------------------------
+//**********************************************************************************************
+
+// by marshmellow
+// FSK Demod then try to locate an AWID ID
+int AWIDdemodFSK(uint8_t *dest, size_t *size) {
+ //make sure buffer has enough data
+ if (*size < 96*50) return -1;
+
+ if (justNoise(dest, *size)) return -2;
+
+ // FSK demodulator
+ *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50
+ if (*size < 96) return -3; //did we get a good demod?
+
+ uint8_t preamble[] = {0,0,0,0,0,0,0,1};
+ size_t startIdx = 0;
+ uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
+ if (errChk == 0) return -4; //preamble not found
+ if (*size != 96) return -5;
+ return (int)startIdx;
+}
+
+//by marshmellow
+//takes 1s and 0s and searches for EM410x format - output EM ID
+uint8_t Em410xDecode(uint8_t *BitStream, size_t *size, size_t *startIdx, uint32_t *hi, uint64_t *lo)
+{
+ //sanity checks
+ if (*size < 64) return 0;
+ if (BitStream[1]>1) return 0; //allow only 1s and 0s
+
+ // 111111111 bit pattern represent start of frame
+ // include 0 in front to help get start pos
+ uint8_t preamble[] = {0,1,1,1,1,1,1,1,1,1};
+ uint8_t errChk = 0;
+ uint8_t FmtLen = 10; // sets of 4 bits = end data
+ *startIdx = 0;
+ errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, startIdx);
+ if ( errChk == 0 || (*size != 64 && *size != 128) ) return 0;
+ if (*size == 128) FmtLen = 22; // 22 sets of 4 bits
+
+ //skip last 4bit parity row for simplicity
+ *size = removeParity(BitStream, *startIdx + sizeof(preamble), 5, 0, FmtLen * 5);
+ if (*size == 40) { // std em410x format
+ *hi = 0;
+ *lo = ((uint64_t)(bytebits_to_byte(BitStream, 8)) << 32) | (bytebits_to_byte(BitStream + 8, 32));
+ } else if (*size == 88) { // long em format
+ *hi = (bytebits_to_byte(BitStream, 24));
+ *lo = ((uint64_t)(bytebits_to_byte(BitStream + 24, 32)) << 32) | (bytebits_to_byte(BitStream + 24 + 32, 32));
+ } else {
+ if (g_debugMode) prnt("Error removing parity: %u", *size);
+ return 0;
+ }
+ return 1;
+}
+
+// Ask/Biphase Demod then try to locate an ISO 11784/85 ID
+// BitStream must contain previously askrawdemod and biphasedemoded data
+int FDXBdemodBI(uint8_t *dest, size_t *size) {
+ //make sure buffer has enough data
+ if (*size < 128) return -1;
+
+ size_t startIdx = 0;
+ uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,1};
+
+ uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
+ if (errChk == 0) return -2; //preamble not found
+ if (*size != 128) return -3; //wrong size for fdxb
+ //return start position
+ return (int)startIdx;
+}
+
+// by marshmellow
+// demod gProxIIDemod
+// error returns as -x
+// success returns start position in BitStream
+// BitStream must contain previously askrawdemod and biphasedemoded data
+int gProxII_Demod(uint8_t BitStream[], size_t *size) {
+ size_t startIdx=0;
+ uint8_t preamble[] = {1,1,1,1,1,0};
+
+ uint8_t errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, &startIdx);
+ if (errChk == 0) return -3; //preamble not found
+ if (*size != 96) return -2; //should have found 96 bits
+ //check first 6 spacer bits to verify format
+ if (!BitStream[startIdx+5] && !BitStream[startIdx+10] && !BitStream[startIdx+15] && !BitStream[startIdx+20] && !BitStream[startIdx+25] && !BitStream[startIdx+30]){
+ //confirmed proper separator bits found
+ //return start position
+ return (int) startIdx;
+ }
+ return -5; //spacer bits not found - not a valid gproxII
+}
+
+// loop to get raw HID waveform then FSK demodulate the TAG ID from it
+int HIDdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo) {
+ if (justNoise(dest, *size)) return -1;
+
+ size_t numStart=0, size2=*size, startIdx=0;
+ // FSK demodulator
+ *size = fskdemod(dest, size2,50,1,10,8); //fsk2a
+ if (*size < 96*2) return -2;
+ // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
+ uint8_t preamble[] = {0,0,0,1,1,1,0,1};
+ // find bitstring in array
+ uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
+ if (errChk == 0) return -3; //preamble not found
+
+ numStart = startIdx + sizeof(preamble);
+ // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
+ for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){
+ if (dest[idx] == dest[idx+1]){
+ return -4; //not manchester data
+ }
+ *hi2 = (*hi2<<1)|(*hi>>31);
+ *hi = (*hi<<1)|(*lo>>31);
+ //Then, shift in a 0 or one into low
+ if (dest[idx] && !dest[idx+1]) // 1 0
+ *lo=(*lo<<1)|1;
+ else // 0 1
+ *lo=(*lo<<1)|0;
+ }
+ return (int)startIdx;
+}
+
+int IOdemodFSK(uint8_t *dest, size_t size) {
+ if (justNoise(dest, size)) return -1;
+ //make sure buffer has data
+ if (size < 66*64) return -2;
+ // FSK demodulator
+ size = fskdemod(dest, size, 64, 1, 10, 8); // FSK2a RF/64
+ if (size < 65) return -3; //did we get a good demod?
+ //Index map
+ //0 10 20 30 40 50 60
+ //| | | | | | |
+ //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
+ //-----------------------------------------------------------------------------
+ //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
+ //
+ //XSF(version)facility:codeone+codetwo
+ //Handle the data
+ size_t startIdx = 0;
+ uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,1};
+ uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), &size, &startIdx);
+ if (errChk == 0) return -4; //preamble not found
+
+ if (!dest[startIdx+8] && dest[startIdx+17]==1 && dest[startIdx+26]==1 && dest[startIdx+35]==1 && dest[startIdx+44]==1 && dest[startIdx+53]==1){
+ //confirmed proper separator bits found
+ //return start position
+ return (int) startIdx;
+ }
+ return -5;
+}
+
+// redesigned by marshmellow adjusted from existing decode functions
+// indala id decoding - only tested on 26 bit tags, but attempted to make it work for more
+int indala26decode(uint8_t *bitStream, size_t *size, uint8_t *invert) {
+ //26 bit 40134 format (don't know other formats)
+ uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
+ uint8_t preamble_i[] = {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0};
+ size_t startidx = 0;
+ if (!preambleSearch(bitStream, preamble, sizeof(preamble), size, &startidx)){
+ // if didn't find preamble try again inverting
+ if (!preambleSearch(bitStream, preamble_i, sizeof(preamble_i), size, &startidx)) return -1;
+ *invert ^= 1;
+ }
+ if (*size != 64 && *size != 224) return -2;
+ if (*invert==1)
+ for (size_t i = startidx; i < *size + startidx; i++)
+ bitStream[i] ^= 1;
+
+ return (int) startidx;
+}
+
+// loop to get raw paradox waveform then FSK demodulate the TAG ID from it
+int ParadoxdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo) {
+ if (justNoise(dest, *size)) return -1;
+
+ size_t numStart=0, size2=*size, startIdx=0;
+ // FSK demodulator
+ *size = fskdemod(dest, size2,50,1,10,8); //fsk2a
+ if (*size < 96) return -2;
+
+ // 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
+ uint8_t preamble[] = {0,0,0,0,1,1,1,1};
+
+ uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
+ if (errChk == 0) return -3; //preamble not found
+
+ numStart = startIdx + sizeof(preamble);
+ // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
+ for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){
+ if (dest[idx] == dest[idx+1])
+ return -4; //not manchester data
+ *hi2 = (*hi2<<1)|(*hi>>31);
+ *hi = (*hi<<1)|(*lo>>31);
+ //Then, shift in a 0 or one into low
+ if (dest[idx] && !dest[idx+1]) // 1 0
+ *lo=(*lo<<1)|1;
+ else // 0 1
+ *lo=(*lo<<1)|0;
+ }
+ return (int)startIdx;
+}
+
+// find presco preamble 0x10D in already demoded data
+int PrescoDemod(uint8_t *dest, size_t *size) {
+ //make sure buffer has data
+ if (*size < 64*2) return -2;
+
+ size_t startIdx = 0;
+ uint8_t preamble[] = {1,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0};
+ uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
+ if (errChk == 0) return -4; //preamble not found
+ //return start position
+ return (int) startIdx;
+}
+
+// by marshmellow
+// FSK Demod then try to locate a Farpointe Data (pyramid) ID
+int PyramiddemodFSK(uint8_t *dest, size_t *size) {
+ //make sure buffer has data
+ if (*size < 128*50) return -5;
+
+ //test samples are not just noise
+ if (justNoise(dest, *size)) return -1;
+
+ // FSK demodulator
+ *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50
+ if (*size < 128) return -2; //did we get a good demod?
+
+ uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
+ size_t startIdx = 0;
+ uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
+ if (errChk == 0) return -4; //preamble not found
+ if (*size != 128) return -3;
+ return (int)startIdx;
+}
+
+// by marshmellow
+// find viking preamble 0xF200 in already demoded data
+int VikingDemod_AM(uint8_t *dest, size_t *size) {
+ //make sure buffer has data
+ if (*size < 64*2) return -2;
+
+ size_t startIdx = 0;
+ uint8_t preamble[] = {1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
+ uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
+ if (errChk == 0) return -4; //preamble not found
+ uint32_t checkCalc = bytebits_to_byte(dest+startIdx,8) ^ bytebits_to_byte(dest+startIdx+8,8) ^ bytebits_to_byte(dest+startIdx+16,8)
+ ^ bytebits_to_byte(dest+startIdx+24,8) ^ bytebits_to_byte(dest+startIdx+32,8) ^ bytebits_to_byte(dest+startIdx+40,8)
+ ^ bytebits_to_byte(dest+startIdx+48,8) ^ bytebits_to_byte(dest+startIdx+56,8);
+ if ( checkCalc != 0xA8 ) return -5;
+ if (*size != 64) return -6;
+ //return start position
+ return (int) startIdx;
+}
+
+// by iceman
+// find Visa2000 preamble in already demoded data
+int Visa2kDemod_AM(uint8_t *dest, size_t *size) {
+ if (*size < 96) return -1; //make sure buffer has data
+ size_t startIdx = 0;
+ uint8_t preamble[] = {0,1,0,1,0,1,1,0,0,1,0,0,1,0,0,1,0,1,0,1,0,0,1,1,0,0,1,1,0,0,1,0};
+ if (preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx) == 0)
+ return -2; //preamble not found
+ if (*size != 96) return -3; //wrong demoded size
+ //return start position
+ return (int)startIdx;
+}