// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
-// Flasher frontend tool
+// Compression tool for FPGA config files. Compress several *.bit files at
+// compile time. Decompression is done at run time (see fpgaloader.c).
+// This uses the zlib library tuned to this specific case. The small file sizes
+// allow to use "insane" parameters for optimum compression ratio.
//-----------------------------------------------------------------------------
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
-#include "sleep.h"
-#include "proxmark3.h"
-#include "flash.h"
-#include "uart.h"
-#include "usb_cmd.h"
+#include <stdint.h>
+#include <stdbool.h>
+#include "zlib.h"
#define MAX(a,b) ((a)>(b)?(a):(b))
-struct huffman_record {
- int16_t symbol;
- uint16_t count;
- uint8_t code_size;
- uint8_t code;
- struct huffman_record *left;
- struct huffman_record *right;
- struct huffman_record *next;
- };
+// zlib configuration
+#define COMPRESS_LEVEL 9 // use best possible compression
+#define COMPRESS_WINDOW_BITS 15 // default = max = 15 for a window of 2^15 = 32KBytes
+#define COMPRESS_MEM_LEVEL 9 // determines the amount of memory allocated during compression. Default = 8.
+/* COMPRESS_STRATEGY can be
+ Z_DEFAULT_STRATEGY (the default),
+ Z_FILTERED (more huffmann, less string matching),
+ Z_HUFFMAN_ONLY (huffman only, no string matching)
+ Z_RLE (distances limited to one)
+ Z_FIXED (prevents the use of dynamic Huffman codes)
+*/
-typedef struct huffman_record huffman_record_t;
+#define COMPRESS_STRATEGY Z_DEFAULT_STRATEGY
+// zlib tuning parameters:
+#define COMPRESS_GOOD_LENGTH 258
+#define COMPRESS_MAX_LAZY 258
+#define COMPRESS_MAX_NICE_LENGTH 258
+#define COMPRESS_MAX_CHAIN 8192
-#define FPGA_CONFIG_SIZE 42175
-static uint8_t fpga_config[FPGA_CONFIG_SIZE];
-static huffman_record_t leaf_nodes[256];
-static uint8_t start_code[256];
+#define FPGA_INTERLEAVE_SIZE 288 // (the FPGA's internal config frame size is 288 bits. Interleaving with 288 bytes should give best compression)
+#define FPGA_CONFIG_SIZE 42336L // our current fpga_[lh]f.bit files are 42175 bytes. Rounded up to next multiple of FPGA_INTERLEAVE_SIZE
+#define HARDNESTED_TABLE_SIZE (sizeof(uint32_t) * ((1L<<19)+1))
-static void usage(char *argv0)
+static void usage(void)
{
- fprintf(stderr, "Usage: %s [-d] <infile> <outfile>\n\n", argv0);
- fprintf(stderr, "\t-d\tdecompress\n\n");
+ fprintf(stdout, "Usage: fpga_compress <infile1> <infile2> ... <infile_n> <outfile>\n");
+ fprintf(stdout, " Combine n FPGA bitstream files and compress them into one.\n\n");
+ fprintf(stdout, " fpga_compress -d <infile> <outfile>");
+ fprintf(stdout, " Decompress <infile>. Write result to <outfile>");
+ fprintf(stdout, " fpga_compress -t <infile> <outfile>");
+ fprintf(stdout, " Compress hardnested table <infile>. Write result to <outfile>");
}
-void add_to_heap(huffman_record_t **heap, huffman_record_t *new_record)
+static voidpf fpga_deflate_malloc(voidpf opaque, uInt items, uInt size)
{
- huffman_record_t *succ = *heap;
- huffman_record_t *pred = NULL;
-
-// fprintf(stderr, "Adding symbol %d, count %d\n", new_record->symbol, new_record->count);
-
- while (succ != NULL && new_record->count > succ->count) {
- pred = succ;
- succ = succ->next;
- }
-
- // insert new record
- new_record->next = succ;
- if (pred == NULL) { // first record in heap
- *heap = new_record;
- } else {
- pred->next = new_record;
- }
+ return malloc(items*size);
}
-
-uint16_t set_codesize(huffman_record_t *tree_ptr, uint8_t depth)
+
+static void fpga_deflate_free(voidpf opaque, voidpf address)
{
- uint16_t max_size = depth;
- tree_ptr->code_size = depth;
- if (tree_ptr->left != NULL) {
- max_size = MAX(set_codesize(tree_ptr->left, depth+1), max_size);
- }
- if (tree_ptr->right != NULL) {
- max_size = MAX(set_codesize(tree_ptr->right, depth+1), max_size);
- }
- return max_size;
-}
+ return free(address);
+}
+
-int huffman_encode(FILE *infile, FILE *outfile)
+static bool all_feof(FILE *infile[], uint8_t num_infiles)
{
- int i;
-
- // init leaf_nodes:
- for (i = 0; i < 256; i++) {
- leaf_nodes[i].count = 0;
- leaf_nodes[i].symbol = i;
- leaf_nodes[i].left = NULL;
- leaf_nodes[i].right = NULL;
- leaf_nodes[i].next = NULL;
+ for (uint16_t i = 0; i < num_infiles; i++) {
+ if (!feof(infile[i])) {
+ return false;
+ }
}
- // read the input file into fpga_config[] and count occurrences of each symbol:
+ return true;
+}
+
+
+int zlib_compress(FILE *infile[], uint8_t num_infiles, FILE *outfile, bool hardnested_mode)
+{
+ uint8_t *fpga_config;
+ uint32_t i;
+ int32_t ret;
+ uint8_t c;
+ z_stream compressed_fpga_stream;
+
+ if (hardnested_mode) {
+ fpga_config = malloc(num_infiles * HARDNESTED_TABLE_SIZE);
+ } else {
+ fpga_config = malloc(num_infiles * FPGA_CONFIG_SIZE);
+ }
+ // read the input files. Interleave them into fpga_config[]
i = 0;
- while(!feof(infile)) {
- uint8_t c;
- c = fgetc(infile);
- fpga_config[i++] = c;
- leaf_nodes[c].count++;
- if (i > FPGA_CONFIG_SIZE+1) {
- fprintf(stderr, "Input file too big (> %d bytes). This is probably not a PM3 FPGA config file.", FPGA_CONFIG_SIZE);
- fclose(infile);
- fclose(outfile);
- return -1;
+ do {
+
+ if (i >= num_infiles * (hardnested_mode?HARDNESTED_TABLE_SIZE:FPGA_CONFIG_SIZE)) {
+ if (hardnested_mode) {
+ fprintf(stderr, "Input file too big (> %lu bytes). This is probably not a hardnested bitflip state table.\n", HARDNESTED_TABLE_SIZE);
+ } else {
+ fprintf(stderr, "Input files too big (total > %lu bytes). These are probably not PM3 FPGA config files.\n", num_infiles*FPGA_CONFIG_SIZE);
+ }
+ for(uint16_t j = 0; j < num_infiles; j++) {
+ fclose(infile[j]);
+ }
+ free(fpga_config);
+ return(EXIT_FAILURE);
}
- }
-
- fprintf(stderr, "\nStatistics: (symbol: count)\n");
- for (i = 0; i < 256; i++) {
- fprintf(stderr, "%3d: %5d\n", i, leaf_nodes[i].count);
- }
- // build the Huffman tree:
- huffman_record_t *heap_ptr = NULL;
+ for(uint16_t j = 0; j < num_infiles; j++) {
+ for(uint16_t k = 0; k < FPGA_INTERLEAVE_SIZE; k++) {
+ c = fgetc(infile[j]);
+ if (!feof(infile[j])) {
+ fpga_config[i++] = c;
+ } else if (num_infiles > 1) {
+ fpga_config[i++] = '\0';
+ }
+ }
+ }
- for (i = 0; i < 256; i++) {
- add_to_heap(&heap_ptr, &leaf_nodes[i]);
- }
+ } while (!all_feof(infile, num_infiles));
- fprintf(stderr, "\nSorted statistics: (symbol: count)\n");
- for (huffman_record_t *p = heap_ptr; p != NULL; p = p->next) {
- fprintf(stderr, "%3d: %5d\n", p->symbol, p->count);
- }
+ // initialize zlib structures
+ compressed_fpga_stream.next_in = fpga_config;
+ compressed_fpga_stream.avail_in = i;
+ compressed_fpga_stream.zalloc = fpga_deflate_malloc;
+ compressed_fpga_stream.zfree = fpga_deflate_free;
+ compressed_fpga_stream.opaque = Z_NULL;
+ ret = deflateInit2(&compressed_fpga_stream,
+ COMPRESS_LEVEL,
+ Z_DEFLATED,
+ COMPRESS_WINDOW_BITS,
+ COMPRESS_MEM_LEVEL,
+ COMPRESS_STRATEGY);
- for (i = 0; i < 255; i++) {
- // remove and combine the first two nodes
- huffman_record_t *p1, *p2;
- p1 = heap_ptr;
- p2 = heap_ptr->next;
- heap_ptr = p2->next;
- huffman_record_t *new_node = malloc(sizeof(huffman_record_t));
- new_node->left = p1;
- new_node->right = p2;
- new_node->count = p1->count + p2->count;
- add_to_heap(&heap_ptr, new_node);
+ // estimate the size of the compressed output
+ uint32_t outsize_max = deflateBound(&compressed_fpga_stream, compressed_fpga_stream.avail_in);
+ uint8_t *outbuf = malloc(outsize_max);
+ compressed_fpga_stream.next_out = outbuf;
+ compressed_fpga_stream.avail_out = outsize_max;
+
+ if (ret == Z_OK) {
+ ret = deflateTune(&compressed_fpga_stream,
+ COMPRESS_GOOD_LENGTH,
+ COMPRESS_MAX_LAZY,
+ COMPRESS_MAX_NICE_LENGTH,
+ COMPRESS_MAX_CHAIN);
}
- uint16_t max_codesize = set_codesize(heap_ptr, 0);
-
- fprintf(stderr, "\nStatistics: (symbol: count, codesize)\n");
- uint32_t compressed_size = 0;
- for (i = 0; i < 256; i++) {
- fprintf(stderr, "%3d: %5d, %d\n", leaf_nodes[i].symbol, leaf_nodes[i].count, leaf_nodes[i].code_size);
- compressed_size += leaf_nodes[i].count * leaf_nodes[i].code_size;
+ if (ret == Z_OK) {
+ ret = deflate(&compressed_fpga_stream, Z_FINISH);
}
- fprintf(stderr, "Compressed size = %ld (%f% of original size)", (compressed_size+7)/8, (float)(compressed_size)/(FPGA_CONFIG_SIZE * 8) * 100);
- fprintf(stderr, "Max Codesize = %d bits", max_codesize);
- uint8_t code = 0;
- for (i = max_codesize; i > 0; i--) {
- code = (code + 1) >> 1;
- start_code[i] = code;
- for (uint16_t j = 0; j < 256; j++) {
- if (leaf_nodes[j].code_size == i) {
- leaf_nodes[j].code = code;
- code++;
- }
+ fprintf(stdout, "compressed %u input bytes to %lu output bytes\n", i, compressed_fpga_stream.total_out);
+
+ if (ret != Z_STREAM_END) {
+ fprintf(stderr, "Error in deflate(): %i %s\n", ret, compressed_fpga_stream.msg);
+ free(outbuf);
+ deflateEnd(&compressed_fpga_stream);
+ for(uint16_t j = 0; j < num_infiles; j++) {
+ fclose(infile[j]);
}
- }
+ fclose(outfile);
+ free(infile);
+ free(fpga_config);
+ return(EXIT_FAILURE);
+ }
+
+ for (i = 0; i < compressed_fpga_stream.total_out; i++) {
+ fputc(outbuf[i], outfile);
+ }
-
- fprintf(stderr, "\nStatistics: (symbol: count, codesize, code)\n");
- for (i = 0; i < 256; i++) {
- fprintf(stderr, "%3d: %5d, %d, %02x\n", leaf_nodes[i].symbol, leaf_nodes[i].count, leaf_nodes[i].code_size, leaf_nodes[i].code);
+ free(outbuf);
+ deflateEnd(&compressed_fpga_stream);
+ for(uint16_t j = 0; j < num_infiles; j++) {
+ fclose(infile[j]);
}
-
- fclose(infile);
fclose(outfile);
+ free(infile);
+ free(fpga_config);
+
+ return(EXIT_SUCCESS);
- return 0;
}
-int huffman_decode(FILE *infile, FILE *outfile)
+
+int zlib_decompress(FILE *infile, FILE *outfile)
{
- return 0;
+ #define DECOMPRESS_BUF_SIZE 1024
+ uint8_t outbuf[DECOMPRESS_BUF_SIZE];
+ uint8_t inbuf[DECOMPRESS_BUF_SIZE];
+ int32_t ret;
+
+ z_stream compressed_fpga_stream;
+
+ // initialize zlib structures
+ compressed_fpga_stream.next_in = inbuf;
+ compressed_fpga_stream.avail_in = 0;
+ compressed_fpga_stream.next_out = outbuf;
+ compressed_fpga_stream.avail_out = DECOMPRESS_BUF_SIZE;
+ compressed_fpga_stream.zalloc = fpga_deflate_malloc;
+ compressed_fpga_stream.zfree = fpga_deflate_free;
+ compressed_fpga_stream.opaque = Z_NULL;
+
+ ret = inflateInit2(&compressed_fpga_stream, 0);
+
+ do {
+ if (compressed_fpga_stream.avail_in == 0) {
+ compressed_fpga_stream.next_in = inbuf;
+ uint16_t i = 0;
+ do {
+ int32_t c = fgetc(infile);
+ if (!feof(infile)) {
+ inbuf[i++] = c & 0xFF;
+ compressed_fpga_stream.avail_in++;
+ } else {
+ break;
+ }
+ } while (i < DECOMPRESS_BUF_SIZE);
+ }
+
+ ret = inflate(&compressed_fpga_stream, Z_SYNC_FLUSH);
+
+ if (ret != Z_OK && ret != Z_STREAM_END) {
+ break;
+ }
+
+ if (compressed_fpga_stream.avail_out == 0) {
+ for (uint16_t i = 0; i < DECOMPRESS_BUF_SIZE; i++) {
+ fputc(outbuf[i], outfile);
+ }
+ compressed_fpga_stream.avail_out = DECOMPRESS_BUF_SIZE;
+ compressed_fpga_stream.next_out = outbuf;
+ }
+ } while (ret == Z_OK);
+
+ if (ret == Z_STREAM_END) { // reached end of input
+ uint16_t i = 0;
+ while (compressed_fpga_stream.avail_out < DECOMPRESS_BUF_SIZE) {
+ fputc(outbuf[i++], outfile);
+ compressed_fpga_stream.avail_out++;
+ }
+ fclose(outfile);
+ fclose(infile);
+ return(EXIT_SUCCESS);
+ } else {
+ fprintf(stderr, "Error. Inflate() returned error %i, %s", ret, compressed_fpga_stream.msg);
+ fclose(outfile);
+ fclose(infile);
+ return(EXIT_FAILURE);
+ }
+
}
int main(int argc, char **argv)
{
- bool decode = false;
- char *infilename;
- char *outfilename;
+ FILE **infiles;
+ FILE *outfile;
- if (argc < 3) {
- usage(argv[0]);
- return -1;
+ if (argc == 1 || argc == 2) {
+ usage();
+ return(EXIT_FAILURE);
}
+
+ if (!strcmp(argv[1], "-d")) { // Decompress
- if (argc > 3) {
- if (!strcmp(argv[1], "-d")) {
- decode = true;
- infilename = argv[2];
- outfilename = argv[3];
- } else {
- usage(argv[0]);
- return -1;
+ infiles = calloc(1, sizeof(FILE*));
+ if (argc != 4) {
+ usage();
+ return(EXIT_FAILURE);
+ }
+ infiles[0] = fopen(argv[2], "rb");
+ if (infiles[0] == NULL) {
+ fprintf(stderr, "Error. Cannot open input file %s", argv[2]);
+ return(EXIT_FAILURE);
}
- } else {
- infilename = argv[1];
- outfilename = argv[2];
- }
+ outfile = fopen(argv[3], "wb");
+ if (outfile == NULL) {
+ fprintf(stderr, "Error. Cannot open output file %s", argv[3]);
+ return(EXIT_FAILURE);
+ }
+ return zlib_decompress(infiles[0], outfile);
- FILE *infile = fopen(infilename, "rb");
- if (infile == NULL) {
- fprintf(stderr, "Error. Cannot open input file %s", infilename);
- return -1;
+ } else { // Compress
+
+ bool hardnested_mode = false;
+ int num_input_files = 0;
+ if (!strcmp(argv[1], "-t")) { // hardnested table
+ if (argc != 4) {
+ usage();
+ return(EXIT_FAILURE);
+ }
+ hardnested_mode = true;
+ num_input_files = 1;
+ } else {
+ num_input_files = argc-2;
}
-
- FILE *outfile = fopen(outfilename, "wb");
- if (outfile == NULL) {
- fprintf(stderr, "Error. Cannot open output file %s", outfilename);
- fclose(infile);
- return -1;
+ infiles = calloc(num_input_files, sizeof(FILE*));
+ for (uint16_t i = 0; i < num_input_files; i++) {
+ infiles[i] = fopen(argv[i+(hardnested_mode?2:1)], "rb");
+ if (infiles[i] == NULL) {
+ fprintf(stderr, "Error. Cannot open input file %s", argv[i+(hardnested_mode?2:1)]);
+ return(EXIT_FAILURE);
+ }
}
-
- if (decode) {
- return huffman_decode(infile, outfile);
- } else {
- return huffman_encode(infile, outfile);
+ outfile = fopen(argv[argc-1], "wb");
+ if (outfile == NULL) {
+ fprintf(stderr, "Error. Cannot open output file %s", argv[argc-1]);
+ return(EXIT_FAILURE);
+ }
+ return zlib_compress(infiles, num_input_files, outfile, hardnested_mode);
}
}