]> cvs.zerfleddert.de Git - proxmark3-svn/blobdiff - common/lfdemod.c
temporarily revert lfdemod float removal
[proxmark3-svn] / common / lfdemod.c
index 8f1a376422e9e13bb4782a95439f8873c3d57e1d..fae612060b462392bd4e1e99457b4d40577a2b01 100644 (file)
 #include <string.h>
 #include "lfdemod.h"
 
+
+uint8_t justNoise(uint8_t *BitStream, size_t size)
+{
+       static const uint8_t THRESHOLD = 123;
+       //test samples are not just noise
+       uint8_t justNoise1 = 1;
+       for(size_t idx=0; idx < size && justNoise1 ;idx++){
+               justNoise1 = BitStream[idx] < THRESHOLD;
+       }
+       return justNoise1;
+}
+
 //by marshmellow
-//get high and low with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise
+//get high and low values of a wave with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise
 int getHiLo(uint8_t *BitStream, size_t size, int *high, int *low, uint8_t fuzzHi, uint8_t fuzzLo)
 {
        *high=0;
@@ -29,74 +41,98 @@ int getHiLo(uint8_t *BitStream, size_t size, int *high, int *low, uint8_t fuzzHi
        return 1;
 }
 
+// by marshmellow
+// pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType
+// returns 1 if passed
+uint8_t parityTest(uint32_t bits, uint8_t bitLen, uint8_t pType)
+{
+       uint8_t ans = 0;
+       for (uint8_t i = 0; i < bitLen; i++){
+               ans ^= ((bits >> i) & 1);
+       }
+       //PrintAndLog("DEBUG: ans: %d, ptype: %d",ans,pType);
+       return (ans == pType);
+}
+
+//by marshmellow
+//search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length
+uint8_t preambleSearch(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t *size, size_t *startIdx)
+{
+       uint8_t foundCnt=0;
+       for (int idx=0; idx < *size - pLen; idx++){
+               if (memcmp(BitStream+idx, preamble, pLen) == 0){
+                       //first index found
+                       foundCnt++;
+                       if (foundCnt == 1){
+                               *startIdx = idx;
+                       }
+                       if (foundCnt == 2){
+                               *size = idx - *startIdx;
+                               return 1;
+                       }
+               }
+       }
+       return 0;
+}
+
 //by marshmellow
 //takes 1s and 0s and searches for EM410x format - output EM ID
-uint64_t Em410xDecode(uint8_t *BitStream, size_t *size, size_t *startIdx)
+uint8_t Em410xDecode(uint8_t *BitStream, size_t *size, size_t *startIdx, uint32_t *hi, uint64_t *lo)
 {
        //no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future
        //  otherwise could be a void with no arguments
        //set defaults
-       uint64_t lo=0;
        uint32_t i = 0;
-       if (BitStream[10]>1){  //allow only 1s and 0s
+       if (BitStream[1]>1){  //allow only 1s and 0s
                // PrintAndLog("no data found");
                return 0;
        }
-       uint8_t parityTest=0;
        // 111111111 bit pattern represent start of frame
-       uint8_t frame_marker_mask[] = {1,1,1,1,1,1,1,1,1};
+       //  include 0 in front to help get start pos
+       uint8_t preamble[] = {0,1,1,1,1,1,1,1,1,1};
        uint32_t idx = 0;
-       uint32_t ii=0;
-       uint8_t resetCnt = 0;
-       while( (idx + 64) < *size) {
- restart:
-               // search for a start of frame marker
-               if ( memcmp(BitStream+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
-               { // frame marker found
-                       *startIdx=idx;
-                       idx+=9;
-                       for (i=0; i<10;i++){
-                               for(ii=0; ii<5; ++ii){
-                                       parityTest ^= BitStream[(i*5)+ii+idx];
-                               }
-                               if (!parityTest){ //even parity
-                                       parityTest=0;
-                                       for (ii=0; ii<4;++ii){
-                                               lo=(lo<<1LL)|(BitStream[(i*5)+ii+idx]);
-                                       }
-                                       //PrintAndLog("DEBUG: EM parity passed parity val: %d, i:%d, ii:%d,idx:%d, Buffer: %d%d%d%d%d,lo: %d",parityTest,i,ii,idx,BitStream[idx+ii+(i*5)-5],BitStream[idx+ii+(i*5)-4],BitStream[idx+ii+(i*5)-3],BitStream[idx+ii+(i*5)-2],BitStream[idx+ii+(i*5)-1],lo);
-                               }else {//parity failed
-                                       //PrintAndLog("DEBUG: EM parity failed parity val: %d, i:%d, ii:%d,idx:%d, Buffer: %d%d%d%d%d",parityTest,i,ii,idx,BitStream[idx+ii+(i*5)-5],BitStream[idx+ii+(i*5)-4],BitStream[idx+ii+(i*5)-3],BitStream[idx+ii+(i*5)-2],BitStream[idx+ii+(i*5)-1]);
-                                       parityTest=0;
-                                       idx-=8;
-                                       if (resetCnt>5)return 0; //try 5 times
-                                       resetCnt++;
-                                       goto restart;//continue;
-                               }
-                       }
-                       //skip last 5 bit parity test for simplicity.
-                       *size = 64;
-                       return lo;
-               }else{
-                       idx++;
+       uint32_t parityBits = 0;
+       uint8_t errChk = 0;
+       uint8_t FmtLen = 10;
+       *startIdx = 0;
+       errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, startIdx);
+       if (errChk == 0 || *size < 64) return 0;
+       if (*size > 64) FmtLen = 22;
+       *startIdx += 1; //get rid of 0 from preamble
+       idx = *startIdx + 9;
+       for (i=0; i<FmtLen; i++){ //loop through 10 or 22 sets of 5 bits (50-10p = 40 bits or 88 bits)
+               parityBits = bytebits_to_byte(BitStream+(i*5)+idx,5);
+               //check even parity
+               if (parityTest(parityBits, 5, 0) == 0){
+                       //parity failed quit
+                       return 0;
+               }
+               //set uint64 with ID from BitStream
+               for (uint8_t ii=0; ii<4; ii++){
+                       *hi = (*hi << 1) | (*lo >> 63);
+                       *lo = (*lo << 1) | (BitStream[(i*5)+ii+idx]);
                }
        }
+       if (errChk != 0) return 1;
+       //skip last 5 bit parity test for simplicity.
+       // *size = 64 | 128;
        return 0;
 }
 
 //by marshmellow
-//takes 2 arguments - clock and invert both as integers
+//takes 3 arguments - clock, invert, maxErr as integers
 //attempts to demodulate ask while decoding manchester
 //prints binary found and saves in graphbuffer for further commands
-int askmandemod(uint8_t *BinStream, size_t *size, int *clk, int *invert)
+int askmandemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr)
 {
        int i;
-       int clk2=*clk;
-       *clk=DetectASKClock(BinStream, *size, *clk); //clock default
-
+       //int clk2=*clk;
+       int start = DetectASKClock(BinStream, *size, clk, 20); //clock default
+       if (*clk==0) return -3;
+       if (start < 0) return -3;
        // if autodetected too low then adjust  //MAY NEED ADJUSTMENT
-       if (clk2==0 && *clk<8) *clk =64;
-       if (clk2==0 && *clk<32) *clk=32;
+       //if (clk2==0 && *clk<8) *clk =64;
+       //if (clk2==0 && *clk<32) *clk=32;
        if (*invert != 0 && *invert != 1) *invert=0;
        uint32_t initLoopMax = 200;
        if (initLoopMax > *size) initLoopMax=*size;
@@ -110,14 +146,16 @@ int askmandemod(uint8_t *BinStream, size_t *size, int *clk, int *invert)
        int lastBit = 0;  //set first clock check
        uint32_t bitnum = 0;     //output counter
        int tol = 0;  //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
-       if (*clk<=32)tol=1;    //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
+       if (*clk<=32) tol=1;    //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
        int iii = 0;
        uint32_t gLen = *size;
        if (gLen > 3000) gLen=3000;
+       //if 0 errors allowed then only try first 2 clock cycles as we want a low tolerance
+       if (!maxErr) gLen=*clk*2; 
        uint8_t errCnt =0;
+       uint16_t MaxBits = 500;
        uint32_t bestStart = *size;
-       uint32_t bestErrCnt = (*size/1000);
-       uint32_t maxErr = (*size/1000);
+       int bestErrCnt = maxErr+1;
        // PrintAndLog("DEBUG - lastbit - %d",lastBit);
        // loop to find first wave that works
        for (iii=0; iii < gLen; ++iii){
@@ -144,10 +182,10 @@ int askmandemod(uint8_t *BinStream, size_t *size, int *clk, int *invert)
                                                if (errCnt>(maxErr)) break;  //allow 1 error for every 1000 samples else start over
                                        }
                                }
-                               if ((i-iii) >(400 * *clk)) break; //got plenty of bits
+                               if ((i-iii) >(MaxBits * *clk)) break; //got plenty of bits
                        }
                        //we got more than 64 good bits and not all errors
-                       if ((((i-iii)/ *clk) > (64+errCnt)) && (errCnt<maxErr)) {
+                       if ((((i-iii)/ *clk) > (64)) && (errCnt<=maxErr)) {
                                //possible good read
                                if (errCnt==0){
                                        bestStart=iii;
@@ -161,7 +199,7 @@ int askmandemod(uint8_t *BinStream, size_t *size, int *clk, int *invert)
                        }
                }
        }
-       if (bestErrCnt<maxErr){
+       if (bestErrCnt<=maxErr){
                //best run is good enough set to best run and set overwrite BinStream
                iii=bestStart;
                lastBit = bestStart - *clk;
@@ -191,7 +229,7 @@ int askmandemod(uint8_t *BinStream, size_t *size, int *clk, int *invert)
                                        lastBit+=*clk;//skip over error
                                }
                        }
-                       if (bitnum >=400) break;
+                       if (bitnum >=MaxBits) break;
                }
                *size=bitnum;
        } else{
@@ -208,14 +246,14 @@ int ManchesterEncode(uint8_t *BitStream, size_t size)
 {
        size_t modIdx=20000, i=0;
        if (size>modIdx) return -1;
-  for (size_t idx=0; idx < size; idx++){
-       BitStream[idx+modIdx++] = BitStream[idx];
-       BitStream[idx+modIdx++] = BitStream[idx]^1;
-  }
-  for (; i<(size*2); i++){
-       BitStream[i] = BitStream[i+20000];
-  }
-  return i;
+       for (size_t idx=0; idx < size; idx++){
+               BitStream[idx+modIdx++] = BitStream[idx];
+               BitStream[idx+modIdx++] = BitStream[idx]^1;
+       }
+       for (; i<(size*2); i++){
+               BitStream[i] = BitStream[i+20000];
+       }
+       return i;
 }
 
 //by marshmellow
@@ -223,21 +261,19 @@ int ManchesterEncode(uint8_t *BitStream, size_t size)
 //run through 2 times and take least errCnt
 int manrawdecode(uint8_t * BitStream, size_t *size)
 {
-       int bitnum=0;
-       int errCnt =0;
-       int i=1;
-       int bestErr = 1000;
-       int bestRun = 0;
-       int ii=1;
-       for (ii=1;ii<3;++ii){
-               i=1;
+       uint16_t bitnum=0, MaxBits = 512, errCnt = 0;
+       size_t i, ii;
+       uint16_t bestErr = 1000, bestRun = 0;
+       if (size == 0) return -1;
+       for (ii=0;ii<2;++ii){
+               i=0;
                for (i=i+ii;i<*size-2;i+=2){
                        if(BitStream[i]==1 && (BitStream[i+1]==0)){
                        } else if((BitStream[i]==0)&& BitStream[i+1]==1){
                        } else {
                                errCnt++;
                        }
-                       if(bitnum>300) break;
+                       if(bitnum>MaxBits) break;
                }
                if (bestErr>errCnt){
                        bestErr=errCnt;
@@ -248,8 +284,8 @@ int manrawdecode(uint8_t * BitStream, size_t *size)
        errCnt=bestErr;
        if (errCnt<20){
                ii=bestRun;
-               i=1;
-               for (i=i+ii;i < *size-2;i+=2){
+               i=0;
+               for (i=i+ii; i < *size-2; i+=2){
                        if(BitStream[i] == 1 && (BitStream[i+1] == 0)){
                                BitStream[bitnum++]=0;
                        } else if((BitStream[i] == 0) && BitStream[i+1] == 1){
@@ -258,7 +294,7 @@ int manrawdecode(uint8_t * BitStream, size_t *size)
                                BitStream[bitnum++]=77;
                                //errCnt++;
                        }
-                       if(bitnum>300) break;
+                       if(bitnum>MaxBits) break;
                }
                *size=bitnum;
        }
@@ -266,14 +302,30 @@ int manrawdecode(uint8_t * BitStream, size_t *size)
 }
 
 //by marshmellow
-//take 01 or 10 = 0 and 11 or 00 = 1
+//take 01 or 10 = 1 and 11 or 00 = 0
+//check for phase errors - should never have 111 or 000 should be 01001011 or 10110100 for 1010
+//decodes biphase or if inverted it is AKA conditional dephase encoding AKA differential manchester encoding
 int BiphaseRawDecode(uint8_t *BitStream, size_t *size, int offset, int invert)
 {
-       uint8_t bitnum=0;
+       uint16_t bitnum=0;
        uint32_t errCnt =0;
-       uint32_t i;
-       i=offset;
-       for (;i<*size-2; i+=2){
+       size_t i=offset;
+       uint16_t MaxBits=512;
+       //if not enough samples - error
+       if (*size < 51) return -1;
+       //check for phase change faults - skip one sample if faulty
+       uint8_t offsetA = 1, offsetB = 1;
+       for (; i<48; i+=2){
+               if (BitStream[i+1]==BitStream[i+2]) offsetA=0; 
+               if (BitStream[i+2]==BitStream[i+3]) offsetB=0;                                  
+       }
+       if (!offsetA && offsetB) offset++;
+       for (i=offset; i<*size-3; i+=2){
+               //check for phase error
+               if (BitStream[i+1]==BitStream[i+2]) {
+                       BitStream[bitnum++]=77;
+                       errCnt++;
+               }
                if((BitStream[i]==1 && BitStream[i+1]==0) || (BitStream[i]==0 && BitStream[i+1]==1)){
                        BitStream[bitnum++]=1^invert;
                } else if((BitStream[i]==0 && BitStream[i+1]==0) || (BitStream[i]==1 && BitStream[i+1]==1)){
@@ -282,84 +334,153 @@ int BiphaseRawDecode(uint8_t *BitStream, size_t *size, int offset, int invert)
                        BitStream[bitnum++]=77;
                        errCnt++;
                }
-               if(bitnum>250) break;
+               if(bitnum>MaxBits) break;
        }
        *size=bitnum;
        return errCnt;
 }
 
 //by marshmellow
-//takes 2 arguments - clock and invert both as integers
+void askAmp(uint8_t *BitStream, size_t size)
+{
+       int shift = 127;
+       int shiftedVal=0;
+       for(int i = 1; i<size; i++){
+               if (BitStream[i]-BitStream[i-1]>=30) //large jump up
+                       shift=127;
+               else if(BitStream[i]-BitStream[i-1]<=-20) //large jump down
+                       shift=-127;
+
+               shiftedVal=BitStream[i]+shift;
+
+               if (shiftedVal>255) 
+                       shiftedVal=255;
+               else if (shiftedVal<0) 
+                       shiftedVal=0;
+               BitStream[i-1] = shiftedVal;
+       }
+       return;
+}
+
+int cleanAskRawDemod(uint8_t *BinStream, size_t *size, int clk, int invert, int high, int low)
+{
+       size_t bitCnt=0, smplCnt=0, errCnt=0;
+       uint8_t waveHigh = 0;
+       //PrintAndLog("clk: %d", clk);
+       for (size_t i=0; i < *size; i++){
+               if (BinStream[i] >= high && waveHigh){
+                       smplCnt++;
+               } else if (BinStream[i] <= low && !waveHigh){
+                       smplCnt++;
+               } else { //transition
+                       if ((BinStream[i] >= high && !waveHigh) || (BinStream[i] <= low && waveHigh)){
+                               if (smplCnt > clk-(clk/4)-1) { //full clock
+                                       if (smplCnt > clk + (clk/4)+1) { //too many samples
+                                               errCnt++;
+                                               BinStream[bitCnt++]=77;
+                                       } else if (waveHigh) {
+                                               BinStream[bitCnt++] = invert;
+                                               BinStream[bitCnt++] = invert;
+                                       } else if (!waveHigh) {
+                                               BinStream[bitCnt++] = invert ^ 1;
+                                               BinStream[bitCnt++] = invert ^ 1;
+                                       }
+                                       waveHigh ^= 1;  
+                                       smplCnt = 0;
+                               } else if (smplCnt > (clk/2) - (clk/4)-1) {
+                                       if (waveHigh) {
+                                               BinStream[bitCnt++] = invert;
+                                       } else if (!waveHigh) {
+                                               BinStream[bitCnt++] = invert ^ 1;
+                                       }
+                                       waveHigh ^= 1;  
+                                       smplCnt = 0;
+                               } else if (!bitCnt) {
+                                       //first bit
+                                       waveHigh = (BinStream[i] >= high);
+                                       smplCnt = 1;
+                               } else {
+                                       smplCnt++;
+                                       //transition bit oops
+                               }
+                       } else { //haven't hit new high or new low yet
+                               smplCnt++;
+                       }
+               }
+       }
+       *size = bitCnt;
+       return errCnt;
+}
+
+//by marshmellow
+//takes 3 arguments - clock, invert and maxErr as integers
 //attempts to demodulate ask only
-//prints binary found and saves in graphbuffer for further commands
-int askrawdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert)
+int askrawdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr, uint8_t amp)
 {
        uint32_t i;
-       // int invert=0;  //invert default
-       int clk2 = *clk;
-       *clk=DetectASKClock(BinStream, *size, *clk); //clock default
-       //uint8_t BitStream[502] = {0};
-
-       //HACK: if clock not detected correctly - default
-       if (clk2==0 && *clk<8) *clk =64;
-       if (clk2==0 && *clk<32 && clk2==0) *clk=32;
+       if (*size==0) return -1;
+       int start = DetectASKClock(BinStream, *size, clk, 20); //clock default
+       if (*clk==0) return -1;
+       if (start<0) return -1;
        if (*invert != 0 && *invert != 1) *invert =0;
+       if (amp==1) askAmp(BinStream, *size);
+
        uint32_t initLoopMax = 200;
        if (initLoopMax > *size) initLoopMax=*size;
        // Detect high and lows
-       //25% fuzz in case highs and lows aren't clipped [marshmellow]
+       //25% clip in case highs and lows aren't clipped [marshmellow]
+       uint8_t clip = 75;
        int high, low, ans;
-       ans = getHiLo(BinStream, initLoopMax, &high, &low, 75, 75);
-       if (ans<1) return -2; //just noise
+       ans = getHiLo(BinStream, initLoopMax, &high, &low, clip, clip);
+       if (ans<1) return -1; //just noise
+
+       if (DetectCleanAskWave(BinStream, *size, high, low)) {
+               //PrintAndLog("Clean");
+               return cleanAskRawDemod(BinStream, size, *clk, *invert, high, low);
+       }
 
        //PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low);
        int lastBit = 0;  //set first clock check
        uint32_t bitnum = 0;     //output counter
        uint8_t tol = 0;  //clock tolerance adjust - waves will be accepted as within the clock
-                         //  if they fall + or - this value + clock from last valid wave
-       if (*clk == 32) tol=1;    //clock tolerance may not be needed anymore currently set to
-                                 //  + or - 1 but could be increased for poor waves or removed entirely
+                                                                               //  if they fall + or - this value + clock from last valid wave
+       if (*clk == 32) tol=0;    //clock tolerance may not be needed anymore currently set to
+                                                                                                               //  + or - 1 but could be increased for poor waves or removed entirely
        uint32_t iii = 0;
        uint32_t gLen = *size;
        if (gLen > 500) gLen=500;
+       //if 0 errors allowed then only try first 2 clock cycles as we want a low tolerance
+       if (!maxErr) gLen = *clk * 2; 
        uint8_t errCnt =0;
        uint32_t bestStart = *size;
-       uint32_t bestErrCnt = (*size/1000);
-       uint32_t maxErr = bestErrCnt;
+       uint32_t bestErrCnt = maxErr; //(*size/1000);
        uint8_t midBit=0;
+       uint16_t MaxBits=1000;
+
        //PrintAndLog("DEBUG - lastbit - %d",lastBit);
        //loop to find first wave that works
-       for (iii=0; iii < gLen; ++iii){
+       for (iii=start; iii < gLen; ++iii){
                if ((BinStream[iii]>=high) || (BinStream[iii]<=low)){
                        lastBit=iii-*clk;
+                       errCnt=0;
                        //loop through to see if this start location works
                        for (i = iii; i < *size; ++i) {
                                if ((BinStream[i] >= high) && ((i-lastBit)>(*clk-tol))){
                                        lastBit+=*clk;
-                                       //BitStream[bitnum] = *invert;
-                                       //bitnum++;
                                        midBit=0;
                                } else if ((BinStream[i] <= low) && ((i-lastBit)>(*clk-tol))){
                                        //low found and we are expecting a bar
                                        lastBit+=*clk;
-                                       //BitStream[bitnum] = 1- *invert;
-                                       //bitnum++;
                                        midBit=0;
                                } else if ((BinStream[i]<=low) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){
                                        //mid bar?
                                        midBit=1;
-                                       //BitStream[bitnum]= 1- *invert;
-                                       //bitnum++;
                                } else if ((BinStream[i]>=high) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){
                                        //mid bar?
                                        midBit=1;
-                                       //BitStream[bitnum]= *invert;
-                                       //bitnum++;
                                } else if ((i-lastBit)>((*clk/2)+tol) && (midBit==0)){
                                        //no mid bar found
                                        midBit=1;
-                                       //BitStream[bitnum]= BitStream[bitnum-1];
-                                       //bitnum++;
                                } else {
                                        //mid value found or no bar supposed to be here
 
@@ -367,24 +488,19 @@ int askrawdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert)
                                                //should have hit a high or low based on clock!!
                                                //debug
                                                //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit);
-                                               //if (bitnum > 0){
-                                               //      BitStream[bitnum]=77;
-                                               //      bitnum++;
-                                               //}
 
                                                errCnt++;
                                                lastBit+=*clk;//skip over until hit too many errors
-                                               if (errCnt > ((*size/1000))){  //allow 1 error for every 1000 samples else start over
-                                                       errCnt=0;
-                                                       //      bitnum=0;//start over
+                                               if (errCnt > maxErr){  
+                                                       //errCnt=0;
                                                        break;
                                                }
                                        }
                                }
-                               if ((i-iii)>(500 * *clk)) break; //got enough bits
+                               if ((i-iii)>(MaxBits * *clk)) break; //got enough bits
                        }
                        //we got more than 64 good bits and not all errors
-                       if ((((i-iii)/ *clk) > (64+errCnt)) && (errCnt<(*size/1000))) {
+                       if ((((i-iii)/ *clk) > (64)) && (errCnt<=maxErr)) {
                                //possible good read
                                if (errCnt==0){
                                        bestStart=iii;
@@ -398,9 +514,9 @@ int askrawdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert)
                        }
                }
        }
-       if (bestErrCnt<maxErr){
+       if (bestErrCnt<=maxErr){
                //best run is good enough - set to best run and overwrite BinStream
-               iii=bestStart;
+               iii = bestStart;
                lastBit = bestStart - *clk;
                bitnum=0;
                for (i = iii; i < *size; ++i) {
@@ -412,7 +528,7 @@ int askrawdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert)
                        } else if ((BinStream[i] <= low) && ((i-lastBit) > (*clk-tol))){
                                //low found and we are expecting a bar
                                lastBit+=*clk;
-                               BinStream[bitnum] = 1-*invert;
+                               BinStream[bitnum] = 1 - *invert;
                                bitnum++;
                                midBit=0;
                        } else if ((BinStream[i]<=low) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){
@@ -442,11 +558,10 @@ int askrawdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert)
                                                BinStream[bitnum]=77;
                                                bitnum++;
                                        }
-
                                        lastBit+=*clk;//skip over error
                                }
                        }
-                       if (bitnum >=400) break;
+                       if (bitnum >= MaxBits) break;
                }
                *size=bitnum;
        } else{
@@ -456,6 +571,28 @@ int askrawdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert)
        }
        return bestErrCnt;
 }
+
+// demod gProxIIDemod 
+// error returns as -x 
+// success returns start position in BitStream
+// BitStream must contain previously askrawdemod and biphasedemoded data
+int gProxII_Demod(uint8_t BitStream[], size_t *size)
+{
+       size_t startIdx=0;
+       uint8_t preamble[] = {1,1,1,1,1,0};
+
+       uint8_t errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, &startIdx);
+       if (errChk == 0) return -3; //preamble not found
+       if (*size != 96) return -2; //should have found 96 bits
+       //check first 6 spacer bits to verify format
+       if (!BitStream[startIdx+5] && !BitStream[startIdx+10] && !BitStream[startIdx+15] && !BitStream[startIdx+20] && !BitStream[startIdx+25] && !BitStream[startIdx+30]){
+               //confirmed proper separator bits found
+               //return start position
+               return (int) startIdx;
+       }
+       return -5;
+}
+
 //translate wave to 11111100000 (1 for each short wave 0 for each long wave)
 size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow)
 {
@@ -490,7 +627,9 @@ size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow
                                //do nothing with extra garbage
                        } else if ((idx-last_transition) < (fchigh-1)) { //6-8 = 8 waves
                                dest[numBits]=1;
-                       } else {                                                        //9+ = 10 waves
+                       } else if ((idx-last_transition) > (fchigh+1) && !numBits) { //12 + and first bit = garbage 
+                               //do nothing with beginning garbage
+                       } else {                                         //9+ = 10 waves
                                dest[numBits]=0;
                        }
                        last_transition = idx;
@@ -508,24 +647,37 @@ uint32_t myround2(float f)
 
 //translate 11111100000 to 10
 size_t aggregate_bits(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t maxConsequtiveBits,
-    uint8_t invert, uint8_t fchigh, uint8_t fclow)
+               uint8_t invert, uint8_t fchigh, uint8_t fclow)
 {
        uint8_t lastval=dest[0];
        uint32_t idx=0;
        size_t numBits=0;
        uint32_t n=1;
-
+       float lowWaves = (((float)(rfLen))/((float)fclow));
+       float highWaves = (((float)(rfLen))/((float)fchigh));
        for( idx=1; idx < size; idx++) {
 
                if (dest[idx]==lastval) {
                        n++;
                        continue;
                }
+               n++;
                //if lastval was 1, we have a 1->0 crossing
-               if ( dest[idx-1]==1 ) {
-                       n=myround2((float)(n+1)/((float)(rfLen)/(float)fclow));
-               } else {// 0->1 crossing
-                       n=myround2((float)(n+1)/((float)(rfLen-1)/(float)fchigh));  //-1 for fudge factor
+               if (dest[idx-1]==1) {
+                       if (!numBits && n < (uint8_t)lowWaves) {
+                               n=0;
+                               lastval = dest[idx];
+                               continue;
+                       }
+                       n=myround2(((float)n)/lowWaves);
+               } else {// 0->1 crossing 
+                       //test first bitsample too small
+                       if (!numBits && n < (uint8_t)highWaves) {
+                               n=0;
+                               lastval = dest[idx];
+                               continue;
+                       }
+                       n = myround2(((float)n)/highWaves);  //-1 for fudge factor
                }
                if (n == 0) n = 1;
 
@@ -541,6 +693,17 @@ size_t aggregate_bits(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t maxCons
                n=0;
                lastval=dest[idx];
        }//end for
+
+       // if valid extra bits at the end were all the same frequency - add them in
+       if (n > lowWaves && n > highWaves) {
+               if (dest[idx-2]==1) {
+                       n=myround2((float)(n+1)/((float)(rfLen)/(float)fclow));
+               } else {
+                       n=myround2((float)(n+1)/((float)(rfLen-1)/(float)fchigh));  //-1 for fudge factor                       
+               }
+               memset(dest, dest[idx-1]^invert , n);
+               numBits += n;
+       }
        return numBits;
 }
 //by marshmellow  (from holiman's base)
@@ -552,114 +715,69 @@ int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t
        size = aggregate_bits(dest, size, rfLen, 192, invert, fchigh, fclow);
        return size;
 }
+
 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
 int HIDdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo)
 {
+       if (justNoise(dest, *size)) return -1;
 
-       size_t idx=0, size2=*size, startIdx=0; 
+       size_t numStart=0, size2=*size, startIdx=0; 
        // FSK demodulator
-
-       *size = fskdemod(dest, size2,50,0,10,8);
-
-       // final loop, go over previously decoded manchester data and decode into usable tag ID
-       // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
-       uint8_t frame_marker_mask[] = {1,1,1,0,0,0};
-       int numshifts = 0;
-       idx = 0;
-       //one scan
-       while( idx + sizeof(frame_marker_mask) < *size) {
-               // search for a start of frame marker
-               if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
-               { // frame marker found
-                       startIdx=idx;
-                       idx+=sizeof(frame_marker_mask);
-                       while(dest[idx] != dest[idx+1] && idx < *size-2)
-                       {
-                               // Keep going until next frame marker (or error)
-                               // Shift in a bit. Start by shifting high registers
-                               *hi2 = (*hi2<<1)|(*hi>>31);
-                               *hi = (*hi<<1)|(*lo>>31);
-                               //Then, shift in a 0 or one into low
-                               if (dest[idx] && !dest[idx+1])  // 1 0
-                                       *lo=(*lo<<1)|0;
-                               else // 0 1
-                                       *lo=(*lo<<1)|1;
-                               numshifts++;
-                               idx += 2;
-                       }
-                       // Hopefully, we read a tag and  hit upon the next frame marker
-                       if(idx + sizeof(frame_marker_mask) < *size)
-                       {
-                               if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
-                               {
-                                       //good return
-                                       *size=idx-startIdx;
-                                       return startIdx;
-                               }
-                       }
-                       // reset
-                       *hi2 = *hi = *lo = 0;
-                       numshifts = 0;
-               }else   {
-                       idx++;
+       *size = fskdemod(dest, size2,50,1,10,8); //fsk2a
+       if (*size < 96) return -2;
+       // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
+       uint8_t preamble[] = {0,0,0,1,1,1,0,1};
+       // find bitstring in array  
+       uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
+       if (errChk == 0) return -3; //preamble not found
+
+       numStart = startIdx + sizeof(preamble);
+       // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
+       for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){
+               if (dest[idx] == dest[idx+1]){
+                       return -4; //not manchester data
                }
+               *hi2 = (*hi2<<1)|(*hi>>31);
+               *hi = (*hi<<1)|(*lo>>31);
+               //Then, shift in a 0 or one into low
+               if (dest[idx] && !dest[idx+1])  // 1 0
+                       *lo=(*lo<<1)|1;
+               else // 0 1
+                       *lo=(*lo<<1)|0;
        }
-       return -1;
+       return (int)startIdx;
 }
 
 // loop to get raw paradox waveform then FSK demodulate the TAG ID from it
-size_t ParadoxdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo)
+int ParadoxdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo)
 {
-
-       size_t idx=0, size2=*size;
+       if (justNoise(dest, *size)) return -1;
+       
+       size_t numStart=0, size2=*size, startIdx=0;
        // FSK demodulator
-
-       *size = fskdemod(dest, size2,50,1,10,8);
-
-       // final loop, go over previously decoded manchester data and decode into usable tag ID
-       // 00001111 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
-       uint8_t frame_marker_mask[] = {0,0,0,0,1,1,1,1};
-       uint16_t numshifts = 0;
-       idx = 0;
-       //one scan
-       while( idx + sizeof(frame_marker_mask) < *size) {
-               // search for a start of frame marker
-               if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
-               { // frame marker found
-                       size2=idx;
-                       idx+=sizeof(frame_marker_mask);
-                       while(dest[idx] != dest[idx+1] && idx < *size-2)
-                       {
-                               // Keep going until next frame marker (or error)
-                               // Shift in a bit. Start by shifting high registers
-                               *hi2 = (*hi2<<1)|(*hi>>31);
-                               *hi = (*hi<<1)|(*lo>>31);
-                               //Then, shift in a 0 or one into low
-                               if (dest[idx] && !dest[idx+1])  // 1 0
-                                       *lo=(*lo<<1)|1;
-                               else // 0 1
-                                       *lo=(*lo<<1)|0;
-                               numshifts++;
-                               idx += 2;
-                       }
-                       // Hopefully, we read a tag and  hit upon the next frame marker and got enough bits
-                       if(idx + sizeof(frame_marker_mask) < *size && numshifts > 40)
-                       {
-                               if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
-                               {
-                                       //good return - return start grid position and bits found
-                                       *size = ((numshifts*2)+8);
-                                       return size2;
-                               }
-                       }
-                       // reset
-                       *hi2 = *hi = *lo = 0;
-                       numshifts = 0;
-               }else   {
-                       idx++;
-               }
+       *size = fskdemod(dest, size2,50,1,10,8); //fsk2a
+       if (*size < 96) return -2;
+
+       // 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
+       uint8_t preamble[] = {0,0,0,0,1,1,1,1};
+
+       uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
+       if (errChk == 0) return -3; //preamble not found
+
+       numStart = startIdx + sizeof(preamble);
+       // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
+       for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){
+               if (dest[idx] == dest[idx+1]) 
+                       return -4; //not manchester data
+               *hi2 = (*hi2<<1)|(*hi>>31);
+               *hi = (*hi<<1)|(*lo>>31);
+               //Then, shift in a 0 or one into low
+               if (dest[idx] && !dest[idx+1])  // 1 0
+                       *lo=(*lo<<1)|1;
+               else // 0 1
+                       *lo=(*lo<<1)|0;
        }
-       return 0;
+       return (int)startIdx;
 }
 
 uint32_t bytebits_to_byte(uint8_t* src, size_t numbits)
@@ -675,20 +793,12 @@ uint32_t bytebits_to_byte(uint8_t* src, size_t numbits)
 
 int IOdemodFSK(uint8_t *dest, size_t size)
 {
-       static const uint8_t THRESHOLD = 129;
-       uint32_t idx=0;
+       if (justNoise(dest, size)) return -1;
        //make sure buffer has data
-       if (size < 66) return -1;
-       //test samples are not just noise
-       uint8_t justNoise = 1;
-       for(idx=0;idx< size && justNoise ;idx++){
-               justNoise = dest[idx] < THRESHOLD;
-       }
-       if(justNoise) return 0;
-
+       if (size < 66*64) return -2;
        // FSK demodulator
-       size = fskdemod(dest, size, 64, 1, 10, 8);  //  RF/64 and invert
-       if (size < 65) return -1;  //did we get a good demod?
+       size = fskdemod(dest, size, 64, 1, 10, 8);  // FSK2a RF/64 
+       if (size < 65) return -3;  //did we get a good demod?
        //Index map
        //0           10          20          30          40          50          60
        //|           |           |           |           |           |           |
@@ -698,31 +808,17 @@ int IOdemodFSK(uint8_t *dest, size_t size)
        //
        //XSF(version)facility:codeone+codetwo
        //Handle the data
-       uint8_t mask[] = {0,0,0,0,0,0,0,0,0,1};
-       for( idx=0; idx < (size - 65); idx++) {
-               if ( memcmp(dest + idx, mask, sizeof(mask))==0) {
-                       //frame marker found
-                       if (!dest[idx+8] && dest[idx+17]==1 && dest[idx+26]==1 && dest[idx+35]==1 && dest[idx+44]==1 && dest[idx+53]==1){
-                               //confirmed proper separator bits found
-                               //return start position
-                               return (int) idx;
-                       }
-               }
+       size_t startIdx = 0;
+       uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,1};
+       uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), &size, &startIdx);
+       if (errChk == 0) return -4; //preamble not found
+
+       if (!dest[startIdx+8] && dest[startIdx+17]==1 && dest[startIdx+26]==1 && dest[startIdx+35]==1 && dest[startIdx+44]==1 && dest[startIdx+53]==1){
+               //confirmed proper separator bits found
+               //return start position
+               return (int) startIdx;
        }
-       return 0;
-}
-
-// by marshmellow
-// pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType
-// returns 1 if passed
-uint8_t parityTest(uint32_t bits, uint8_t bitLen, uint8_t pType)
-{
-       uint8_t ans = 0;
-       for (uint8_t i = 0; i < bitLen; i++){
-               ans ^= ((bits >> i) & 1);
-       }
-  //PrintAndLog("DEBUG: ans: %d, ptype: %d",ans,pType);
-       return (ans == pType);
+       return -5;
 }
 
 // by marshmellow
@@ -735,7 +831,7 @@ size_t removeParity(uint8_t *BitStream, size_t startIdx, uint8_t pLen, uint8_t p
        for (int word = 0; word < (bLen); word+=pLen){
                for (int bit=0; bit < pLen; bit++){
                        parityWd = (parityWd << 1) | BitStream[startIdx+word+bit];
-      BitStream[j++] = (BitStream[startIdx+word+bit]);
+                       BitStream[j++] = (BitStream[startIdx+word+bit]);
                }
                j--;
                // if parity fails then return 0
@@ -750,153 +846,312 @@ size_t removeParity(uint8_t *BitStream, size_t startIdx, uint8_t pLen, uint8_t p
 
 // by marshmellow
 // FSK Demod then try to locate an AWID ID
-int AWIDdemodFSK(uint8_t *dest, size_t size)
+int AWIDdemodFSK(uint8_t *dest, size_t *size)
 {
-       static const uint8_t THRESHOLD = 123;
-       uint32_t idx=0, idx2=0;
-       //make sure buffer has data
-       if (size < 96*50) return -1;
-       //test samples are not just noise
-       uint8_t justNoise = 1;
-       for(idx=0; idx < size && justNoise ;idx++){
-               justNoise = dest[idx] < THRESHOLD;
-       }
-       if(justNoise) return -2;
+       //make sure buffer has enough data
+       if (*size < 96*50) return -1;
+
+       if (justNoise(dest, *size)) return -2;
 
        // FSK demodulator
-       size = fskdemod(dest, size, 50, 1, 10, 8);  //  RF/64 and invert
-       if (size < 96) return -3;  //did we get a good demod?
-
-       uint8_t mask[] = {0,0,0,0,0,0,0,1};
-       for( idx=0; idx < (size - 96); idx++) {
-               if ( memcmp(dest + idx, mask, sizeof(mask))==0) {
-                       // frame marker found
-                       //return ID start index
-                       if (idx2 == 0) idx2=idx;
-                       else if(idx-idx2==96) return idx2;
-                       else return -5;
-
-                       // should always get 96 bits if it is awid
-               }
-       }
-       //never found mask
-       return -4;
+       *size = fskdemod(dest, *size, 50, 1, 10, 8);  // fsk2a RF/50 
+       if (*size < 96) return -3;  //did we get a good demod?
+
+       uint8_t preamble[] = {0,0,0,0,0,0,0,1};
+       size_t startIdx = 0;
+       uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
+       if (errChk == 0) return -4; //preamble not found
+       if (*size != 96) return -5;
+       return (int)startIdx;
 }
 
 // by marshmellow
 // FSK Demod then try to locate an Farpointe Data (pyramid) ID
-int PyramiddemodFSK(uint8_t *dest, size_t size)
+int PyramiddemodFSK(uint8_t *dest, size_t *size)
 {
-  static const uint8_t THRESHOLD = 123;
-  uint32_t idx=0, idx2=0;
-  // size_t size2 = size;
-  //make sure buffer has data
-  if (size < 128*50) return -5;
-  //test samples are not just noise
-  uint8_t justNoise = 1;
-  for(idx=0; idx < size && justNoise ;idx++){
-    justNoise = dest[idx] < THRESHOLD;
-  }
-  if(justNoise) return -1;
-
-  // FSK demodulator
-  size = fskdemod(dest, size, 50, 1, 10, 8);  //  RF/64 and invert
-  if (size < 128) return -2;  //did we get a good demod?
-
-  uint8_t mask[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
-  for( idx=0; idx < (size - 128); idx++) {
-    if ( memcmp(dest + idx, mask, sizeof(mask))==0) {
-      // frame marker found
-      if (idx2==0) idx2=idx;
-      else if (idx-idx2==128) return idx2;
-      else return -3;
-    }
-  }
-  //never found mask
-  return -4;
+       //make sure buffer has data
+       if (*size < 128*50) return -5;
+
+       //test samples are not just noise
+       if (justNoise(dest, *size)) return -1;
+
+       // FSK demodulator
+       *size = fskdemod(dest, *size, 50, 1, 10, 8);  // fsk2a RF/50 
+       if (*size < 128) return -2;  //did we get a good demod?
+
+       uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
+       size_t startIdx = 0;
+       uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
+       if (errChk == 0) return -4; //preamble not found
+       if (*size != 128) return -3;
+       return (int)startIdx;
 }
 
 
+uint8_t DetectCleanAskWave(uint8_t dest[], size_t size, int high, int low)
+{
+       uint16_t allPeaks=1;
+       uint16_t cntPeaks=0;
+       size_t loopEnd = 572;
+       if (loopEnd > size) loopEnd = size;
+       for (size_t i=60; i<loopEnd; i++){
+               if (dest[i]>low && dest[i]<high) 
+                       allPeaks=0;
+               else
+                       cntPeaks++;
+       }
+       if (allPeaks == 0){
+               if (cntPeaks > 300) return 1;
+       }
+       return allPeaks;
+}
+
+int DetectStrongAskClock(uint8_t dest[], size_t size)
+{
+       int clk[]={0,8,16,32,40,50,64,100,128,256};
+       size_t idx = 40;
+       uint8_t high=0;
+       size_t cnt = 0;
+       size_t highCnt = 0;
+       size_t highCnt2 = 0;
+       for (;idx < size; idx++){
+               if (dest[idx]>128) {
+                       if (!high){
+                               high=1;
+                               if (cnt > highCnt){
+                                       if (highCnt != 0) highCnt2 = highCnt;
+                                       highCnt = cnt;
+                               } else if (cnt > highCnt2) {
+                                       highCnt2 = cnt;
+                               }
+                               cnt=1;
+                       } else {
+                               cnt++;
+                       }
+               } else if (dest[idx] <= 128){
+                       if (high) {
+                               high=0;
+                               if (cnt > highCnt) {
+                                       if (highCnt != 0) highCnt2 = highCnt;
+                                       highCnt = cnt;
+                               } else if (cnt > highCnt2) {
+                                       highCnt2 = cnt;
+                               }
+                               cnt=1;
+                       } else {
+                               cnt++;
+                       }
+               }
+       }
+       uint8_t tol;
+       for (idx=8; idx>0; idx--){
+               tol = clk[idx]/8;
+               if (clk[idx] >= highCnt - tol && clk[idx] <= highCnt + tol)
+                       return clk[idx];
+               if (clk[idx] >= highCnt2 - tol && clk[idx] <= highCnt2 + tol)
+                       return clk[idx];
+       }
+       return -1;
+}
+
 // by marshmellow
 // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping)
 // maybe somehow adjust peak trimming value based on samples to fix?
-int DetectASKClock(uint8_t dest[], size_t size, int clock)
+// return start index of best starting position for that clock and return clock (by reference)
+int DetectASKClock(uint8_t dest[], size_t size, int *clock, int maxErr)
 {
-  int i=0;
-  int clk[]={8,16,32,40,50,64,100,128,256};
-  int loopCnt = 256;  //don't need to loop through entire array...
-  if (size<loopCnt) loopCnt = size;
-
-  //if we already have a valid clock quit
-  
-  for (;i<8;++i)
-    if (clk[i] == clock) return clock;
-
-  //get high and low peak
-  int peak, low;
-  getHiLo(dest, loopCnt, &peak, &low, 75, 75);
-  
-  int ii;
-  int clkCnt;
-  int tol = 0;
-  int bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
-  int errCnt=0;
-  //test each valid clock from smallest to greatest to see which lines up
-  for(clkCnt=0; clkCnt < 8; ++clkCnt){
-    if (clk[clkCnt] == 32){
-      tol=1;
-    }else{
-      tol=0;
-    }
-    bestErr[clkCnt]=1000;
-    //try lining up the peaks by moving starting point (try first 256)
-    for (ii=0; ii < loopCnt; ++ii){
-      if ((dest[ii] >= peak) || (dest[ii] <= low)){
-        errCnt=0;
-        // now that we have the first one lined up test rest of wave array
-        for (i=0; i<((int)((size-ii-tol)/clk[clkCnt])-1); ++i){
-          if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){
-          }else if(dest[ii+(i*clk[clkCnt])-tol]>=peak || dest[ii+(i*clk[clkCnt])-tol]<=low){
-          }else if(dest[ii+(i*clk[clkCnt])+tol]>=peak || dest[ii+(i*clk[clkCnt])+tol]<=low){
-          }else{  //error no peak detected
-            errCnt++;
-          }
-        }
-        //if we found no errors then we can stop here
-        //  this is correct one - return this clock
-            //PrintAndLog("DEBUG: clk %d, err %d, ii %d, i %d",clk[clkCnt],errCnt,ii,i);
-        if(errCnt==0 && clkCnt<6) return clk[clkCnt];
-        //if we found errors see if it is lowest so far and save it as best run
-        if(errCnt<bestErr[clkCnt]) bestErr[clkCnt]=errCnt;
-      }
-    }
-  }
-  uint8_t iii=0;
-  uint8_t best=0;
-  for (iii=0; iii<8; ++iii){
-    if (bestErr[iii]<bestErr[best]){
-      if (bestErr[iii]==0) bestErr[iii]=1;
-      // current best bit to error ratio     vs  new bit to error ratio
-      if (((size/clk[best])/bestErr[best] < (size/clk[iii])/bestErr[iii]) ){
-        best = iii;
-      }
-    }
-  }
-  return clk[best];
+       int i=0;
+       int clk[]={8,16,32,40,50,64,100,128,256};
+       int loopCnt = 256;  //don't need to loop through entire array...
+       if (size == 0) return -1;
+       if (size<loopCnt) loopCnt = size;
+       //if we already have a valid clock quit
+       
+       for (;i<8;++i)
+               if (clk[i] == *clock) return 0;
+
+       //get high and low peak
+       int peak, low;
+       getHiLo(dest, loopCnt, &peak, &low, 75, 75);
+       
+       //test for large clean peaks
+       if (DetectCleanAskWave(dest, size, peak, low)==1){
+               int ans = DetectStrongAskClock(dest, size);
+               for (i=7; i>0; i--){
+                       if (clk[i] == ans) {
+                               *clock=ans;
+                               return 0;
+                       }
+               }
+       }
+       int ii;
+       int clkCnt;
+       int tol = 0;
+       int bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
+       int bestStart[]={0,0,0,0,0,0,0,0,0};
+       int errCnt=0;
+       //test each valid clock from smallest to greatest to see which lines up
+       for(clkCnt=0; clkCnt < 8; clkCnt++){
+               if (clk[clkCnt] == 32){
+                       tol=1;
+               }else{
+                       tol=0;
+               }
+               if (!maxErr) loopCnt=clk[clkCnt]*2;
+               bestErr[clkCnt]=1000;
+               //try lining up the peaks by moving starting point (try first 256)
+               for (ii=0; ii < loopCnt; ii++){
+                       if ((dest[ii] >= peak) || (dest[ii] <= low)){
+                               errCnt=0;
+                               // now that we have the first one lined up test rest of wave array
+                               for (i=0; i<((int)((size-ii-tol)/clk[clkCnt])-1); ++i){
+                                       if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){
+                                       }else if(dest[ii+(i*clk[clkCnt])-tol]>=peak || dest[ii+(i*clk[clkCnt])-tol]<=low){
+                                       }else if(dest[ii+(i*clk[clkCnt])+tol]>=peak || dest[ii+(i*clk[clkCnt])+tol]<=low){
+                                       }else{  //error no peak detected
+                                               errCnt++;
+                                       }
+                               }
+                               //if we found no errors then we can stop here
+                               //  this is correct one - return this clock
+                                               //PrintAndLog("DEBUG: clk %d, err %d, ii %d, i %d",clk[clkCnt],errCnt,ii,i);
+                               if(errCnt==0 && clkCnt<6) {
+                                       *clock = clk[clkCnt];
+                                       return ii;
+                               }
+                               //if we found errors see if it is lowest so far and save it as best run
+                               if(errCnt<bestErr[clkCnt]){
+                                       bestErr[clkCnt]=errCnt;
+                                       bestStart[clkCnt]=ii;
+                               }
+                       }
+               }
+       }
+       uint8_t iii=0;
+       uint8_t best=0;
+       for (iii=0; iii<8; ++iii){
+               if (bestErr[iii]<bestErr[best]){
+                       if (bestErr[iii]==0) bestErr[iii]=1;
+                       // current best bit to error ratio     vs  new bit to error ratio
+                       if (((size/clk[best])/bestErr[best] < (size/clk[iii])/bestErr[iii]) ){
+                               best = iii;
+                       }
+               }
+       }
+       if (bestErr[best]>maxErr) return -1;
+       *clock=clk[best];
+       return bestStart[best];
 }
 
+//by marshmellow
+//detect psk clock by reading each phase shift
+// a phase shift is determined by measuring the sample length of each wave
+int DetectPSKClock(uint8_t dest[], size_t size, int clock)
+{
+       uint8_t clk[]={255,16,32,40,50,64,100,128,255}; //255 is not a valid clock
+       uint16_t loopCnt = 4096;  //don't need to loop through entire array...
+       if (size == 0) return 0;
+       if (size<loopCnt) loopCnt = size;
+
+       //if we already have a valid clock quit
+       size_t i=1;
+       for (; i < 8; ++i)
+               if (clk[i] == clock) return clock;
+
+       size_t waveStart=0, waveEnd=0, firstFullWave=0, lastClkBit=0;
+       uint8_t clkCnt, fc=0, fullWaveLen=0, tol=1;
+       uint16_t peakcnt=0, errCnt=0, waveLenCnt=0;
+       uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
+       uint16_t peaksdet[]={0,0,0,0,0,0,0,0,0};
+       countFC(dest, size, &fc);
+       //PrintAndLog("DEBUG: FC: %d",fc);
+
+       //find first full wave
+       for (i=0; i<loopCnt; i++){
+               if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){
+                       if (waveStart == 0) {
+                               waveStart = i+1;
+                               //PrintAndLog("DEBUG: waveStart: %d",waveStart);
+                       } else {
+                               waveEnd = i+1;
+                               //PrintAndLog("DEBUG: waveEnd: %d",waveEnd);
+                               waveLenCnt = waveEnd-waveStart;
+                               if (waveLenCnt > fc){
+                                       firstFullWave = waveStart;
+                                       fullWaveLen=waveLenCnt;
+                                       break;
+                               } 
+                               waveStart=0;
+                       }
+               }
+       }
+       //PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
+       
+       //test each valid clock from greatest to smallest to see which lines up
+       for(clkCnt=7; clkCnt >= 1 ; clkCnt--){
+               lastClkBit = firstFullWave; //set end of wave as clock align
+               waveStart = 0;
+               errCnt=0;
+               peakcnt=0;
+               //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d",clk[clkCnt],lastClkBit);
+
+               for (i = firstFullWave+fullWaveLen-1; i < loopCnt-2; i++){
+                       //top edge of wave = start of new wave 
+                       if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){
+                               if (waveStart == 0) {
+                                       waveStart = i+1;
+                                       waveLenCnt=0;
+                               } else { //waveEnd
+                                       waveEnd = i+1;
+                                       waveLenCnt = waveEnd-waveStart;
+                                       if (waveLenCnt > fc){ 
+                                               //if this wave is a phase shift
+                                               //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, ii: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,ii+1,fc);
+                                               if (i+1 >= lastClkBit + clk[clkCnt] - tol){ //should be a clock bit
+                                                       peakcnt++;
+                                                       lastClkBit+=clk[clkCnt];
+                                               } else if (i<lastClkBit+8){
+                                                       //noise after a phase shift - ignore
+                                               } else { //phase shift before supposed to based on clock
+                                                       errCnt++;
+                                               }
+                                       } else if (i+1 > lastClkBit + clk[clkCnt] + tol + fc){
+                                               lastClkBit+=clk[clkCnt]; //no phase shift but clock bit
+                                       }
+                                       waveStart=i+1;
+                               }
+                       }
+               }
+               if (errCnt == 0){
+                       return clk[clkCnt];
+               }
+               if (errCnt <= bestErr[clkCnt]) bestErr[clkCnt]=errCnt;
+               if (peakcnt > peaksdet[clkCnt]) peaksdet[clkCnt]=peakcnt;
+       } 
+       //all tested with errors 
+       //return the highest clk with the most peaks found
+       uint8_t best=7;
+       for (i=7; i>=1; i--){
+               if (peaksdet[i] > peaksdet[best]) {
+                       best = i;
+               }
+               //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best]);
+       }
+       return clk[best];
+}
 
 //by marshmellow
-//detect psk clock by reading #peaks vs no peaks(or errors)
-int DetectpskNRZClock(uint8_t dest[], size_t size, int clock)
+//detect nrz clock by reading #peaks vs no peaks(or errors)
+int DetectNRZClock(uint8_t dest[], size_t size, int clock)
 {
        int i=0;
-       int clk[]={16,32,40,50,64,100,128,256};
-       int loopCnt = 2048;  //don't need to loop through entire array...
+       int clk[]={8,16,32,40,50,64,100,128,256};
+       int loopCnt = 4096;  //don't need to loop through entire array...
+       if (size == 0) return 0;
        if (size<loopCnt) loopCnt = size;
 
        //if we already have a valid clock quit
-       for (; i < 7; ++i)
+       for (; i < 8; ++i)
                if (clk[i] == clock) return clock;
 
        //get high and low peak
@@ -908,100 +1163,89 @@ int DetectpskNRZClock(uint8_t dest[], size_t size, int clock)
        uint8_t clkCnt;
        uint8_t tol = 0;
        int peakcnt=0;
-       int errCnt=0;
-       int bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000};
        int peaksdet[]={0,0,0,0,0,0,0,0};
-       //test each valid clock from smallest to greatest to see which lines up
-       for(clkCnt=0; clkCnt < 7; ++clkCnt){
-               if (clk[clkCnt] <= 32){
-                       tol=1;
-               }else{
-                       tol=0;
+       int maxPeak=0;
+       //test for large clipped waves
+       for (i=0; i<loopCnt; i++){
+               if (dest[i] >= peak || dest[i] <= low){
+                       peakcnt++;
+               } else {
+                       if (peakcnt>0 && maxPeak < peakcnt){
+                               maxPeak = peakcnt;
+                       }
+                       peakcnt=0;
                }
+       }
+       peakcnt=0;
+       //test each valid clock from smallest to greatest to see which lines up
+       for(clkCnt=0; clkCnt < 8; ++clkCnt){
+               //ignore clocks smaller than largest peak
+               if (clk[clkCnt]<maxPeak) continue;
+
                //try lining up the peaks by moving starting point (try first 256)
                for (ii=0; ii< loopCnt; ++ii){
                        if ((dest[ii] >= peak) || (dest[ii] <= low)){
-                               errCnt=0;
                                peakcnt=0;
                                // now that we have the first one lined up test rest of wave array
                                for (i=0; i < ((int)((size-ii-tol)/clk[clkCnt])-1); ++i){
                                        if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){
                                                peakcnt++;
-                                       }else if(dest[ii+(i*clk[clkCnt])-tol]>=peak || dest[ii+(i*clk[clkCnt])-tol]<=low){
-                                               peakcnt++;
-                                       }else if(dest[ii+(i*clk[clkCnt])+tol]>=peak || dest[ii+(i*clk[clkCnt])+tol]<=low){
-                                               peakcnt++;
-                                       }else{  //error no peak detected
-                                               errCnt++;
                                        }
                                }
                                if(peakcnt>peaksdet[clkCnt]) {
                                        peaksdet[clkCnt]=peakcnt;
-                                       bestErr[clkCnt]=errCnt;
                                }
                        }
                }
        }
-       int iii=0;
+       int iii=7;
        int best=0;
-       //int ratio2;  //debug
-       int ratio;
-       //int bits;
-       for (iii=0; iii < 7; ++iii){
-               ratio=1000;
-               //ratio2=1000;  //debug
-               //bits=size/clk[iii];  //debug
-               if (peaksdet[iii] > 0){
-                       ratio=bestErr[iii]/peaksdet[iii];
-                       if (((bestErr[best]/peaksdet[best]) > (ratio)+1)){
-                               best = iii;
-                       }
-                       //ratio2=bits/peaksdet[iii]; //debug
+       for (iii=7; iii > 0; iii--){
+               if (peaksdet[iii] > peaksdet[best]){
+                       best = iii;
                }
-               //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d, ratio: %d, bits: %d, peakbitr: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best],ratio, bits,ratio2);
+               //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best]);
        }
        return clk[best];
 }
 
-//by marshmellow (attempt to get rid of high immediately after a low)
-void pskCleanWave(uint8_t *BitStream, size_t size)
+// by marshmellow
+// convert psk1 demod to psk2 demod
+// only transition waves are 1s
+void psk1TOpsk2(uint8_t *BitStream, size_t size)
 {
-       int i;
-       int gap = 4;
-       int newLow=0;
-       int newHigh=0;
-       int high, low;
-       getHiLo(BitStream, size, &high, &low, 80, 90);
-       for (i=0; i < size; ++i){
-               if (newLow == 1){
-                       if (BitStream[i]>low){
-                               BitStream[i]=low+8;
-                               gap--;
-                       }
-                       if (gap == 0){
-                               newLow=0;
-                               gap=4;
-                       }
-               }else if (newHigh == 1){
-                       if (BitStream[i]<high){
-                               BitStream[i]=high-8;
-                               gap--;
-                       }
-                       if (gap == 0){
-                               newHigh=0;
-                               gap=4;
-                       }
+       size_t i=1;
+       uint8_t lastBit=BitStream[0];
+       for (; i<size; i++){
+               if (BitStream[i]==77){
+                       //ignore errors
+               } else if (lastBit!=BitStream[i]){
+                       lastBit=BitStream[i];
+                       BitStream[i]=1;
+               } else {
+                       BitStream[i]=0;
                }
-               if (BitStream[i] <= low) newLow=1;
-               if (BitStream[i] >= high) newHigh=1;
        }
        return;
 }
 
+// by marshmellow
+// convert psk2 demod to psk1 demod
+// from only transition waves are 1s to phase shifts change bit
+void psk2TOpsk1(uint8_t *BitStream, size_t size)
+{
+       uint8_t phase=0;
+       for (size_t i=0; i<size; i++){
+               if (BitStream[i]==1){
+                       phase ^=1;
+               }
+               BitStream[i]=phase;
+       }
+       return;
+}
 
-//redesigned by marshmellow adjusted from existing decode functions
-//indala id decoding - only tested on 26 bit tags, but attempted to make it work for more
+// redesigned by marshmellow adjusted from existing decode functions
+// indala id decoding - only tested on 26 bit tags, but attempted to make it work for more
 int indala26decode(uint8_t *bitStream, size_t *size, uint8_t *invert)
 {
        //26 bit 40134 format  (don't know other formats)
@@ -1064,58 +1308,75 @@ int indala26decode(uint8_t *bitStream, size_t *size, uint8_t *invert)
        return 1;
 }
 
-
-//by marshmellow - demodulate PSK1 wave or NRZ wave (both similar enough)
-//peaks switch bit (high=1 low=0) each clock cycle = 1 bit determined by last peak
-int pskNRZrawDemod(uint8_t *dest, size_t *size, int *clk, int *invert)
+// by marshmellow - demodulate NRZ wave (both similar enough)
+// peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak
+// there probably is a much simpler way to do this.... 
+int nrzRawDemod(uint8_t *dest, size_t *size, int *clk, int *invert, int maxErr)
 {
-       pskCleanWave(dest,*size);
-       int clk2 = DetectpskNRZClock(dest, *size, *clk);
-       *clk=clk2;
+       if (justNoise(dest, *size)) return -1;
+       *clk = DetectNRZClock(dest, *size, *clk);
+       if (*clk==0) return -2;
        uint32_t i;
-       int high, low, ans;
-       ans = getHiLo(dest, 1260, &high, &low, 75, 80); //25% fuzz on high 20% fuzz on low
-       if (ans<1) return -2; //just noise
-       uint32_t gLen = *size;
-       //PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low);
+       uint32_t gLen = 4096;
+       if (gLen>*size) gLen = *size;
+       int high, low;
+       if (getHiLo(dest, gLen, &high, &low, 75, 75) < 1) return -3; //25% fuzz on high 25% fuzz on low
        int lastBit = 0;  //set first clock check
        uint32_t bitnum = 0;     //output counter
        uint8_t tol = 1;  //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
-       if (*clk==32) tol = 2;    //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
        uint32_t iii = 0;
-       uint8_t errCnt =0;
-       uint32_t bestStart = *size;
-       uint32_t maxErr = (*size/1000);
-       uint32_t bestErrCnt = maxErr;
-       //uint8_t midBit=0;
+       uint16_t errCnt =0;
+       uint16_t MaxBits = 1000;
+       uint32_t bestErrCnt = maxErr+1;
+       uint32_t bestPeakCnt = 0;
+       uint32_t bestPeakStart=0;
+       uint8_t bestFirstPeakHigh=0;
+       uint8_t firstPeakHigh=0;
        uint8_t curBit=0;
        uint8_t bitHigh=0;
-       uint8_t ignorewin=*clk/8;
-       //PrintAndLog("DEBUG - lastbit - %d",lastBit);
+       uint8_t errBitHigh=0;
+       uint16_t peakCnt=0;
+       uint8_t ignoreWindow=4;
+       uint8_t ignoreCnt=ignoreWindow; //in case of noice near peak
        //loop to find first wave that works - align to clock
        for (iii=0; iii < gLen; ++iii){
                if ((dest[iii]>=high) || (dest[iii]<=low)){
+                       if (dest[iii]>=high) firstPeakHigh=1;
+                       else firstPeakHigh=0;
                        lastBit=iii-*clk;
+                       peakCnt=0;
+                       errCnt=0;
+                       bitnum=0;
                        //loop through to see if this start location works
                        for (i = iii; i < *size; ++i) {
                                //if we found a high bar and we are at a clock bit
                                if ((dest[i]>=high ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){
                                        bitHigh=1;
                                        lastBit+=*clk;
-                                       ignorewin=*clk/8;
                                        bitnum++;
+                                       peakCnt++;
+                                       errBitHigh=0;
+                                       ignoreCnt=ignoreWindow;
                                //else if low bar found and we are at a clock point
                                }else if ((dest[i]<=low ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){
                                        bitHigh=1;
                                        lastBit+=*clk;
-                                       ignorewin=*clk/8;
                                        bitnum++;
+                                       peakCnt++;
+                                       errBitHigh=0;
+                                       ignoreCnt=ignoreWindow;
                                //else if no bars found
                                }else if(dest[i] < high && dest[i] > low) {
-                                       if (ignorewin==0){
+                                       if (ignoreCnt==0){
                                                bitHigh=0;
-                                       }else ignorewin--;
-                                                                               //if we are past a clock point
+                                               if (errBitHigh==1){
+                                                       errCnt++;
+                                               }
+                                               errBitHigh=0;
+                                       } else {
+                                               ignoreCnt--;
+                                       }
+                                       //if we are past a clock point
                                        if (i >= lastBit+*clk+tol){ //clock val
                                                lastBit+=*clk;
                                                bitnum++;
@@ -1123,30 +1384,41 @@ int pskNRZrawDemod(uint8_t *dest, size_t *size, int *clk, int *invert)
                                //else if bar found but we are not at a clock bit and we did not just have a clock bit
                                }else if ((dest[i]>=high || dest[i]<=low) && (i<lastBit+*clk-tol || i>lastBit+*clk+tol) && (bitHigh==0)){
                                        //error bar found no clock...
-                                       errCnt++;
+                                       errBitHigh=1;
                                }
-                               if (bitnum>=1000) break;
+                               if (bitnum>=MaxBits) break;
                        }
                        //we got more than 64 good bits and not all errors
-                       if ((bitnum > (64+errCnt)) && (errCnt < (maxErr))) {
+                       if (bitnum > (64) && (errCnt <= (maxErr))) {
                                //possible good read
                                if (errCnt == 0){
-                                       bestStart = iii;
+                                       //bestStart = iii;
+                                       bestFirstPeakHigh=firstPeakHigh;
                                        bestErrCnt = errCnt;
+                                       bestPeakCnt = peakCnt;
+                                       bestPeakStart = iii;
                                        break;  //great read - finish
                                }
                                if (errCnt < bestErrCnt){  //set this as new best run
                                        bestErrCnt = errCnt;
-                                       bestStart = iii;
+                                       //bestStart = iii;
                                }
+                               if (peakCnt > bestPeakCnt){
+                                       bestFirstPeakHigh=firstPeakHigh;
+                                       bestPeakCnt=peakCnt;
+                                       bestPeakStart=iii;
+                               } 
                        }
                }
        }
-       if (bestErrCnt < maxErr){
+       //PrintAndLog("DEBUG: bestErrCnt: %d, maxErr: %d, bestStart: %d, bestPeakCnt: %d, bestPeakStart: %d",bestErrCnt,maxErr,bestStart,bestPeakCnt,bestPeakStart);
+       if (bestErrCnt <= maxErr){
                //best run is good enough set to best run and set overwrite BinStream
-               iii=bestStart;
-               lastBit=bestStart-*clk;
+               iii=bestPeakStart;
+               lastBit=bestPeakStart-*clk;
                bitnum=0;
+               memset(dest, bestFirstPeakHigh^1, bestPeakStart / *clk);
+               bitnum += (bestPeakStart / *clk);
                for (i = iii; i < *size; ++i) {
                        //if we found a high bar and we are at a clock bit
                        if ((dest[i] >= high ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){
@@ -1154,21 +1426,32 @@ int pskNRZrawDemod(uint8_t *dest, size_t *size, int *clk, int *invert)
                                lastBit+=*clk;
                                curBit=1-*invert;
                                dest[bitnum]=curBit;
-                               ignorewin=*clk/8;
                                bitnum++;
+                               errBitHigh=0;
+                               ignoreCnt=ignoreWindow;
                        //else if low bar found and we are at a clock point
                        }else if ((dest[i]<=low ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){
                                bitHigh=1;
                                lastBit+=*clk;
                                curBit=*invert;
                                dest[bitnum]=curBit;
-                               ignorewin=*clk/8;
                                bitnum++;
+                               errBitHigh=0;
+                               ignoreCnt=ignoreWindow;
                        //else if no bars found
                        }else if(dest[i]<high && dest[i]>low) {
-                               if (ignorewin==0){
+                               if (ignoreCnt==0){
                                        bitHigh=0;
-                               }else ignorewin--;
+                                       //if peak is done was it an error peak?
+                                       if (errBitHigh==1){
+                                               dest[bitnum]=77;
+                                               bitnum++;
+                                               errCnt++;
+                                       }
+                                       errBitHigh=0;
+                               } else {
+                                       ignoreCnt--;
+                               }
                                //if we are past a clock point
                                if (i>=lastBit+*clk+tol){ //clock val
                                        lastBit+=*clk;
@@ -1178,189 +1461,354 @@ int pskNRZrawDemod(uint8_t *dest, size_t *size, int *clk, int *invert)
                        //else if bar found but we are not at a clock bit and we did not just have a clock bit
                        }else if ((dest[i]>=high || dest[i]<=low) && ((i<lastBit+*clk-tol) || (i>lastBit+*clk+tol)) && (bitHigh==0)){
                                //error bar found no clock...
-                               bitHigh=1;
-                               dest[bitnum]=77;
-                               bitnum++;
-                               errCnt++;
+                               errBitHigh=1;
                        }
-                       if (bitnum >=1000) break;
+                       if (bitnum >= MaxBits) break;
                }
                *size=bitnum;
        } else{
                *size=bitnum;
-               *clk=bestStart;
-               return -1;
+               return bestErrCnt;
        }
 
        if (bitnum>16){
                *size=bitnum;
-       } else return -1;
+       } else return -5;
        return errCnt;
 }
 
+//by marshmellow
+//detects the bit clock for FSK given the high and low Field Clocks
+uint8_t detectFSKClk(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fcLow)
+{
+       uint8_t clk[] = {8,16,32,40,50,64,100,128,0};
+       uint16_t rfLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
+       uint8_t rfCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
+       uint8_t rfLensFnd = 0;
+       uint8_t lastFCcnt=0;
+       uint32_t fcCounter = 0;
+       uint16_t rfCounter = 0;
+       uint8_t firstBitFnd = 0;
+       size_t i;
+       if (size == 0) return 0;
+
+       uint8_t fcTol = (uint8_t)(0.5+(float)(fcHigh-fcLow)/2);
+       rfLensFnd=0;
+       fcCounter=0;
+       rfCounter=0;
+       firstBitFnd=0;
+       //PrintAndLog("DEBUG: fcTol: %d",fcTol);
+       // prime i to first up transition
+       for (i = 1; i < size-1; i++)
+               if (BitStream[i] > BitStream[i-1] && BitStream[i]>=BitStream[i+1])
+                       break;
+
+       for (; i < size-1; i++){
+               if (BitStream[i] > BitStream[i-1] && BitStream[i]>=BitStream[i+1]){
+                       // new peak 
+                       fcCounter++;
+                       rfCounter++;
+                       // if we got less than the small fc + tolerance then set it to the small fc
+                       if (fcCounter < fcLow+fcTol) 
+                               fcCounter = fcLow;
+                       else //set it to the large fc
+                               fcCounter = fcHigh;
+
+                       //look for bit clock  (rf/xx)
+                       if ((fcCounter<lastFCcnt || fcCounter>lastFCcnt)){
+                               //not the same size as the last wave - start of new bit sequence
+
+                               if (firstBitFnd>1){ //skip first wave change - probably not a complete bit
+                                       for (int ii=0; ii<15; ii++){
+                                               if (rfLens[ii]==rfCounter){
+                                                       rfCnts[ii]++;
+                                                       rfCounter=0;
+                                                       break;
+                                               }
+                                       }
+                                       if (rfCounter>0 && rfLensFnd<15){
+                                               //PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter);
+                                               rfCnts[rfLensFnd]++;
+                                               rfLens[rfLensFnd++]=rfCounter;
+                                       }
+                               } else {
+                                       firstBitFnd++;
+                               }
+                               rfCounter=0;
+                               lastFCcnt=fcCounter;
+                       }
+                       fcCounter=0;
+               } else {
+                       // count sample
+                       fcCounter++;
+                       rfCounter++;
+               }
+       }
+       uint8_t rfHighest=15, rfHighest2=15, rfHighest3=15;
+
+       for (i=0; i<15; i++){
+               //PrintAndLog("DEBUG: RF %d, cnts %d",rfLens[i], rfCnts[i]);
+               //get highest 2 RF values  (might need to get more values to compare or compare all?)
+               if (rfCnts[i]>rfCnts[rfHighest]){
+                       rfHighest3=rfHighest2;
+                       rfHighest2=rfHighest;
+                       rfHighest=i;
+               } else if(rfCnts[i]>rfCnts[rfHighest2]){
+                       rfHighest3=rfHighest2;
+                       rfHighest2=i;
+               } else if(rfCnts[i]>rfCnts[rfHighest3]){
+                       rfHighest3=i;
+               }
+       }  
+       // set allowed clock remainder tolerance to be 1 large field clock length+1 
+       //   we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off  
+       uint8_t tol1 = fcHigh+1; 
+       
+       //PrintAndLog("DEBUG: hightest: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]);
+
+       // loop to find the highest clock that has a remainder less than the tolerance
+       //   compare samples counted divided by
+       int ii=7;
+       for (; ii>=0; ii--){
+               if (rfLens[rfHighest] % clk[ii] < tol1 || rfLens[rfHighest] % clk[ii] > clk[ii]-tol1){
+                       if (rfLens[rfHighest2] % clk[ii] < tol1 || rfLens[rfHighest2] % clk[ii] > clk[ii]-tol1){
+                               if (rfLens[rfHighest3] % clk[ii] < tol1 || rfLens[rfHighest3] % clk[ii] > clk[ii]-tol1){
+                                       break;
+                               }
+                       }
+               }
+       }
+
+       if (ii<0) return 0; // oops we went too far
+
+       return clk[ii];
+}
 
 //by marshmellow
-//countFC is to detect the field clock and bit clock rates.
-//for fsk or ask not psk or nrz
-uint32_t countFC(uint8_t *BitStream, size_t size)
+//countFC is to detect the field clock lengths.
+//counts and returns the 2 most common wave lengths
+//mainly used for FSK field clock detection
+uint16_t countFC(uint8_t *BitStream, size_t size, uint8_t *mostFC)
 {
-  // get high/low thresholds
-  int high, low;
-  getHiLo(BitStream,10, &high, &low, 100, 100);
-  // get zero crossing
-  uint8_t zeroC = (high-low)/2+low;
-  uint8_t clk[]={8,16,32,40,50,64,100,128};
-  uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0};
-  uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0};
-  uint8_t rfLens[] = {0,0,0,0,0,0,0,0,0,0,0};
-  // uint8_t rfCnts[] = {0,0,0,0,0,0,0,0,0,0};
-  uint8_t fcLensFnd = 0;
-  uint8_t rfLensFnd = 0;
-  uint8_t lastBit=0;
-  uint8_t curBit=0;
-  uint8_t lastFCcnt=0;
-  uint32_t errCnt=0;
-  uint32_t fcCounter = 0;
-  uint32_t rfCounter = 0;
-  uint8_t firstBitFnd = 0;
-  int i;
-  
-  // prime i to first up transition
-  for (i = 1; i < size; i++)
-    if (BitStream[i]>=zeroC && BitStream[i-1]<zeroC)
-      break;
-
-  for (; i < size; i++){
-    curBit = BitStream[i];
-    lastBit = BitStream[i-1];
-    if (lastBit<zeroC && curBit >= zeroC){
-      // new up transition
-      fcCounter++;
-      rfCounter++;
-      if (fcCounter > 3 && fcCounter < 256){ 
-        //we've counted enough that it could be a valid field clock
-  
-        //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8)
-        if (lastFCcnt==5 && fcCounter==9) fcCounter--;
-        //if odd and not rc/5 add one (for when we get a fc 9 instead of 10)
-        if ((fcCounter==9 && fcCounter & 1) || fcCounter==4) fcCounter++;
-     
-        //look for bit clock  (rf/xx)
-        if ((fcCounter<lastFCcnt || fcCounter>lastFCcnt)){
-          //not the same size as the last wave - start of new bit sequence
-
-          if (firstBitFnd>1){ //skip first wave change - probably not a complete bit
-            for (int ii=0; ii<10; ii++){
-              if (rfLens[ii]==rfCounter){
-                //rfCnts[ii]++;
-                rfCounter=0;
-                break;
-              }
-            }
-            if (rfCounter>0 && rfLensFnd<10){
-              //PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter);
-              //rfCnts[rfLensFnd]++;
-              rfLens[rfLensFnd++]=rfCounter;
-            }
-          } else {
-            //PrintAndLog("DEBUG i: %d",i);
-            firstBitFnd++;
-          }
-          rfCounter=0;
-          lastFCcnt=fcCounter;
-        }
-
-        // save last field clock count  (fc/xx)
-        // find which fcLens to save it to:
-        for (int ii=0; ii<10; ii++){
-          if (fcLens[ii]==fcCounter){
-            fcCnts[ii]++;
-            fcCounter=0;
-            break;
-          }
-        }
-        if (fcCounter>0 && fcLensFnd<10){
-          //add new fc length 
-          //PrintAndLog("FCCntr %d",fcCounter);
-          fcCnts[fcLensFnd]++;
-          fcLens[fcLensFnd++]=fcCounter;
-        }
-      } else{
-        // hmmm this should not happen often - count them
-        errCnt++;
-      }
-      // reset counter
-      fcCounter=0;
-    } else {
-      // count sample
-      fcCounter++;
-      rfCounter++;
-    }
-  }
-  // if too many errors return errors as negative number (IS THIS NEEDED?)
-  if (errCnt>100) return -1*errCnt;
-  
-  uint8_t maxCnt1=0, best1=9, best2=9, best3=9, rfHighest=10, rfHighest2=10, rfHighest3=10;
-
-  // go through fclens and find which ones are bigest 2  
-  for (i=0; i<10; i++){
-    // PrintAndLog("DEBUG: FC %d, Cnt %d, Errs %d, RF %d",fcLens[i],fcCnts[i],errCnt,rfLens[i]);
-    
-    // get the 3 best FC values
-    if (fcCnts[i]>maxCnt1) {
-      best3=best2;
-      best2=best1;
-      maxCnt1=fcCnts[i];
-      best1=i;
-    } else if(fcCnts[i]>fcCnts[best2]){
-      best3=best2;
-      best2=i;
-    } else if(fcCnts[i]>fcCnts[best3]){
-      best3=i;
-    }
-    //get highest 2 RF values  (might need to get more values to compare or compare all?)
-    if (rfLens[i]>rfLens[rfHighest]){
-      rfHighest3=rfHighest2;
-      rfHighest2=rfHighest;
-      rfHighest=i;
-    } else if(rfLens[i]>rfLens[rfHighest2]){
-      rfHighest3=rfHighest2;
-      rfHighest2=i;
-    } else if(rfLens[i]>rfLens[rfHighest3]){
-      rfHighest3=i;
-    }
-  }
-
-  // set allowed clock remainder tolerance to be 1 large field clock length 
-  //   we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off
-  int tol1 = (fcLens[best1]>fcLens[best2]) ? fcLens[best1] : fcLens[best2]; 
-  
-  // loop to find the highest clock that has a remainder less than the tolerance
-  //   compare samples counted divided by 
-  int ii=7;
-  for (; ii>=0; ii--){
-    if (rfLens[rfHighest] % clk[ii] < tol1 || rfLens[rfHighest] % clk[ii] > clk[ii]-tol1){
-      if (rfLens[rfHighest2] % clk[ii] < tol1 || rfLens[rfHighest2] % clk[ii] > clk[ii]-tol1){
-        if (rfLens[rfHighest3] % clk[ii] < tol1 || rfLens[rfHighest3] % clk[ii] > clk[ii]-tol1){
-          break;
-        }
-      }
-    }
-  }
-
-  if (ii<0) ii=7; // oops we went too far
-
-  // TODO: take top 3 answers and compare to known Field clocks to get top 2
-
-  uint32_t fcs=0;
-  // PrintAndLog("DEBUG: Best %d  best2 %d best3 %d, clk %d, clk2 %d",fcLens[best1],fcLens[best2],fcLens[best3],clk[i],clk[ii]);
-  //
-
-  if (fcLens[best1]>fcLens[best2]){
-    fcs = (((uint32_t)clk[ii])<<16) | (((uint32_t)fcLens[best1])<<8) | ((fcLens[best2]));
-  } else {
-    fcs = (((uint32_t)clk[ii])<<16) | (((uint32_t)fcLens[best2])<<8) | ((fcLens[best1]));    
-  }
-
-  return fcs;
+       uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0};
+       uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0};
+       uint8_t fcLensFnd = 0;
+       uint8_t lastFCcnt=0;
+       uint32_t fcCounter = 0;
+       size_t i;
+       if (size == 0) return 0;
+
+       // prime i to first up transition
+       for (i = 1; i < size-1; i++)
+               if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1])
+                       break;
+
+       for (; i < size-1; i++){
+               if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]){
+                       // new up transition
+                       fcCounter++;
+                       
+                       //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8)
+                       if (lastFCcnt==5 && fcCounter==9) fcCounter--;
+                       //if odd and not rc/5 add one (for when we get a fc 9 instead of 10)
+                       if ((fcCounter==9 && fcCounter & 1) || fcCounter==4) fcCounter++;
+
+                       // save last field clock count  (fc/xx)
+                       // find which fcLens to save it to:
+                       for (int ii=0; ii<10; ii++){
+                               if (fcLens[ii]==fcCounter){
+                                       fcCnts[ii]++;
+                                       fcCounter=0;
+                                       break;
+                               }
+                       }
+                       if (fcCounter>0 && fcLensFnd<10){
+                               //add new fc length 
+                               fcCnts[fcLensFnd]++;
+                               fcLens[fcLensFnd++]=fcCounter;
+                       }
+                       fcCounter=0;
+               } else {
+                       // count sample
+                       fcCounter++;
+               }
+       }
+       
+       uint8_t best1=9, best2=9, best3=9;
+       uint16_t maxCnt1=0;
+       // go through fclens and find which ones are bigest 2  
+       for (i=0; i<10; i++){
+               // PrintAndLog("DEBUG: FC %d, Cnt %d, Errs %d",fcLens[i],fcCnts[i],errCnt);    
+               // get the 3 best FC values
+               if (fcCnts[i]>maxCnt1) {
+                       best3=best2;
+                       best2=best1;
+                       maxCnt1=fcCnts[i];
+                       best1=i;
+               } else if(fcCnts[i]>fcCnts[best2]){
+                       best3=best2;
+                       best2=i;
+               } else if(fcCnts[i]>fcCnts[best3]){
+                       best3=i;
+               }
+       }
+       uint8_t fcH=0, fcL=0;
+       if (fcLens[best1]>fcLens[best2]){
+               fcH=fcLens[best1];
+               fcL=fcLens[best2];
+       } else{
+               fcH=fcLens[best2];
+               fcL=fcLens[best1];
+       }
+
+       *mostFC=fcLens[best1]; 
+       // TODO: take top 3 answers and compare to known Field clocks to get top 2
+
+       uint16_t fcs = (((uint16_t)fcH)<<8) | fcL;
+       // PrintAndLog("DEBUG: Best %d  best2 %d best3 %d",fcLens[best1],fcLens[best2],fcLens[best3]);
+       
+       return fcs;
+}
+
+//by marshmellow
+//countPSK_FC is to detect the psk carrier clock length.
+//counts and returns the 1 most common wave length
+uint8_t countPSK_FC(uint8_t *BitStream, size_t size)
+{
+       uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0};
+       uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0};
+       uint8_t fcLensFnd = 0;
+       uint32_t fcCounter = 0;
+       size_t i;
+       if (size == 0) return 0;
+       
+       // prime i to first up transition
+       for (i = 1; i < size-1; i++)
+               if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1])
+                       break;
+
+       for (; i < size-1; i++){
+               if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]){
+                       // new up transition
+                       fcCounter++;
+                       
+                       // save last field clock count  (fc/xx)
+                       // find which fcLens to save it to:
+                       for (int ii=0; ii<10; ii++){
+                               if (fcLens[ii]==fcCounter){
+                                       fcCnts[ii]++;
+                                       fcCounter=0;
+                                       break;
+                               }
+                       }
+                       if (fcCounter>0 && fcLensFnd<10){
+                               //add new fc length 
+                               fcCnts[fcLensFnd]++;
+                               fcLens[fcLensFnd++]=fcCounter;
+                       }
+                       fcCounter=0;
+               } else {
+                       // count sample
+                       fcCounter++;
+               }
+       }
+       
+       uint8_t best1=9;
+       uint16_t maxCnt1=0;
+       // go through fclens and find which ones are bigest  
+       for (i=0; i<10; i++){
+               //PrintAndLog("DEBUG: FC %d, Cnt %d",fcLens[i],fcCnts[i]);    
+               // get the best FC value
+               if (fcCnts[i]>maxCnt1) {
+                       maxCnt1=fcCnts[i];
+                       best1=i;
+               }
+       }
+       return fcLens[best1]; 
+}
+
+//by marshmellow - demodulate PSK1 wave 
+//uses wave lengths (# Samples) 
+int pskRawDemod(uint8_t dest[], size_t *size, int *clock, int *invert)
+{
+       uint16_t loopCnt = 4096;  //don't need to loop through entire array...
+       if (size == 0) return -1;
+       if (*size<loopCnt) loopCnt = *size;
+
+       uint8_t curPhase = *invert;
+       size_t i, waveStart=1, waveEnd=0, firstFullWave=0, lastClkBit=0;
+       uint8_t fc=0, fullWaveLen=0, tol=1;
+       uint16_t errCnt=0, waveLenCnt=0;
+       fc = countPSK_FC(dest, *size);
+       if (fc!=2 && fc!=4 && fc!=8) return -1;
+       //PrintAndLog("DEBUG: FC: %d",fc);
+       *clock = DetectPSKClock(dest, *size, *clock);
+       if (*clock==0) return -1;
+       int avgWaveVal=0, lastAvgWaveVal=0;
+       //find first phase shift
+       for (i=0; i<loopCnt; i++){
+               if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){
+                       waveEnd = i+1;
+                       //PrintAndLog("DEBUG: waveEnd: %d",waveEnd);
+                       waveLenCnt = waveEnd-waveStart;
+                       if (waveLenCnt > fc && waveStart > fc){ //not first peak and is a large wave 
+                               lastAvgWaveVal = avgWaveVal/(waveLenCnt);
+                               firstFullWave = waveStart;
+                               fullWaveLen=waveLenCnt;
+                               //if average wave value is > graph 0 then it is an up wave or a 1
+                               if (lastAvgWaveVal > 123) curPhase^=1;  //fudge graph 0 a little 123 vs 128
+                               break;
+                       } 
+                       waveStart = i+1;
+                       avgWaveVal = 0;
+               }
+               avgWaveVal+=dest[i+2];
+       }
+       //PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);  
+       lastClkBit = firstFullWave; //set start of wave as clock align
+       //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d", *clock, lastClkBit);
+       waveStart = 0;
+       errCnt=0;
+       size_t numBits=0;
+       //set skipped bits
+       memset(dest,curPhase^1,firstFullWave / *clock);
+       numBits += (firstFullWave / *clock);
+       dest[numBits++] = curPhase; //set first read bit
+       for (i = firstFullWave+fullWaveLen-1; i < *size-3; i++){
+               //top edge of wave = start of new wave 
+               if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){
+                       if (waveStart == 0) {
+                               waveStart = i+1;
+                               waveLenCnt=0;
+                               avgWaveVal = dest[i+1];
+                       } else { //waveEnd
+                               waveEnd = i+1;
+                               waveLenCnt = waveEnd-waveStart;
+                               lastAvgWaveVal = avgWaveVal/waveLenCnt;
+                               if (waveLenCnt > fc){  
+                                       //PrintAndLog("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal);
+                                       //if this wave is a phase shift
+                                       //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc);
+                                       if (i+1 >= lastClkBit + *clock - tol){ //should be a clock bit
+                                               curPhase^=1;
+                                               dest[numBits++] = curPhase;
+                                               lastClkBit += *clock;
+                                       } else if (i<lastClkBit+10+fc){
+                                               //noise after a phase shift - ignore
+                                       } else { //phase shift before supposed to based on clock
+                                               errCnt++;
+                                               dest[numBits++] = 77;
+                                       }
+                               } else if (i+1 > lastClkBit + *clock + tol + fc){
+                                       lastClkBit += *clock; //no phase shift but clock bit
+                                       dest[numBits++] = curPhase;
+                               }
+                               avgWaveVal=0;
+                               waveStart=i+1;
+                       }
+               }
+               avgWaveVal+=dest[i+1];
+       }
+       *size = numBits;
+       return errCnt;
 }
Impressum, Datenschutz