]> cvs.zerfleddert.de Git - proxmark3-svn/blobdiff - client/ui.c
@marshmellows memory fix
[proxmark3-svn] / client / ui.c
index 6486d5243fa9c35d5e0df306acdec7255de7f141..6645a99ea5e5f7519380a6d2dc306c1cc9ae879f 100644 (file)
 #include <stdarg.h>
 #include <stdlib.h>
 #include <stdio.h>
+#include <stdbool.h>
 #include <time.h>
 #include <readline/readline.h>
 #include <pthread.h>
-
+#include "loclass/cipherutils.h"
 #include "ui.h"
+#include "cmdmain.h"
+#include "cmddata.h"
+#include "graph.h"
+//#include <liquid/liquid.h>
+#define M_PI 3.14159265358979323846264338327
 
 double CursorScaleFactor;
 int PlotGridX, PlotGridY, PlotGridXdefault= 64, PlotGridYdefault= 64;
 int offline;
-int flushAfterWrite = 0;  //buzzy
+int flushAfterWrite = 0;
 extern pthread_mutex_t print_lock;
 
 static char *logfilename = "proxmark3.log";
@@ -32,13 +38,13 @@ void PrintAndLog(char *fmt, ...)
        int saved_point;
        va_list argptr, argptr2;
        static FILE *logfile = NULL;
-       static int logging=1;
+       static int logging = 1;
 
        // lock this section to avoid interlacing prints from different threats
        pthread_mutex_lock(&print_lock);
   
        if (logging && !logfile) {
-               logfile=fopen(logfilename, "a");
+               logfile = fopen(logfilename, "a");
                if (!logfile) {
                        fprintf(stderr, "Can't open logfile, logging disabled!\n");
                        logging=0;
@@ -77,208 +83,399 @@ void PrintAndLog(char *fmt, ...)
        }
        va_end(argptr2);
 
-       if (flushAfterWrite == 1)  //buzzy
-       {
+       if (flushAfterWrite == 1) {
                fflush(NULL);
        }
        //release lock
        pthread_mutex_unlock(&print_lock);  
 }
 
-
 void SetLogFilename(char *fn)
 {
   logfilename = fn;
 }
 
-
-uint8_t manchester_decode(const uint8_t * data, const size_t len, uint8_t * dataout){
+int manchester_decode( int * data, const size_t len, uint8_t * dataout,  size_t dataoutlen){
        
-       size_t bytelength = len;
-       
-       uint8_t bitStream[bytelength];
-       memset(bitStream, 0x00, bytelength);
-       
-       int clock,high, low, bit, hithigh, hitlow, first, bit2idx, lastpeak;
-       int i,invert, lastval;
-       int bitidx = 0;
-       int lc = 0;
-       int warnings = 0;
+       int bitlength = 0;
+       int clock, high, low, startindex;
+       low = startindex = 0;
        high = 1;
-       low =  bit = bit2idx = lastpeak = invert = lastval = hithigh = hitlow = first = 0;
-       clock = 0xFFFF;
-
-       /* Detect high and lows */
-       for (i = 0; i < bytelength; i++) {
-               if (data[i] > high)
-                       high = data[i];
-               else if (data[i] < low)
-                       low = data[i];
-       }
+       uint8_t * bitStream =  (uint8_t* ) malloc(sizeof(uint8_t) * dataoutlen);        
+       memset(bitStream, 0x00, dataoutlen);    
        
+       /* Detect high and lows */
+       DetectHighLowInGraph(&high, &low, TRUE); 
+
        /* get clock */
-       int j=0;
-       for (i = 1; i < bytelength; i++) {
-               /* if this is the beginning of a peak */
-               j = i-1;
-               if ( data[j] != data[i] && 
-                    data[i] == high)
-               {
-                 /* find lowest difference between peaks */
-                       if (lastpeak && i - lastpeak < clock)
-                               clock = i - lastpeak;
-                       lastpeak = i;
-               }
-       }
-    
-       int tolerance = clock/4;
-       PrintAndLog(" Detected clock: %d",clock);
-
-       /* Detect first transition */
-         /* Lo-Hi (arbitrary)       */
-         /* skip to the first high */
-         for (i= 0; i < bytelength; i++)
-               if (data[i] == high)
-                 break;
-                 
-         /* now look for the first low */
-         for (; i < bytelength; i++) {
-               if (data[i] == low) {
-                       lastval = i;
+       clock = GetAskClock("",false, false);
+
+       startindex = DetectFirstTransition(data, len, high);
+  
+       if (high != 1)
+               // decode "raw"
+               bitlength = ManchesterConvertFrom255(data, len, bitStream, dataoutlen, high, low, clock, startindex);
+       else
+               // decode manchester
+               bitlength = ManchesterConvertFrom1(data, len, bitStream, dataoutlen, clock, startindex);
+
+       memcpy(dataout, bitStream, bitlength);
+       free(bitStream);
+       return bitlength;
+}
+ int DetectFirstTransition(const int * data, const size_t len, int threshold){
+
+       int i = 0;
+       /* now look for the first threshold */
+       for (; i < len; ++i) {
+               if (data[i] == threshold) {
                        break;
                }
-         }
-         
-       /* If we're not working with 1/0s, demod based off clock */
-       if (high != 1)
+       }
+       return i;
+ }
+
+ int ManchesterConvertFrom255(const int * data, const size_t len, uint8_t * dataout, int dataoutlen, int high, int low, int clock, int startIndex){
+
+       int i, j, z, hithigh, hitlow, bitIndex, startType;
+       i = 0;
+       bitIndex = 0;
+       
+       int isDamp = 0;
+       int damplimit = (int)((high / 2) * 0.3);
+       int dampHi =  (high/2)+damplimit;
+       int dampLow = (high/2)-damplimit;
+       int firstST = 0;
+
+       // i = clock frame of data
+       for (; i < (int)(len/clock); i++)
        {
-               bit = 0; /* We assume the 1st bit is zero, it may not be
-                         * the case: this routine (I think) has an init problem.
-                         * Ed.
-                         */
-               for (; i < (int)(bytelength / clock); i++)
-               {
                hithigh = 0;
                hitlow = 0;
-               first = 1;
-
+               startType = -1;
+               z = startIndex + (i*clock);
+               isDamp = 0;
+                       
                /* Find out if we hit both high and low peaks */
                for (j = 0; j < clock; j++)
-               {
-                       if (data[(i * clock) + j] == high)
+               {               
+                       if (data[z+j] == high){
                                hithigh = 1;
-                       else if (data[(i * clock) + j] == low)
+                               if ( startType == -1)
+                                       startType = 1;
+                       }
+                       
+                       if (data[z+j] == low ){
                                hitlow = 1;
-
-                       /* it doesn't count if it's the first part of our read
-                          because it's really just trailing from the last sequence */
-                       if (first && (hithigh || hitlow))
-                         hithigh = hitlow = 0;
-                       else
-                         first = 0;
-
+                               if ( startType == -1)
+                                       startType = 0;
+                       } 
+               
                        if (hithigh && hitlow)
                          break;
-                 }
-
-                 /* If we didn't hit both high and low peaks, we had a bit transition */
-                 if (!hithigh || !hitlow)
-                       bit ^= 1;
-
-                 bitStream[bit2idx++] = bit ^ invert;
                }
-       }
-       /* standard 1/0 bitstream */
-  else {
-               /* Then detect duration between 2 successive transitions */
-               for (bitidx = 1; i < bytelength; i++) {
                
-                       if (data[i-1] != data[i]) {
-                               lc = i-lastval;
-                               lastval = i;
-
-                               // Error check: if bitidx becomes too large, we do not
-                               // have a Manchester encoded bitstream or the clock is really
-                               // wrong!
-                               if (bitidx > (bytelength*2/clock+8) ) {
-                                       PrintAndLog("Error: the clock you gave is probably wrong, aborting.");
-                                       return 0;
+               // No high value found, are we in a dampening field?
+               if ( !hithigh ) {
+                       //PrintAndLog(" # Entering damp test at index : %d (%d)", z+j, j);
+                       for (j = 0; j < clock; j++) {
+                               if ( 
+                                    (data[z+j] <= dampHi && data[z+j] >= dampLow)
+                                  ){
+                                  isDamp++;
                                }
-                               // Then switch depending on lc length:
-                               // Tolerance is 1/4 of clock rate (arbitrary)
-                               if (abs(lc-clock/2) < tolerance) {
-                                       // Short pulse : either "1" or "0"
-                                       bitStream[bitidx++] = data[i-1];
-                               } else if (abs(lc-clock) < tolerance) {
-                                       // Long pulse: either "11" or "00"
-                                       bitStream[bitidx++] = data[i-1];
-                                       bitStream[bitidx++] = data[i-1];
-                               } else {
-                                       // Error
-                                       warnings++;
-                                       PrintAndLog("Warning: Manchester decode error for pulse width detection.");
-                                       if (warnings > 10) {
-                                               PrintAndLog("Error: too many detection errors, aborting.");
-                                               return 0;
-                                       }
+                       }
+               }
+
+               /*  Manchester Switching..
+                       0: High -> Low   
+                       1: Low -> High  
+               */
+               if (startType == 0)
+                       dataout[bitIndex++] = 1;
+               else if (startType == 1) 
+                       dataout[bitIndex++] = 0;
+               else
+                       dataout[bitIndex++] = 2;
+                       
+               if ( isDamp > clock/2 ) {
+                       firstST++;
+               }
+               
+               if ( firstST == 4)
+                       break;
+               if ( bitIndex >= dataoutlen-1 )
+                       break;
+       }
+       return bitIndex;
+ }
+ int ManchesterConvertFrom1(const int * data, const size_t len, uint8_t * dataout,int dataoutlen, int clock, int startIndex){
+
+       int i,j, bitindex, lc, tolerance, warnings;
+       warnings = 0;
+       int upperlimit = len*2/clock+8;
+       i = startIndex;
+       j = 0;
+       tolerance = clock/4;
+       uint8_t decodedArr[len];
+       
+       /* Detect duration between 2 successive transitions */
+       for (bitindex = 1; i < len; i++) {
+       
+               if (data[i-1] != data[i]) {
+                       lc = i - startIndex;
+                       startIndex = i;
+
+                       // Error check: if bitindex becomes too large, we do not
+                       // have a Manchester encoded bitstream or the clock is really wrong!
+                       if (bitindex > upperlimit ) {
+                               PrintAndLog("Error: the clock you gave is probably wrong, aborting.");
+                               return 0;
+                       }
+                       // Then switch depending on lc length:
+                       // Tolerance is 1/4 of clock rate (arbitrary)
+                       if (abs((lc-clock)/2) < tolerance) {
+                               // Short pulse : either "1" or "0"
+                               decodedArr[bitindex++] = data[i-1];
+                       } else if (abs(lc-clock) < tolerance) {
+                               // Long pulse: either "11" or "00"
+                               decodedArr[bitindex++] = data[i-1];
+                               decodedArr[bitindex++] = data[i-1];
+                       } else {
+                               ++warnings;
+                               PrintAndLog("Warning: Manchester decode error for pulse width detection.");
+                               if (warnings > 10) {
+                                       PrintAndLog("Error: too many detection errors, aborting.");
+                                       return 0; 
                                }
                        }
                }
        }
-       // At this stage, we now have a bitstream of "01" ("1") or "10" ("0"), parse it into final decoded bitstream
-    // Actually, we overwrite BitStream with the new decoded bitstream, we just need to be careful
-    // to stop output at the final bitidx2 value, not bitidx
-    for (i = 0; i < bitidx; i += 2) {
-               if ((bitStream[i] == 0) && (bitStream[i+1] == 1)) {
-                       bitStream[bit2idx++] = 1 ^ invert;
-               } 
-               else if ((bitStream[i] == 1) && (bitStream[i+1] == 0)) {
-                       bitStream[bit2idx++] = 0 ^ invert;
-               } 
-               else {
-                       // We cannot end up in this state, this means we are unsynchronized,
-                       // move up 1 bit:
+       
+       /* 
+       * We have a decodedArr of "01" ("1") or "10" ("0")
+       * parse it into final decoded dataout
+    */ 
+    for (i = 0; i < bitindex; i += 2) {
+
+           if ((decodedArr[i] == 0) && (decodedArr[i+1] == 1)) {
+                       dataout[j++] = 1;
+               } else if ((decodedArr[i] == 1) && (decodedArr[i+1] == 0)) {
+                       dataout[j++] = 0;
+               } else {
                        i++;
                        warnings++;
                        PrintAndLog("Unsynchronized, resync...");
-                       if (warnings > 10) {
+                       PrintAndLog("(too many of those messages mean the stream is not Manchester encoded)");
+
+                       if (warnings > 10) {    
                                PrintAndLog("Error: too many decode errors, aborting.");
                                return 0;
                        }
                }
     }
+       
+       PrintAndLog("%s", sprint_hex(dataout, j));
+       return j;
+ }
+ void ManchesterDiffDecodedString(const uint8_t* bitstream, size_t len, uint8_t invert){
+       /* 
+       * We have a bitstream of "01" ("1") or "10" ("0")
+       * parse it into final decoded bitstream
+    */ 
+       int i, j, warnings; 
+       uint8_t decodedArr[(len/2)+1];
 
-         // PrintAndLog(" Manchester decoded bitstream : %d bits", (bit2idx-16));
-         // uint8_t mod = (bit2idx-16) % blocksize;
-         // uint8_t div = (bit2idx-16) / blocksize;
-         
-         // // Now output the bitstream to the scrollback by line of 16 bits
-         // for (i = 0; i < div*blocksize; i+=blocksize) {
-               // PrintAndLog(" %s", sprint_bin(bitStream+i,blocksize) );
-         // }
-         // if ( mod > 0 ){
-               // PrintAndLog(" %s", sprint_bin(bitStream+i, mod) );
-         // }
+       j = warnings = 0;
        
-       if ( bit2idx > 0 )
-               memcpy(dataout, bitStream, bit2idx);
+       uint8_t lastbit = 0;
        
-       free(bitStream);
-       return bit2idx;
-}
+    for (i = 0; i < len; i += 2) {
+       
+               uint8_t first = bitstream[i];
+               uint8_t second = bitstream[i+1];
 
+               if ( first == second ) {
+                       ++i;
+                       ++warnings;
+                       if (warnings > 10) {
+                               PrintAndLog("Error: too many decode errors, aborting.");
+                               return;
+                       }
+               } 
+               else if ( lastbit != first ) {
+                       decodedArr[j++] = 0 ^ invert;
+               }
+               else {
+                       decodedArr[j++] = 1 ^ invert;
+               }
+               lastbit = second;
+    }
+       
+       PrintAndLog("%s", sprint_hex(decodedArr, j));
+}
 void PrintPaddedManchester( uint8_t* bitStream, size_t len, size_t blocksize){
 
-         PrintAndLog(" Manchester decoded bitstream : %d bits", len);
+       PrintAndLog(" Manchester decoded  : %d bits", len);
          
-         uint8_t mod = len % blocksize;
-         uint8_t div = len / blocksize;
-         int i;
-         // Now output the bitstream to the scrollback by line of 16 bits
-         for (i = 0; i < div*blocksize; i+=blocksize) {
+       uint8_t mod = len % blocksize;
+       uint8_t div = len / blocksize;
+       int i;
+  
+       // Now output the bitstream to the scrollback by line of 16 bits
+       for (i = 0; i < div*blocksize; i+=blocksize) {
                PrintAndLog(" %s", sprint_bin(bitStream+i,blocksize) );
-         }
-         if ( mod > 0 ){
-               PrintAndLog(" %s", sprint_bin(bitStream+i, mod) );
-         }
+       }
+       
+       if ( mod > 0 )
+               PrintAndLog(" %s", sprint_bin(bitStream+i, mod) );      
+}
+
+/* Sliding DFT
+   Smooths out 
+*/ 
+void iceFsk2(int * data, const size_t len){
+
+       int i, j;
+       int * output =  (int* ) malloc(sizeof(int) * len);      
+       memset(output, 0x00, len);
+
+       // for (i=0; i<len-5; ++i){
+               // for ( j=1; j <=5; ++j) {
+                       // output[i] += data[i*j];
+               // }
+               // output[i] /= 5;
+       // }
+       int rest = 127;
+       int tmp =0;
+       for (i=0; i<len; ++i){
+               if ( data[i] < 127)
+                       output[i] = 0;
+               else {
+                       tmp =  (100 * (data[i]-rest)) / rest;
+                       output[i] = (tmp > 60)? 100:0;
+               }
+       }
+       
+       for (j=0; j<len; ++j)
+               data[j] = output[j];
+               
+       free(output);
+}
+
+void iceFsk3(int * data, const size_t len){
+
+       int i,j;
+       
+       int * output =  (int* ) malloc(sizeof(int) * len);      
+       memset(output, 0x00, len);
+       float fc           = 0.1125f;          // center frequency
+       size_t adjustedLen = len;
+       
+    // create very simple low-pass filter to remove images (2nd-order Butterworth)
+    float complex iir_buf[3] = {0,0,0};
+    float b[3] = {0.003621681514929,  0.007243363029857, 0.003621681514929};
+    float a[3] = {1.000000000000000, -1.822694925196308, 0.837181651256023};
+    
+    float sample           = 0;      // input sample read from file
+    float complex x_prime  = 1.0f;   // save sample for estimating frequency
+    float complex x;
+               
+       for (i=0; i<adjustedLen; ++i) {
+
+               sample = data[i]+128;
+               
+        // remove DC offset and mix to complex baseband
+        x = (sample - 127.5f) * cexpf( _Complex_I * 2 * M_PI * fc * i );
+
+        // apply low-pass filter, removing spectral image (IIR using direct-form II)
+        iir_buf[2] = iir_buf[1];
+        iir_buf[1] = iir_buf[0];
+        iir_buf[0] = x - a[1]*iir_buf[1] - a[2]*iir_buf[2];
+        x          = b[0]*iir_buf[0] +
+                     b[1]*iir_buf[1] +
+                     b[2]*iir_buf[2];
+                                        
+        // compute instantaneous frequency by looking at phase difference
+        // between adjacent samples
+        float freq = cargf(x*conjf(x_prime));
+        x_prime = x;    // retain this sample for next iteration
+
+               output[i] =(freq > 0)? 10 : -10;
+    } 
+
+       // show data
+       for (j=0; j<adjustedLen; ++j)
+               data[j] = output[j];
+               
+       CmdLtrim("30");
+       adjustedLen -= 30;
+       
+       // zero crossings.
+       for (j=0; j<adjustedLen; ++j){
+               if ( data[j] == 10) break;
+       }
+       int startOne =j;
+       
+       for (;j<adjustedLen; ++j){
+               if ( data[j] == -10 ) break;
+       }
+       int stopOne = j-1;
+       
+       int fieldlen = stopOne-startOne;
+       
+       fieldlen = (fieldlen == 39 || fieldlen == 41)? 40 : fieldlen;
+       fieldlen = (fieldlen == 59 || fieldlen == 51)? 50 : fieldlen;
+       if ( fieldlen != 40 && fieldlen != 50){
+               printf("Detected field Length: %d \n", fieldlen);
+               printf("Can only handle 40 or 50.  Aborting...\n");
+               return;
+       }
+       
+       // FSK sequence start == 000111
+       int startPos = 0;
+       for (i =0; i<adjustedLen; ++i){
+               int dec = 0;
+               for ( j = 0; j < 6*fieldlen; ++j){
+                       dec += data[i + j];
+               }
+               if (dec == 0) {
+                       startPos = i;
+                       break;
+               }
+       }
+       
+       printf("000111 position: %d \n", startPos);
+
+       startPos += 6*fieldlen+5;
+       
+       int bit =0;
+       printf("BINARY\n");
+       printf("R/40 :  ");
+       for (i =startPos ; i < adjustedLen; i += 40){
+               bit = data[i]>0 ? 1:0;
+               printf("%d", bit );
+       }
+       printf("\n");   
+       
+       printf("R/50 :  ");
+       for (i =startPos ; i < adjustedLen; i += 50){
+               bit = data[i]>0 ? 1:0;
+               printf("%d", bit );     }
+       printf("\n");   
+       
+       free(output);
+}
+
+float complex cexpf (float complex Z)
+{
+  float complex  Res;
+  double rho = exp (__real__ Z);
+  __real__ Res = rho * cosf(__imag__ Z);
+  __imag__ Res = rho * sinf(__imag__ Z);
+  return Res;
 }
Impressum, Datenschutz