#include "crc16.h"
#include "string.h"
-void AcquireRawAdcSamples125k(int at134khz)
-{
- if (at134khz)
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
- else
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
-
- // Connect the A/D to the peak-detected low-frequency path.
- SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
-
- // Give it a bit of time for the resonant antenna to settle.
- SpinDelay(50);
- // Now set up the SSC to get the ADC samples that are now streaming at us.
- FpgaSetupSsc();
-
- // Now call the acquisition routine
- DoAcquisition125k();
-}
-
-// split into two routines so we can avoid timing issues after sending commands //
-void DoAcquisition125k(void)
+/**
+* Does the sample acquisition. If threshold is specified, the actual sampling
+* is not commenced until the threshold has been reached.
+* @param trigger_threshold - the threshold
+* @param silent - is true, now outputs are made. If false, dbprints the status
+*/
+void DoAcquisition125k_internal(int trigger_threshold,bool silent)
{
uint8_t *dest = (uint8_t *)BigBuf;
int n = sizeof(BigBuf);
}
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
- i++;
LED_D_OFF();
- if (i >= n) break;
+ if (trigger_threshold != -1 && dest[i] < trigger_threshold)
+ continue;
+ else
+ trigger_threshold = -1;
+ if (++i >= n) break;
}
}
- Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
- dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]);
+ if(!silent)
+ {
+ Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
+ dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]);
+
+ }
+}
+/**
+* Perform sample aquisition.
+*/
+void DoAcquisition125k(int trigger_threshold)
+{
+ DoAcquisition125k_internal(trigger_threshold, false);
+}
+
+/**
+* Setup the FPGA to listen for samples. This method downloads the FPGA bitstream
+* if not already loaded, sets divisor and starts up the antenna.
+* @param divisor : 1, 88> 255 or negative ==> 134.8 KHz
+* 0 or 95 ==> 125 KHz
+*
+**/
+void LFSetupFPGAForADC(int divisor, bool lf_field)
+{
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ if ( (divisor == 1) || (divisor < 0) || (divisor > 255) )
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
+ else if (divisor == 0)
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ else
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor);
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | (lf_field ? FPGA_LF_ADC_READER_FIELD : 0));
+
+ // Connect the A/D to the peak-detected low-frequency path.
+ SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
+ // Give it a bit of time for the resonant antenna to settle.
+ SpinDelay(50);
+ // Now set up the SSC to get the ADC samples that are now streaming at us.
+ FpgaSetupSsc();
+}
+/**
+* Initializes the FPGA, and acquires the samples.
+**/
+void AcquireRawAdcSamples125k(int divisor)
+{
+ LFSetupFPGAForADC(divisor, true);
+ // Now call the acquisition routine
+ DoAcquisition125k_internal(-1,false);
+}
+/**
+* Initializes the FPGA for snoop-mode, and acquires the samples.
+**/
+
+void SnoopLFRawAdcSamples(int divisor, int trigger_threshold)
+{
+ LFSetupFPGAForADC(divisor, false);
+ DoAcquisition125k(trigger_threshold);
}
void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command)
{
- int at134khz;
/* Make sure the tag is reset */
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
SpinDelay(2500);
+
+ int divisor_used = 95; // 125 KHz
// see if 'h' was specified
- if (command[strlen((char *) command) - 1] == 'h')
- at134khz = TRUE;
- else
- at134khz = FALSE;
- if (at134khz)
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
- else
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ if (command[strlen((char *) command) - 1] == 'h')
+ divisor_used = 88; // 134.8 KHz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
// Give it a bit of time for the resonant antenna to settle.
SpinDelay(50);
+
// And a little more time for the tag to fully power up
SpinDelay(2000);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
SpinDelayUs(delay_off);
- if (at134khz)
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
- else
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
LED_D_ON();
if(*(command++) == '0')
SpinDelayUs(period_0);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
SpinDelayUs(delay_off);
- if (at134khz)
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
- else
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
// now do the read
- DoAcquisition125k();
+ DoAcquisition125k(-1);
}
/* blank r/w tag data stream
uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
// TI tags charge at 134.2Khz
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
// Place FPGA in passthrough mode, in this mode the CROSS_LO line
// if not provided a valid crc will be computed from the data and written.
void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
{
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
if(crc == 0) {
crc = update_crc16(crc, (idlo)&0xff);
crc = update_crc16(crc, (idlo>>8)&0xff);
int i;
uint8_t *tab = (uint8_t *)BigBuf;
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
LED_A_OFF();
}
-
-// loop to capture raw HID waveform then FSK demodulate the TAG ID from it
-void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
+//translate wave to 11111100000 (1 for each short wave 0 for each long wave)
+size_t fsk_demod(uint8_t * dest, size_t size)
{
- uint8_t *dest = (uint8_t *)BigBuf;
- int m=0, n=0, i=0, idx=0, found=0, lastval=0;
- uint32_t hi2=0, hi=0, lo=0;
-
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
+ uint32_t last_transition = 0;
+ uint32_t idx = 1;
+ uint32_t maxVal=0;
+ // // we don't care about actual value, only if it's more or less than a
+ // // threshold essentially we capture zero crossings for later analysis
+
+ // we do care about the actual value as sometimes near the center of the
+ // wave we may get static that changes direction of wave for one value
+ // if our value is too low it might affect the read. and if our tag or
+ // antenna is weak a setting too high might not see anything. [marshmellow]
+ if (size<100) return size;
+ for(idx=1; idx<100; idx++){
+ if(maxVal<dest[idx]) maxVal = dest[idx];
+ }
+ // set close to the top of the wave threshold with 13% margin for error
+ // less likely to get a false transition up there.
+ // (but have to be careful not to go too high and miss some short waves)
+ uint32_t threshold_value = (uint32_t)(maxVal*.87); idx=1;
+ //uint8_t threshold_value = 127;
+
+ // sync to first lo-hi transition, and threshold
+
+ // Need to threshold first sample
+ if(dest[0] < threshold_value) dest[0] = 0;
+ else dest[0] = 1;
+
+ size_t numBits = 0;
+ // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
+ // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
+ // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
+ for(idx = 1; idx < size; idx++) {
+ // threshold current value
+ if (dest[idx] < threshold_value) dest[idx] = 0;
+ else dest[idx] = 1;
+
+ // Check for 0->1 transition
+ if (dest[idx-1] < dest[idx]) { // 0 -> 1 transition
+ if (idx-last_transition<6){
+ //do nothing with extra garbage
+ } else if (idx-last_transition < 9) {
+ dest[numBits]=1;
+ } else {
+ dest[numBits]=0;
+ }
+ last_transition = idx;
+ numBits++;
+ }
+ }
+ return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
+}
- // Connect the A/D to the peak-detected low-frequency path.
- SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
+uint32_t myround(float f)
+{
+ if (f >= 2000) return 2000;//something bad happened
+ return (uint32_t) (f + (float)0.5);
+}
- // Give it a bit of time for the resonant antenna to settle.
- SpinDelay(50);
+//translate 11111100000 to 10
+size_t aggregate_bits(uint8_t *dest,size_t size, uint8_t rfLen, uint8_t maxConsequtiveBits, uint8_t invert )// uint8_t h2l_crossing_value,uint8_t l2h_crossing_value,
+{
+ uint8_t lastval=dest[0];
+ uint32_t idx=0;
+ size_t numBits=0;
+ uint32_t n=1;
- // Now set up the SSC to get the ADC samples that are now streaming at us.
- FpgaSetupSsc();
+ for( idx=1; idx < size; idx++) {
- for(;;) {
- WDT_HIT();
- if (ledcontrol)
- LED_A_ON();
- if(BUTTON_PRESS()) {
- DbpString("Stopped");
- if (ledcontrol)
- LED_A_OFF();
- return;
+ if (dest[idx]==lastval) {
+ n++;
+ continue;
}
-
- i = 0;
- m = sizeof(BigBuf);
- memset(dest,128,m);
- for(;;) {
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
- AT91C_BASE_SSC->SSC_THR = 0x43;
- if (ledcontrol)
- LED_D_ON();
- }
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
- dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
- // we don't care about actual value, only if it's more or less than a
- // threshold essentially we capture zero crossings for later analysis
- if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
- i++;
- if (ledcontrol)
- LED_D_OFF();
- if(i >= m) {
- break;
- }
- }
+ //if lastval was 1, we have a 1->0 crossing
+ if ( dest[idx-1]==1 ) {
+ n=myround((float)(n+1)/((float)(rfLen)/(float)8));
+ //n=(n+1) / h2l_crossing_value;
+ } else {// 0->1 crossing
+ n=myround((float)(n+1)/((float)(rfLen-2)/(float)10));
+ //n=(n+1) / l2h_crossing_value;
+ }
+ if (n == 0) n = 1;
+
+ if(n < maxConsequtiveBits) //Consecutive
+ {
+ if(invert==0){ //invert bits
+ memset(dest+numBits, dest[idx-1] , n);
+ }else{
+ memset(dest+numBits, dest[idx-1]^1 , n);
+ }
+ numBits += n;
}
+ n=0;
+ lastval=dest[idx];
+ }//end for
+ return numBits;
+}
+// loop to get raw HID waveform then FSK demodulate the TAG ID from it
+void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
+{
+ uint8_t *dest = (uint8_t *)BigBuf;
- // FSK demodulator
+ size_t size=0,idx=0; //, found=0;
+ uint32_t hi2=0, hi=0, lo=0;
- // sync to first lo-hi transition
- for( idx=1; idx<m; idx++) {
- if (dest[idx-1]<dest[idx])
- lastval=idx;
- break;
- }
- WDT_HIT();
+ // Configure to go in 125Khz listen mode
+ LFSetupFPGAForADC(95, true);
- // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
- // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
- // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
- for( i=0; idx<m; idx++) {
- if (dest[idx-1]<dest[idx]) {
- dest[i]=idx-lastval;
- if (dest[i] <= 8) {
- dest[i]=1;
- } else {
- dest[i]=0;
- }
+ while(!BUTTON_PRESS()) {
- lastval=idx;
- i++;
- }
- }
- m=i;
WDT_HIT();
+ if (ledcontrol) LED_A_ON();
+
+ DoAcquisition125k_internal(-1,true);
+ size = sizeof(BigBuf);
+ if (size < 2000) continue;
+ // FSK demodulator
+ size = fsk_demod(dest, size);
// we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
- lastval=dest[0];
- idx=0;
- i=0;
- n=0;
- for( idx=0; idx<m; idx++) {
- if (dest[idx]==lastval) {
- n++;
- } else {
- // a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents,
- // an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets
- // swallowed up by rounding
- // expected results are 1 or 2 bits, any more and it's an invalid manchester encoding
- // special start of frame markers use invalid manchester states (no transitions) by using sequences
- // like 111000
- if (dest[idx-1]) {
- n=(n+1)/6; // fc/8 in sets of 6
- } else {
- n=(n+1)/5; // fc/10 in sets of 5
- }
- switch (n) { // stuff appropriate bits in buffer
- case 0:
- case 1: // one bit
- dest[i++]=dest[idx-1];
- break;
- case 2: // two bits
- dest[i++]=dest[idx-1];
- dest[i++]=dest[idx-1];
- break;
- case 3: // 3 bit start of frame markers
- dest[i++]=dest[idx-1];
- dest[i++]=dest[idx-1];
- dest[i++]=dest[idx-1];
- break;
- // When a logic 0 is immediately followed by the start of the next transmisson
- // (special pattern) a pattern of 4 bit duration lengths is created.
- case 4:
- dest[i++]=dest[idx-1];
- dest[i++]=dest[idx-1];
- dest[i++]=dest[idx-1];
- dest[i++]=dest[idx-1];
- break;
- default: // this shouldn't happen, don't stuff any bits
- break;
- }
- n=0;
- lastval=dest[idx];
- }
- }
- m=i;
+ // 1->0 : fc/8 in sets of 6 (RF/50 / 8 = 6.25)
+ // 0->1 : fc/10 in sets of 5 (RF/50 / 10= 5)
+ // do not invert
+ size = aggregate_bits(dest,size, 50,5,0); //6,5,5,0
+
WDT_HIT();
// final loop, go over previously decoded manchester data and decode into usable tag ID
// 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
- for( idx=0; idx<m-6; idx++) {
+ uint8_t frame_marker_mask[] = {1,1,1,0,0,0};
+ int numshifts = 0;
+ idx = 0;
+ //one scan
+ uint8_t sameCardCount =0;
+ while( idx + sizeof(frame_marker_mask) < size) {
// search for a start of frame marker
- if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )
- {
- found=1;
- idx+=6;
- if (found && (hi2|hi|lo)) {
- if (hi2 != 0){
- Dbprintf("TAG ID: %x%08x%08x (%d)",
- (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
- }
- else {
- Dbprintf("TAG ID: %x%08x (%d)",
- (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
- }
- /* if we're only looking for one tag */
- if (findone)
- {
- *high = hi;
- *low = lo;
- return;
- }
- hi2=0;
- hi=0;
- lo=0;
- found=0;
- }
- }
- if (found) {
- if (dest[idx] && (!dest[idx+1]) ) {
- hi2=(hi2<<1)|(hi>>31);
- hi=(hi<<1)|(lo>>31);
- lo=(lo<<1)|0;
- } else if ( (!dest[idx]) && dest[idx+1]) {
- hi2=(hi2<<1)|(hi>>31);
- hi=(hi<<1)|(lo>>31);
- lo=(lo<<1)|1;
- } else {
- found=0;
- hi2=0;
- hi=0;
- lo=0;
+ if (sameCardCount>2) break; //only up to 2 valid sets of data for the same read of looping card data
+ if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
+ { // frame marker found
+ idx+=sizeof(frame_marker_mask);
+ while(dest[idx] != dest[idx+1] && idx < size-2)
+ {
+ // Keep going until next frame marker (or error)
+ // Shift in a bit. Start by shifting high registers
+ hi2 = (hi2<<1)|(hi>>31);
+ hi = (hi<<1)|(lo>>31);
+ //Then, shift in a 0 or one into low
+ if (dest[idx] && !dest[idx+1]) // 1 0
+ lo=(lo<<1)|0;
+ else // 0 1
+ lo=(lo<<1)|
+ 1;
+ numshifts++;
+ idx += 2;
}
- idx++;
- }
- if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )
- {
- found=1;
- idx+=6;
- if (found && (hi|lo)) {
- if (hi2 != 0){
- Dbprintf("TAG ID: %x%08x%08x (%d)",
- (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
- }
- else {
- Dbprintf("TAG ID: %x%08x (%d)",
- (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
- }
- /* if we're only looking for one tag */
- if (findone)
+ //Dbprintf("Num shifts: %d ", numshifts);
+ // Hopefully, we read a tag and hit upon the next frame marker
+ if(idx + sizeof(frame_marker_mask) < size)
+ {
+ if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
{
- *high = hi;
- *low = lo;
- return;
+ if (hi2 != 0){ //extra large HID tags
+ Dbprintf("TAG ID: %x%08x%08x (%d)",
+ (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
+ }
+ else { //standard HID tags <38 bits
+ //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
+ uint8_t bitlen = 0;
+ uint32_t fc = 0;
+ uint32_t cardnum = 0;
+ if (((hi>>5)&1)==1){//if bit 38 is set then < 37 bit format is used
+ uint32_t lo2=0;
+ lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
+ uint8_t idx3 = 1;
+ while(lo2>1){ //find last bit set to 1 (format len bit)
+ lo2=lo2>>1;
+ idx3++;
+ }
+ bitlen =idx3+19;
+ fc =0;
+ cardnum=0;
+ if(bitlen==26){
+ cardnum = (lo>>1)&0xFFFF;
+ fc = (lo>>17)&0xFF;
+ }
+ if(bitlen==37){
+ cardnum = (lo>>1)&0x7FFFF;
+ fc = ((hi&0xF)<<12)|(lo>>20);
+ }
+ if(bitlen==34){
+ cardnum = (lo>>1)&0xFFFF;
+ fc= ((hi&1)<<15)|(lo>>17);
+ }
+ if(bitlen==35){
+ cardnum = (lo>>1)&0xFFFFF;
+ fc = ((hi&1)<<11)|(lo>>21);
+ }
+ }
+ else { //if bit 38 is not set then 37 bit format is used
+ bitlen= 37;
+ fc =0;
+ cardnum=0;
+ if(bitlen==37){
+ cardnum = (lo>>1)&0x7FFFF;
+ fc = ((hi&0xF)<<12)|(lo>>20);
+ }
+ }
+ //Dbprintf("TAG ID: %x%08x (%d)",
+ // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
+ Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
+ (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
+ (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
+ }
+ sameCardCount++;
+ if (findone){
+ if (ledcontrol) LED_A_OFF();
+ return;
+ }
}
- hi2=0;
- hi=0;
- lo=0;
- found=0;
}
+ // reset
+ hi2 = hi = lo = 0;
+ numshifts = 0;
+ }else
+ {
+ idx++;
}
}
WDT_HIT();
+
}
+ DbpString("Stopped");
+ if (ledcontrol) LED_A_OFF();
}
+uint32_t bytebits_to_byte(uint8_t* src, int numbits)
+{
+ uint32_t num = 0;
+ for(int i = 0 ; i < numbits ; i++)
+ {
+ num = (num << 1) | (*src);
+ src++;
+ }
+ return num;
+}
+
+void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
+{
+ uint8_t *dest = (uint8_t *)BigBuf;
+ size_t size=0, idx=0;
+ uint32_t code=0, code2=0;
+
+ // Configure to go in 125Khz listen mode
+ LFSetupFPGAForADC(95, true);
+
+ while(!BUTTON_PRESS()) {
+ WDT_HIT();
+ if (ledcontrol) LED_A_ON();
+ DoAcquisition125k_internal(-1,true);
+ size = sizeof(BigBuf);
+ //make sure buffer has data
+ if (size < 64) return;
+ //test samples are not just noise
+ uint8_t testMax=0;
+ for(idx=0;idx<64;idx++){
+ if (testMax<dest[idx]) testMax=dest[idx];
+ }
+ idx=0;
+ //if not just noise
+ if (testMax>170){
+ //Dbprintf("testMax: %d",testMax);
+ // FSK demodulator
+ size = fsk_demod(dest, size);
+ // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
+ // 1->0 : fc/8 in sets of 7 (RF/64 / 8 = 8)
+ // 0->1 : fc/10 in sets of 6 (RF/64 / 10 = 6.4)
+ size = aggregate_bits(dest, size, 64, 13, 1); //13 max Consecutive should be ok as most 0s in row should be 10 for init seq - invert bits
+ WDT_HIT();
+ //Index map
+ //0 10 20 30 40 50 60
+ //| | | | | | |
+ //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
+ //-----------------------------------------------------------------------------
+ //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
+ //
+ //XSF(version)facility:codeone+codetwo
+ //Handle the data
+ uint8_t sameCardCount=0;
+ uint8_t mask[] = {0,0,0,0,0,0,0,0,0,1};
+ for( idx=0; idx < (size - 74); idx++) {
+ if (sameCardCount>2) break;
+ if ( memcmp(dest + idx, mask, sizeof(mask))==0) {
+ //frame marker found
+ if (!dest[idx+8] && dest[idx+17]==1 && dest[idx+26]==1 && dest[idx+35]==1 && dest[idx+44]==1 && dest[idx+53]==1){
+ //confirmed proper separator bits found
+ if(findone){ //only print binary if we are doing one
+ Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
+ Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
+ Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
+ Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
+ Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
+ Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
+ Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
+ }
+ code = bytebits_to_byte(dest+idx,32);
+ code2 = bytebits_to_byte(dest+idx+32,32);
+ short version = bytebits_to_byte(dest+idx+27,8); //14,4
+ uint8_t facilitycode = bytebits_to_byte(dest+idx+19,8) ;
+ uint16_t number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
+
+ Dbprintf("XSF(%02d)%02x:%d (%08x%08x)",version,facilitycode,number,code,code2);
+ // if we're only looking for one tag
+ if (findone){
+ if (ledcontrol) LED_A_OFF();
+ //LED_A_OFF();
+ return;
+ }
+ sameCardCount++;
+ }
+ }
+ }
+ }
+ WDT_HIT();
+ }
+ DbpString("Stopped");
+ if (ledcontrol) LED_A_OFF();
+}
/*------------------------------
* T5555/T5557/T5567 routines
// Write one bit to card
void T55xxWriteBit(int bit)
{
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
if (bit == 0)
SpinDelayUs(WRITE_0);
else
// Write one card block in page 0, no lock
void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
{
- unsigned int i;
+ //unsigned int i; //enio adjustment 12/10/14
+ uint32_t i;
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
// Give it a bit of time for the resonant antenna to settle.
// And for the tag to fully power up
// Opcode
T55xxWriteBit(1);
T55xxWriteBit(0); //Page 0
- if (PwdMode == 1){
- // Pwd
- for (i = 0x80000000; i != 0; i >>= 1)
- T55xxWriteBit(Pwd & i);
- }
+ if (PwdMode == 1){
+ // Pwd
+ for (i = 0x80000000; i != 0; i >>= 1)
+ T55xxWriteBit(Pwd & i);
+ }
// Lock bit
T55xxWriteBit(0);
// Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
// so wait a little more)
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
SpinDelay(20);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
}
-
-// Read one card block in page 0
+// Read one card block in page 0
void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
{
uint8_t *dest = (uint8_t *)BigBuf;
- int m=0, i=0;
-
+ //int m=0, i=0; //enio adjustment 12/10/14
+ uint32_t m=0, i=0;
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
m = sizeof(BigBuf);
// Clear destination buffer before sending the command
memset(dest, 128, m);
SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
// Now set up the SSC to get the ADC samples that are now streaming at us.
FpgaSetupSsc();
-
+
LED_D_ON();
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
-
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+
// Give it a bit of time for the resonant antenna to settle.
// And for the tag to fully power up
SpinDelay(150);
-
+
// Now start writting
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
SpinDelayUs(START_GAP);
-
+
// Opcode
T55xxWriteBit(1);
T55xxWriteBit(0); //Page 0
// Pwd
for (i = 0x80000000; i != 0; i >>= 1)
T55xxWriteBit(Pwd & i);
- }
+ }
// Lock bit
T55xxWriteBit(0);
// Block
// Turn field on to read the response
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
-
- // Now do the acquisition
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+
+ // Now do the acquisition
i = 0;
for(;;) {
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
// we don't care about actual value, only if it's more or less than a
// threshold essentially we capture zero crossings for later analysis
-// if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
+ // if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
i++;
if (i >= m) break;
}
}
-
+
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
LED_D_OFF();
DbpString("DONE!");
}
// Read card traceability data (page 1)
-void T55xxReadTrace(void){
+void T55xxReadTrace(void){
uint8_t *dest = (uint8_t *)BigBuf;
int m=0, i=0;
-
+
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
m = sizeof(BigBuf);
// Clear destination buffer before sending the command
memset(dest, 128, m);
SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
// Now set up the SSC to get the ADC samples that are now streaming at us.
FpgaSetupSsc();
-
+
LED_D_ON();
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
-
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+
// Give it a bit of time for the resonant antenna to settle.
// And for the tag to fully power up
SpinDelay(150);
-
+
// Now start writting
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
SpinDelayUs(START_GAP);
-
+
// Opcode
T55xxWriteBit(1);
T55xxWriteBit(1); //Page 1
// Turn field on to read the response
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
-
- // Now do the acquisition
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+
+ // Now do the acquisition
i = 0;
for(;;) {
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
if (i >= m) break;
}
}
-
+
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
LED_D_OFF();
DbpString("DONE!");
// Copy HID id to card and setup block 0 config
void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT)
{
- int data1, data2, data3, data4, data5, data6; //up to six blocks for long format
+ int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format
int last_block = 0;
-
+
if (longFMT){
// Ensure no more than 84 bits supplied
if (hi2>0xFFFFF) {
else
data1 |= (1<<((3-i)*2)); // 0 -> 01
}
-
+
data2 = 0;
for (int i=0;i<16;i++) {
if (hi2 & (1<<(15-i)))
else
data2 |= (1<<((15-i)*2)); // 0 -> 01
}
-
+
data3 = 0;
for (int i=0;i<16;i++) {
if (hi & (1<<(31-i)))
else
data3 |= (1<<((15-i)*2)); // 0 -> 01
}
-
+
data4 = 0;
for (int i=0;i<16;i++) {
if (hi & (1<<(15-i)))
else
data5 |= (1<<((15-i)*2)); // 0 -> 01
}
-
+
data6 = 0;
for (int i=0;i<16;i++) {
if (lo & (1<<(15-i)))
data6 |= (1<<((15-i)*2)); // 0 -> 01
}
}
- else {
+ else {
// Ensure no more than 44 bits supplied
if (hi>0xFFF) {
DbpString("Tags can only have 44 bits.");
return;
}
-
+
// Build the 3 data blocks for supplied 44bit ID
last_block = 3;
data1 = 0x1D000000; // load preamble
-
- for (int i=0;i<12;i++) {
- if (hi & (1<<(12-i)))
- data1 |= (1<<(((12-i)*2)+1)); // 1 -> 10
- else
- data1 |= (1<<((12-i)*2)); // 0 -> 01
- }
-
+
+ for (int i=0;i<12;i++) {
+ if (hi & (1<<(11-i)))
+ data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10
+ else
+ data1 |= (1<<((11-i)*2)); // 0 -> 01
+ }
+
data2 = 0;
for (int i=0;i<16;i++) {
if (lo & (1<<(31-i)))
else
data2 |= (1<<((15-i)*2)); // 0 -> 01
}
-
+
data3 = 0;
for (int i=0;i<16;i++) {
if (lo & (1<<(15-i)))
data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
else
data3 |= (1<<((15-i)*2)); // 0 -> 01
- }
+ }
}
-
+
LED_D_ON();
// Program the data blocks for supplied ID
// and the block 0 for HID format
T55xxWriteBlock(data5,5,0,0);
T55xxWriteBlock(data6,6,0,0);
}
-
+
// Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
T55xxWriteBlock(T55x7_BITRATE_RF_50 |
- T55x7_MODULATION_FSK2a |
- last_block << T55x7_MAXBLOCK_SHIFT,
- 0,0,0);
+ T55x7_MODULATION_FSK2a |
+ last_block << T55x7_MAXBLOCK_SHIFT,
+ 0,0,0);
LED_D_OFF();
DbpString("DONE!");
}
+void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT)
+{
+ int data1=0, data2=0; //up to six blocks for long format
+
+ data1 = hi; // load preamble
+ data2 = lo;
+
+ LED_D_ON();
+ // Program the data blocks for supplied ID
+ // and the block 0 for HID format
+ T55xxWriteBlock(data1,1,0,0);
+ T55xxWriteBlock(data2,2,0,0);
+
+ //Config Block
+ T55xxWriteBlock(0x00147040,0,0,0);
+ LED_D_OFF();
+
+ DbpString("DONE!");
+}
+
// Define 9bit header for EM410x tags
#define EM410X_HEADER 0x1FF
#define EM410X_ID_LENGTH 40
uint64_t rev_id = 0; // reversed ID
int c_parity[4]; // column parity
int r_parity = 0; // row parity
+ uint32_t clock = 0;
// Reverse ID bits given as parameter (for simpler operations)
for (i = 0; i < EM410X_ID_LENGTH; ++i) {
T55xxWriteBlock((uint32_t)id, 2, 0, 0);
// Config for EM410x (RF/64, Manchester, Maxblock=2)
- if (card)
+ if (card) {
+ // Clock rate is stored in bits 8-15 of the card value
+ clock = (card & 0xFF00) >> 8;
+ Dbprintf("Clock rate: %d", clock);
+ switch (clock)
+ {
+ case 32:
+ clock = T55x7_BITRATE_RF_32;
+ break;
+ case 16:
+ clock = T55x7_BITRATE_RF_16;
+ break;
+ case 0:
+ // A value of 0 is assumed to be 64 for backwards-compatibility
+ // Fall through...
+ case 64:
+ clock = T55x7_BITRATE_RF_64;
+ break;
+ default:
+ Dbprintf("Invalid clock rate: %d", clock);
+ return;
+ }
+
// Writing configuration for T55x7 tag
- T55xxWriteBlock(T55x7_BITRATE_RF_64 |
+ T55xxWriteBlock(clock |
T55x7_MODULATION_MANCHESTER |
2 << T55x7_MAXBLOCK_SHIFT,
0, 0, 0);
+ }
else
// Writing configuration for T5555(Q5) tag
T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT |
T55xxWriteBlock(T55x7_BITRATE_RF_32 |
T55x7_MODULATION_PSK1 |
2 << T55x7_MAXBLOCK_SHIFT,
- 0,0,0);
+ 0, 0, 0);
//Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
// T5567WriteBlock(0x603E1042,0);
}
+
#define abs(x) ( ((x)<0) ? -(x) : (x) )
#define max(x,y) ( x<y ? y:x)
int DemodPCF7931(uint8_t **outBlocks) {
- uint8_t BitStream[256];
- uint8_t Blocks[8][16];
- uint8_t *GraphBuffer = (uint8_t *)BigBuf;
- int GraphTraceLen = sizeof(BigBuf);
- int i, j, lastval, bitidx, half_switch;
- int clock = 64;
- int tolerance = clock / 8;
- int pmc, block_done;
- int lc, warnings = 0;
- int num_blocks = 0;
- int lmin=128, lmax=128;
- uint8_t dir;
-
- AcquireRawAdcSamples125k(0);
-
- lmin = 64;
- lmax = 192;
-
- i = 2;
-
- /* Find first local max/min */
- if(GraphBuffer[1] > GraphBuffer[0]) {
+ uint8_t BitStream[256];
+ uint8_t Blocks[8][16];
+ uint8_t *GraphBuffer = (uint8_t *)BigBuf;
+ int GraphTraceLen = sizeof(BigBuf);
+ int i, j, lastval, bitidx, half_switch;
+ int clock = 64;
+ int tolerance = clock / 8;
+ int pmc, block_done;
+ int lc, warnings = 0;
+ int num_blocks = 0;
+ int lmin=128, lmax=128;
+ uint8_t dir;
+
+ AcquireRawAdcSamples125k(0);
+
+ lmin = 64;
+ lmax = 192;
+
+ i = 2;
+
+ /* Find first local max/min */
+ if(GraphBuffer[1] > GraphBuffer[0]) {
while(i < GraphTraceLen) {
if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax)
- break;
+ break;
i++;
}
dir = 0;
- }
- else {
+ }
+ else {
while(i < GraphTraceLen) {
if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin)
- break;
+ break;
i++;
}
dir = 1;
- }
-
- lastval = i++;
- half_switch = 0;
- pmc = 0;
- block_done = 0;
-
- for (bitidx = 0; i < GraphTraceLen; i++)
- {
- if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin))
+ }
+
+ lastval = i++;
+ half_switch = 0;
+ pmc = 0;
+ block_done = 0;
+
+ for (bitidx = 0; i < GraphTraceLen; i++)
{
- lc = i - lastval;
- lastval = i;
-
- // Switch depending on lc length:
- // Tolerance is 1/8 of clock rate (arbitrary)
- if (abs(lc-clock/4) < tolerance) {
- // 16T0
- if((i - pmc) == lc) { /* 16T0 was previous one */
- /* It's a PMC ! */
- i += (128+127+16+32+33+16)-1;
+ if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin))
+ {
+ lc = i - lastval;
lastval = i;
- pmc = 0;
- block_done = 1;
- }
- else {
- pmc = i;
- }
- } else if (abs(lc-clock/2) < tolerance) {
- // 32TO
- if((i - pmc) == lc) { /* 16T0 was previous one */
- /* It's a PMC ! */
- i += (128+127+16+32+33)-1;
- lastval = i;
- pmc = 0;
- block_done = 1;
- }
- else if(half_switch == 1) {
- BitStream[bitidx++] = 0;
- half_switch = 0;
- }
- else
- half_switch++;
- } else if (abs(lc-clock) < tolerance) {
- // 64TO
- BitStream[bitidx++] = 1;
- } else {
- // Error
- warnings++;
- if (warnings > 10)
- {
- Dbprintf("Error: too many detection errors, aborting.");
- return 0;
+
+ // Switch depending on lc length:
+ // Tolerance is 1/8 of clock rate (arbitrary)
+ if (abs(lc-clock/4) < tolerance) {
+ // 16T0
+ if((i - pmc) == lc) { /* 16T0 was previous one */
+ /* It's a PMC ! */
+ i += (128+127+16+32+33+16)-1;
+ lastval = i;
+ pmc = 0;
+ block_done = 1;
+ }
+ else {
+ pmc = i;
+ }
+ } else if (abs(lc-clock/2) < tolerance) {
+ // 32TO
+ if((i - pmc) == lc) { /* 16T0 was previous one */
+ /* It's a PMC ! */
+ i += (128+127+16+32+33)-1;
+ lastval = i;
+ pmc = 0;
+ block_done = 1;
+ }
+ else if(half_switch == 1) {
+ BitStream[bitidx++] = 0;
+ half_switch = 0;
+ }
+ else
+ half_switch++;
+ } else if (abs(lc-clock) < tolerance) {
+ // 64TO
+ BitStream[bitidx++] = 1;
+ } else {
+ // Error
+ warnings++;
+ if (warnings > 10)
+ {
+ Dbprintf("Error: too many detection errors, aborting.");
+ return 0;
+ }
}
- }
-
- if(block_done == 1) {
- if(bitidx == 128) {
- for(j=0; j<16; j++) {
- Blocks[num_blocks][j] = 128*BitStream[j*8+7]+
- 64*BitStream[j*8+6]+
- 32*BitStream[j*8+5]+
- 16*BitStream[j*8+4]+
- 8*BitStream[j*8+3]+
- 4*BitStream[j*8+2]+
- 2*BitStream[j*8+1]+
- BitStream[j*8];
+
+ if(block_done == 1) {
+ if(bitidx == 128) {
+ for(j=0; j<16; j++) {
+ Blocks[num_blocks][j] = 128*BitStream[j*8+7]+
+ 64*BitStream[j*8+6]+
+ 32*BitStream[j*8+5]+
+ 16*BitStream[j*8+4]+
+ 8*BitStream[j*8+3]+
+ 4*BitStream[j*8+2]+
+ 2*BitStream[j*8+1]+
+ BitStream[j*8];
+ }
+ num_blocks++;
+ }
+ bitidx = 0;
+ block_done = 0;
+ half_switch = 0;
+ }
+ if(i < GraphTraceLen)
+ {
+ if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0;
+ else dir = 1;
}
- num_blocks++;
}
- bitidx = 0;
- block_done = 0;
- half_switch = 0;
- }
- if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0;
- else dir = 1;
+ if(bitidx==255)
+ bitidx=0;
+ warnings = 0;
+ if(num_blocks == 4) break;
}
- if(bitidx==255)
- bitidx=0;
- warnings = 0;
- if(num_blocks == 4) break;
- }
- memcpy(outBlocks, Blocks, 16*num_blocks);
- return num_blocks;
+ memcpy(outBlocks, Blocks, 16*num_blocks);
+ return num_blocks;
}
int IsBlock0PCF7931(uint8_t *Block) {
- // Assume RFU means 0 :)
- if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
+ // Assume RFU means 0 :)
+ if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
return 1;
- if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ?
+ if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ?
return 1;
- return 0;
+ return 0;
}
int IsBlock1PCF7931(uint8_t *Block) {
- // Assume RFU means 0 :)
- if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0)
+ // Assume RFU means 0 :)
+ if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0)
if((Block[14] & 0x7f) <= 9 && Block[15] <= 9)
return 1;
-
- return 0;
+
+ return 0;
}
#define ALLOC 16
void ReadPCF7931() {
- uint8_t Blocks[8][17];
- uint8_t tmpBlocks[4][16];
- int i, j, ind, ind2, n;
- int num_blocks = 0;
- int max_blocks = 8;
- int ident = 0;
- int error = 0;
- int tries = 0;
-
- memset(Blocks, 0, 8*17*sizeof(uint8_t));
-
- do {
+ uint8_t Blocks[8][17];
+ uint8_t tmpBlocks[4][16];
+ int i, j, ind, ind2, n;
+ int num_blocks = 0;
+ int max_blocks = 8;
+ int ident = 0;
+ int error = 0;
+ int tries = 0;
+
+ memset(Blocks, 0, 8*17*sizeof(uint8_t));
+
+ do {
memset(tmpBlocks, 0, 4*16*sizeof(uint8_t));
n = DemodPCF7931((uint8_t**)tmpBlocks);
if(!n)
for(i=0; i<n; i++)
Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
- tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7],
- tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]);
+ tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7],
+ tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]);
if(!ident) {
for(i=0; i<n; i++) {
- if(IsBlock0PCF7931(tmpBlocks[i])) {
- // Found block 0 ?
- if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) {
- // Found block 1!
- // \o/
- ident = 1;
- memcpy(Blocks[0], tmpBlocks[i], 16);
- Blocks[0][ALLOC] = 1;
- memcpy(Blocks[1], tmpBlocks[i+1], 16);
- Blocks[1][ALLOC] = 1;
- max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1;
- // Debug print
- Dbprintf("(dbg) Max blocks: %d", max_blocks);
- num_blocks = 2;
- // Handle following blocks
- for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) {
- if(j==n) j=0;
- if(j==i) break;
- memcpy(Blocks[ind2], tmpBlocks[j], 16);
- Blocks[ind2][ALLOC] = 1;
- }
- break;
- }
- }
+ if(IsBlock0PCF7931(tmpBlocks[i])) {
+ // Found block 0 ?
+ if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) {
+ // Found block 1!
+ // \o/
+ ident = 1;
+ memcpy(Blocks[0], tmpBlocks[i], 16);
+ Blocks[0][ALLOC] = 1;
+ memcpy(Blocks[1], tmpBlocks[i+1], 16);
+ Blocks[1][ALLOC] = 1;
+ max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1;
+ // Debug print
+ Dbprintf("(dbg) Max blocks: %d", max_blocks);
+ num_blocks = 2;
+ // Handle following blocks
+ for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) {
+ if(j==n) j=0;
+ if(j==i) break;
+ memcpy(Blocks[ind2], tmpBlocks[j], 16);
+ Blocks[ind2][ALLOC] = 1;
+ }
+ break;
+ }
+ }
}
}
else {
for(i=0; i<n; i++) { // Look for identical block in known blocks
- if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
- for(j=0; j<max_blocks; j++) {
- if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) {
- // Found an identical block
- for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) {
- if(ind2 < 0)
- ind2 = max_blocks;
- if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
- // Dbprintf("Tmp %d -> Block %d", ind, ind2);
- memcpy(Blocks[ind2], tmpBlocks[ind], 16);
- Blocks[ind2][ALLOC] = 1;
- num_blocks++;
- if(num_blocks == max_blocks) goto end;
- }
- }
- for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) {
- if(ind2 > max_blocks)
- ind2 = 0;
- if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
- // Dbprintf("Tmp %d -> Block %d", ind, ind2);
- memcpy(Blocks[ind2], tmpBlocks[ind], 16);
- Blocks[ind2][ALLOC] = 1;
- num_blocks++;
- if(num_blocks == max_blocks) goto end;
- }
- }
- }
- }
- }
+ if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
+ for(j=0; j<max_blocks; j++) {
+ if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) {
+ // Found an identical block
+ for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) {
+ if(ind2 < 0)
+ ind2 = max_blocks;
+ if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
+ // Dbprintf("Tmp %d -> Block %d", ind, ind2);
+ memcpy(Blocks[ind2], tmpBlocks[ind], 16);
+ Blocks[ind2][ALLOC] = 1;
+ num_blocks++;
+ if(num_blocks == max_blocks) goto end;
+ }
+ }
+ for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) {
+ if(ind2 > max_blocks)
+ ind2 = 0;
+ if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
+ // Dbprintf("Tmp %d -> Block %d", ind, ind2);
+ memcpy(Blocks[ind2], tmpBlocks[ind], 16);
+ Blocks[ind2][ALLOC] = 1;
+ num_blocks++;
+ if(num_blocks == max_blocks) goto end;
+ }
+ }
+ }
+ }
+ }
}
}
tries++;
if (BUTTON_PRESS()) return;
- } while (num_blocks != max_blocks);
- end:
- Dbprintf("-----------------------------------------");
- Dbprintf("Memory content:");
- Dbprintf("-----------------------------------------");
- for(i=0; i<max_blocks; i++) {
+ } while (num_blocks != max_blocks);
+end:
+ Dbprintf("-----------------------------------------");
+ Dbprintf("Memory content:");
+ Dbprintf("-----------------------------------------");
+ for(i=0; i<max_blocks; i++) {
if(Blocks[i][ALLOC]==1)
Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
- Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7],
- Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]);
+ Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7],
+ Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]);
else
Dbprintf("<missing block %d>", i);
+ }
+ Dbprintf("-----------------------------------------");
+
+ return ;
+}
+
+
+//-----------------------------------
+// EM4469 / EM4305 routines
+//-----------------------------------
+#define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
+#define FWD_CMD_WRITE 0xA
+#define FWD_CMD_READ 0x9
+#define FWD_CMD_DISABLE 0x5
+
+
+uint8_t forwardLink_data[64]; //array of forwarded bits
+uint8_t * forward_ptr; //ptr for forward message preparation
+uint8_t fwd_bit_sz; //forwardlink bit counter
+uint8_t * fwd_write_ptr; //forwardlink bit pointer
+
+//====================================================================
+// prepares command bits
+// see EM4469 spec
+//====================================================================
+//--------------------------------------------------------------------
+uint8_t Prepare_Cmd( uint8_t cmd ) {
+ //--------------------------------------------------------------------
+
+ *forward_ptr++ = 0; //start bit
+ *forward_ptr++ = 0; //second pause for 4050 code
+
+ *forward_ptr++ = cmd;
+ cmd >>= 1;
+ *forward_ptr++ = cmd;
+ cmd >>= 1;
+ *forward_ptr++ = cmd;
+ cmd >>= 1;
+ *forward_ptr++ = cmd;
+
+ return 6; //return number of emited bits
+}
+
+//====================================================================
+// prepares address bits
+// see EM4469 spec
+//====================================================================
+
+//--------------------------------------------------------------------
+uint8_t Prepare_Addr( uint8_t addr ) {
+ //--------------------------------------------------------------------
+
+ register uint8_t line_parity;
+
+ uint8_t i;
+ line_parity = 0;
+ for(i=0;i<6;i++) {
+ *forward_ptr++ = addr;
+ line_parity ^= addr;
+ addr >>= 1;
+ }
+
+ *forward_ptr++ = (line_parity & 1);
+
+ return 7; //return number of emited bits
+}
+
+//====================================================================
+// prepares data bits intreleaved with parity bits
+// see EM4469 spec
+//====================================================================
+
+//--------------------------------------------------------------------
+uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
+ //--------------------------------------------------------------------
+
+ register uint8_t line_parity;
+ register uint8_t column_parity;
+ register uint8_t i, j;
+ register uint16_t data;
+
+ data = data_low;
+ column_parity = 0;
+
+ for(i=0; i<4; i++) {
+ line_parity = 0;
+ for(j=0; j<8; j++) {
+ line_parity ^= data;
+ column_parity ^= (data & 1) << j;
+ *forward_ptr++ = data;
+ data >>= 1;
+ }
+ *forward_ptr++ = line_parity;
+ if(i == 1)
+ data = data_hi;
+ }
+
+ for(j=0; j<8; j++) {
+ *forward_ptr++ = column_parity;
+ column_parity >>= 1;
}
- Dbprintf("-----------------------------------------");
+ *forward_ptr = 0;
- return ;
+ return 45; //return number of emited bits
+}
+
+//====================================================================
+// Forward Link send function
+// Requires: forwarLink_data filled with valid bits (1 bit per byte)
+// fwd_bit_count set with number of bits to be sent
+//====================================================================
+void SendForward(uint8_t fwd_bit_count) {
+
+ fwd_write_ptr = forwardLink_data;
+ fwd_bit_sz = fwd_bit_count;
+
+ LED_D_ON();
+
+ //Field on
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+
+ // Give it a bit of time for the resonant antenna to settle.
+ // And for the tag to fully power up
+ SpinDelay(150);
+
+ // force 1st mod pulse (start gap must be longer for 4305)
+ fwd_bit_sz--; //prepare next bit modulation
+ fwd_write_ptr++;
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
+ SpinDelayUs(16*8); //16 cycles on (8us each)
+
+ // now start writting
+ while(fwd_bit_sz-- > 0) { //prepare next bit modulation
+ if(((*fwd_write_ptr++) & 1) == 1)
+ SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
+ else {
+ //These timings work for 4469/4269/4305 (with the 55*8 above)
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ SpinDelayUs(23*8); //16-4 cycles off (8us each)
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
+ SpinDelayUs(9*8); //16 cycles on (8us each)
+ }
+ }
+}
+
+void EM4xLogin(uint32_t Password) {
+
+ uint8_t fwd_bit_count;
+
+ forward_ptr = forwardLink_data;
+ fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
+ fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
+
+ SendForward(fwd_bit_count);
+
+ //Wait for command to complete
+ SpinDelay(20);
+
+}
+
+void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
+
+ uint8_t fwd_bit_count;
+ uint8_t *dest = (uint8_t *)BigBuf;
+ int m=0, i=0;
+
+ //If password mode do login
+ if (PwdMode == 1) EM4xLogin(Pwd);
+
+ forward_ptr = forwardLink_data;
+ fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
+ fwd_bit_count += Prepare_Addr( Address );
+
+ m = sizeof(BigBuf);
+ // Clear destination buffer before sending the command
+ memset(dest, 128, m);
+ // Connect the A/D to the peak-detected low-frequency path.
+ SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
+ // Now set up the SSC to get the ADC samples that are now streaming at us.
+ FpgaSetupSsc();
+
+ SendForward(fwd_bit_count);
+
+ // Now do the acquisition
+ i = 0;
+ for(;;) {
+ if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
+ AT91C_BASE_SSC->SSC_THR = 0x43;
+ }
+ if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
+ dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+ i++;
+ if (i >= m) break;
+ }
+ }
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ LED_D_OFF();
+}
+
+void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
+
+ uint8_t fwd_bit_count;
+
+ //If password mode do login
+ if (PwdMode == 1) EM4xLogin(Pwd);
+
+ forward_ptr = forwardLink_data;
+ fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
+ fwd_bit_count += Prepare_Addr( Address );
+ fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
+
+ SendForward(fwd_bit_count);
+
+ //Wait for write to complete
+ SpinDelay(20);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ LED_D_OFF();
}