#include <time.h>
#include <readline/readline.h>
#include <pthread.h>
-#include "ui.h"
#include "loclass/cipherutils.h"
+#include "ui.h"
+#include "cmdmain.h"
+#include "cmddata.h"
+#include "graph.h"
+//#include <liquid/liquid.h>
+#define M_PI 3.14159265358979323846264338327
double CursorScaleFactor;
int PlotGridX, PlotGridY, PlotGridXdefault= 64, PlotGridYdefault= 64;
int offline;
-int flushAfterWrite = 0; //buzzy
+int flushAfterWrite = 0;
extern pthread_mutex_t print_lock;
static char *logfilename = "proxmark3.log";
int saved_point;
va_list argptr, argptr2;
static FILE *logfile = NULL;
- static int logging=1;
+ static int logging = 1;
// lock this section to avoid interlacing prints from different threats
pthread_mutex_lock(&print_lock);
if (logging && !logfile) {
- logfile=fopen(logfilename, "a");
+ logfile = fopen(logfilename, "a");
if (!logfile) {
fprintf(stderr, "Can't open logfile, logging disabled!\n");
logging=0;
}
va_end(argptr2);
- if (flushAfterWrite == 1) //buzzy
- {
+ if (flushAfterWrite == 1) {
fflush(NULL);
}
//release lock
logfilename = fn;
}
-int manchester_decode( int * data, const size_t len, uint8_t * dataout){
+int manchester_decode( int * data, const size_t len, uint8_t * dataout, size_t dataoutlen){
int bitlength = 0;
- int i, clock, high, low, startindex;
+ int clock, high, low, startindex;
low = startindex = 0;
high = 1;
- uint8_t bitStream[len];
-
- memset(bitStream, 0x00, len);
+ uint8_t * bitStream = (uint8_t* ) malloc(sizeof(uint8_t) * dataoutlen);
+ memset(bitStream, 0x00, dataoutlen);
/* Detect high and lows */
- for (i = 0; i < len; i++) {
- if (data[i] > high)
- high = data[i];
- else if (data[i] < low)
- low = data[i];
- }
-
+ DetectHighLowInGraph(&high, &low, TRUE);
+
/* get clock */
- clock = GetT55x7Clock( data, len, high );
+ clock = GetClock("",0, 0);
+
startindex = DetectFirstTransition(data, len, high);
- PrintAndLog(" Clock : %d", clock);
- PrintAndLog(" startindex : %d", startindex);
-
if (high != 1)
- bitlength = ManchesterConvertFrom255(data, len, bitStream, high, low, clock, startindex);
+ // decode "raw"
+ bitlength = ManchesterConvertFrom255(data, len, bitStream, dataoutlen, high, low, clock, startindex);
else
- bitlength= ManchesterConvertFrom1(data, len, bitStream, clock, startindex);
-
- if ( bitlength > 0 )
- PrintPaddedManchester(bitStream, bitlength, clock);
+ // decode manchester
+ bitlength = ManchesterConvertFrom1(data, len, bitStream, dataoutlen, clock, startindex);
memcpy(dataout, bitStream, bitlength);
-
free(bitStream);
return bitlength;
}
-
- int GetT55x7Clock( const int * data, const size_t len, int peak ){
-
- int i,lastpeak,clock;
- clock = 0xFFFF;
- lastpeak = 0;
-
- /* Detect peak if we don't have one */
- if (!peak) {
- for (i = 0; i < len; ++i) {
- if (data[i] > peak) {
- peak = data[i];
- }
- }
- }
-
- for (i = 1; i < len; ++i) {
- /* if this is the beginning of a peak */
- if ( data[i-1] != data[i] && data[i] == peak) {
- /* find lowest difference between peaks */
- if (lastpeak && i - lastpeak < clock)
- clock = i - lastpeak;
- lastpeak = i;
- }
- }
- //return clock;
- //defaults clock to precise values.
- switch(clock){
- case 8:
- case 16:
- case 32:
- case 40:
- case 50:
- case 64:
- case 100:
- case 128:
- return clock;
- break;
- default: break;
- }
-
- PrintAndLog(" Found Clock : %d - trying to adjust", clock);
-
- // When detected clock is 31 or 33 then then return
- int clockmod = clock%8;
- if ( clockmod == 7 )
- clock += 1;
- else if ( clockmod == 1 )
- clock -= 1;
-
- return clock;
- }
int DetectFirstTransition(const int * data, const size_t len, int threshold){
- int i =0;
+ int i = 0;
/* now look for the first threshold */
for (; i < len; ++i) {
if (data[i] == threshold) {
return i;
}
- int ManchesterConvertFrom255(const int * data, const size_t len, uint8_t * dataout, int high, int low, int clock, int startIndex){
+ int ManchesterConvertFrom255(const int * data, const size_t len, uint8_t * dataout, int dataoutlen, int high, int low, int clock, int startIndex){
int i, j, z, hithigh, hitlow, bitIndex, startType;
i = 0;
int firstST = 0;
// i = clock frame of data
- for (; i < (int)(len / clock); i++)
+ for (; i < (int)(len/clock); i++)
{
hithigh = 0;
hitlow = 0;
startType = -1;
z = startIndex + (i*clock);
isDamp = 0;
-
-
+
/* Find out if we hit both high and low peaks */
for (j = 0; j < clock; j++)
{
// No high value found, are we in a dampening field?
if ( !hithigh ) {
//PrintAndLog(" # Entering damp test at index : %d (%d)", z+j, j);
- for (j = 0; j < clock/2; j++)
- {
+ for (j = 0; j < clock; j++) {
if (
(data[z+j] <= dampHi && data[z+j] >= dampLow)
){
- isDamp = 1;
+ isDamp++;
}
- else
- isDamp = 0;
}
}
else
dataout[bitIndex++] = 2;
- if ( isDamp ) {
+ if ( isDamp > clock/2 ) {
firstST++;
}
if ( firstST == 4)
break;
+ if ( bitIndex >= dataoutlen-1 )
+ break;
}
return bitIndex;
}
- int ManchesterConvertFrom1(const int * data, const size_t len, uint8_t * dataout, int clock, int startIndex){
+ int ManchesterConvertFrom1(const int * data, const size_t len, uint8_t * dataout,int dataoutlen, int clock, int startIndex){
- PrintAndLog(" Path B");
-
int i,j, bitindex, lc, tolerance, warnings;
warnings = 0;
int upperlimit = len*2/clock+8;
if ( mod > 0 )
PrintAndLog(" %s", sprint_bin(bitStream+i, mod) );
-}
\ No newline at end of file
+}
+
+/* Sliding DFT
+ Smooths out
+*/
+void iceFsk2(int * data, const size_t len){
+
+ int i, j;
+ int * output = (int* ) malloc(sizeof(int) * len);
+ memset(output, 0x00, len);
+
+ // for (i=0; i<len-5; ++i){
+ // for ( j=1; j <=5; ++j) {
+ // output[i] += data[i*j];
+ // }
+ // output[i] /= 5;
+ // }
+ int rest = 127;
+ int tmp =0;
+ for (i=0; i<len; ++i){
+ if ( data[i] < 127)
+ output[i] = 0;
+ else {
+ tmp = (100 * (data[i]-rest)) / rest;
+ output[i] = (tmp > 60)? 100:0;
+ }
+ }
+
+ for (j=0; j<len; ++j)
+ data[j] = output[j];
+
+ free(output);
+}
+
+void iceFsk3(int * data, const size_t len){
+
+ int i,j;
+
+ int * output = (int* ) malloc(sizeof(int) * len);
+ memset(output, 0x00, len);
+ float fc = 0.1125f; // center frequency
+ size_t adjustedLen = len;
+
+ // create very simple low-pass filter to remove images (2nd-order Butterworth)
+ float complex iir_buf[3] = {0,0,0};
+ float b[3] = {0.003621681514929, 0.007243363029857, 0.003621681514929};
+ float a[3] = {1.000000000000000, -1.822694925196308, 0.837181651256023};
+
+ float sample = 0; // input sample read from file
+ float complex x_prime = 1.0f; // save sample for estimating frequency
+ float complex x;
+
+ for (i=0; i<adjustedLen; ++i) {
+
+ sample = data[i]+128;
+
+ // remove DC offset and mix to complex baseband
+ x = (sample - 127.5f) * cexpf( _Complex_I * 2 * M_PI * fc * i );
+
+ // apply low-pass filter, removing spectral image (IIR using direct-form II)
+ iir_buf[2] = iir_buf[1];
+ iir_buf[1] = iir_buf[0];
+ iir_buf[0] = x - a[1]*iir_buf[1] - a[2]*iir_buf[2];
+ x = b[0]*iir_buf[0] +
+ b[1]*iir_buf[1] +
+ b[2]*iir_buf[2];
+
+ // compute instantaneous frequency by looking at phase difference
+ // between adjacent samples
+ float freq = cargf(x*conjf(x_prime));
+ x_prime = x; // retain this sample for next iteration
+
+ output[i] =(freq > 0)? 10 : -10;
+ }
+
+ // show data
+ for (j=0; j<adjustedLen; ++j)
+ data[j] = output[j];
+
+ CmdLtrim("30");
+ adjustedLen -= 30;
+
+ // zero crossings.
+ for (j=0; j<adjustedLen; ++j){
+ if ( data[j] == 10) break;
+ }
+ int startOne =j;
+
+ for (;j<adjustedLen; ++j){
+ if ( data[j] == -10 ) break;
+ }
+ int stopOne = j-1;
+
+ int fieldlen = stopOne-startOne;
+
+ fieldlen = (fieldlen == 39 || fieldlen == 41)? 40 : fieldlen;
+ fieldlen = (fieldlen == 59 || fieldlen == 51)? 50 : fieldlen;
+ if ( fieldlen != 40 && fieldlen != 50){
+ printf("Detected field Length: %d \n", fieldlen);
+ printf("Can only handle 40 or 50. Aborting...\n");
+ return;
+ }
+
+ // FSK sequence start == 000111
+ int startPos = 0;
+ for (i =0; i<adjustedLen; ++i){
+ int dec = 0;
+ for ( j = 0; j < 6*fieldlen; ++j){
+ dec += data[i + j];
+ }
+ if (dec == 0) {
+ startPos = i;
+ break;
+ }
+ }
+
+ printf("000111 position: %d \n", startPos);
+
+ startPos += 6*fieldlen+5;
+
+ int bit =0;
+ printf("BINARY\n");
+ printf("R/40 : ");
+ for (i =startPos ; i < adjustedLen; i += 40){
+ bit = data[i]>0 ? 1:0;
+ printf("%d", bit );
+ }
+ printf("\n");
+
+ printf("R/50 : ");
+ for (i =startPos ; i < adjustedLen; i += 50){
+ bit = data[i]>0 ? 1:0;
+ printf("%d", bit ); }
+ printf("\n");
+
+ free(output);
+}
+
+float complex cexpf (float complex Z)
+{
+ float complex Res;
+ double rho = exp (__real__ Z);
+ __real__ Res = rho * cosf(__imag__ Z);
+ __imag__ Res = rho * sinf(__imag__ Z);
+ return Res;
+}