static uint32_t iso14a_timeout;
uint8_t *trace = (uint8_t *) BigBuf+TRACE_OFFSET;
-int traceLen = 0;
int rsamples = 0;
+int traceLen = 0;
int tracing = TRUE;
uint8_t trigger = 0;
// the block number for the ISO14443-4 PCB
static uint8_t iso14_pcb_blocknum = 0;
+//
+// ISO14443 timing:
+//
+// minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
+#define REQUEST_GUARD_TIME (7000/16 + 1)
+// minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
+#define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
+// bool LastCommandWasRequest = FALSE;
+
+//
+// Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
+//
+// When the PM acts as reader and is receiving tag data, it takes
+// 3 ticks delay in the AD converter
+// 16 ticks until the modulation detector completes and sets curbit
+// 8 ticks until bit_to_arm is assigned from curbit
+// 8*16 ticks for the transfer from FPGA to ARM
+// 4*16 ticks until we measure the time
+// - 8*16 ticks because we measure the time of the previous transfer
+#define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
+
+// When the PM acts as a reader and is sending, it takes
+// 4*16 ticks until we can write data to the sending hold register
+// 8*16 ticks until the SHR is transferred to the Sending Shift Register
+// 8 ticks until the first transfer starts
+// 8 ticks later the FPGA samples the data
+// 1 tick to assign mod_sig_coil
+#define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
+
+// When the PM acts as tag and is receiving it takes
+// 2 ticks delay in the RF part (for the first falling edge),
+// 3 ticks for the A/D conversion,
+// 8 ticks on average until the start of the SSC transfer,
+// 8 ticks until the SSC samples the first data
+// 7*16 ticks to complete the transfer from FPGA to ARM
+// 8 ticks until the next ssp_clk rising edge
+// 4*16 ticks until we measure the time
+// - 8*16 ticks because we measure the time of the previous transfer
+#define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
+
+// The FPGA will report its internal sending delay in
+uint16_t FpgaSendQueueDelay;
+// the 5 first bits are the number of bits buffered in mod_sig_buf
+// the last three bits are the remaining ticks/2 after the mod_sig_buf shift
+#define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
+
+// When the PM acts as tag and is sending, it takes
+// 4*16 ticks until we can write data to the sending hold register
+// 8*16 ticks until the SHR is transferred to the Sending Shift Register
+// 8 ticks until the first transfer starts
+// 8 ticks later the FPGA samples the data
+// + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
+// + 1 tick to assign mod_sig_coil
+#define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
+
+// When the PM acts as sniffer and is receiving tag data, it takes
+// 3 ticks A/D conversion
+// 14 ticks to complete the modulation detection
+// 8 ticks (on average) until the result is stored in to_arm
+// + the delays in transferring data - which is the same for
+// sniffing reader and tag data and therefore not relevant
+#define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
+
+// When the PM acts as sniffer and is receiving reader data, it takes
+// 2 ticks delay in analogue RF receiver (for the falling edge of the
+// start bit, which marks the start of the communication)
+// 3 ticks A/D conversion
+// 8 ticks on average until the data is stored in to_arm.
+// + the delays in transferring data - which is the same for
+// sniffing reader and tag data and therefore not relevant
+#define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
+
+//variables used for timing purposes:
+//these are in ssp_clk cycles:
+uint32_t NextTransferTime;
+uint32_t LastTimeProxToAirStart;
+uint32_t LastProxToAirDuration;
+
+
+
// CARD TO READER - manchester
// Sequence D: 11110000 modulation with subcarrier during first half
// Sequence E: 00001111 modulation with subcarrier during second half
}
void iso14a_clear_trace() {
- memset(trace, 0x44, TRACE_SIZE);
+ memset(trace, 0x44, TRACE_SIZE);
traceLen = 0;
}
}
// The function LogTrace() is also used by the iClass implementation in iClass.c
-int RAMFUNC LogTrace(const uint8_t * btBytes, int iLen, int iSamples, uint32_t dwParity, int bReader)
+bool RAMFUNC LogTrace(const uint8_t * btBytes, uint8_t iLen, uint32_t timestamp, uint32_t dwParity, bool readerToTag)
{
- // Return when trace is full
- if (traceLen >= TRACE_SIZE) return FALSE;
-
- // Trace the random, i'm curious
- rsamples += iSamples;
- trace[traceLen++] = ((rsamples >> 0) & 0xff);
- trace[traceLen++] = ((rsamples >> 8) & 0xff);
- trace[traceLen++] = ((rsamples >> 16) & 0xff);
- trace[traceLen++] = ((rsamples >> 24) & 0xff);
- if (!bReader) {
- trace[traceLen - 1] |= 0x80;
- }
- trace[traceLen++] = ((dwParity >> 0) & 0xff);
- trace[traceLen++] = ((dwParity >> 8) & 0xff);
- trace[traceLen++] = ((dwParity >> 16) & 0xff);
- trace[traceLen++] = ((dwParity >> 24) & 0xff);
- trace[traceLen++] = iLen;
- memcpy(trace + traceLen, btBytes, iLen);
- traceLen += iLen;
- return TRUE;
+ if (!tracing) return FALSE;
+ // Return when trace is full
+ if (traceLen + sizeof(timestamp) + sizeof(dwParity) + iLen >= TRACE_SIZE) {
+ tracing = FALSE; // don't trace any more
+ return FALSE;
+ }
+
+ // Trace the random, i'm curious
+ trace[traceLen++] = ((timestamp >> 0) & 0xff);
+ trace[traceLen++] = ((timestamp >> 8) & 0xff);
+ trace[traceLen++] = ((timestamp >> 16) & 0xff);
+ trace[traceLen++] = ((timestamp >> 24) & 0xff);
+
+ if (!readerToTag) {
+ trace[traceLen - 1] |= 0x80;
+ }
+ trace[traceLen++] = ((dwParity >> 0) & 0xff);
+ trace[traceLen++] = ((dwParity >> 8) & 0xff);
+ trace[traceLen++] = ((dwParity >> 16) & 0xff);
+ trace[traceLen++] = ((dwParity >> 24) & 0xff);
+ trace[traceLen++] = iLen;
+ if (btBytes != NULL && iLen != 0) {
+ memcpy(trace + traceLen, btBytes, iLen);
+ }
+ traceLen += iLen;
+ return TRUE;
}
-//-----------------------------------------------------------------------------
-// The software UART that receives commands from the reader, and its state
-// variables.
+//=============================================================================
+// ISO 14443 Type A - Miller decoder
+//=============================================================================
+// Basics:
+// This decoder is used when the PM3 acts as a tag.
+// The reader will generate "pauses" by temporarily switching of the field.
+// At the PM3 antenna we will therefore measure a modulated antenna voltage.
+// The FPGA does a comparison with a threshold and would deliver e.g.:
+// ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
+// The Miller decoder needs to identify the following sequences:
+// 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
+// 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
+// 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
+// Note 1: the bitstream may start at any time. We therefore need to sync.
+// Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
//-----------------------------------------------------------------------------
static tUart Uart;
-static RAMFUNC int MillerDecoding(int bit)
-{
- //int error = 0;
- int bitright;
-
- if(!Uart.bitBuffer) {
- Uart.bitBuffer = bit ^ 0xFF0;
- return FALSE;
- }
- else {
- Uart.bitBuffer <<= 4;
- Uart.bitBuffer ^= bit;
- }
+// Lookup-Table to decide if 4 raw bits are a modulation.
+// We accept two or three consecutive "0" in any position with the rest "1"
+const bool Mod_Miller_LUT[] = {
+ TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE,
+ TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE
+};
+#define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x00F0) >> 4])
+#define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x000F)])
- int EOC = FALSE;
+void UartReset()
+{
+ Uart.state = STATE_UNSYNCD;
+ Uart.bitCount = 0;
+ Uart.len = 0; // number of decoded data bytes
+ Uart.shiftReg = 0; // shiftreg to hold decoded data bits
+ Uart.parityBits = 0; //
+ Uart.twoBits = 0x0000; // buffer for 2 Bits
+ Uart.highCnt = 0;
+ Uart.startTime = 0;
+ Uart.endTime = 0;
+}
- if(Uart.state != STATE_UNSYNCD) {
- Uart.posCnt++;
- if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) {
- bit = 0x00;
- }
- else {
- bit = 0x01;
- }
- if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) {
- bitright = 0x00;
- }
- else {
- bitright = 0x01;
- }
- if(bit != bitright) { bit = bitright; }
+// use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
+static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
+{
- if(Uart.posCnt == 1) {
- // measurement first half bitperiod
- if(!bit) {
- Uart.drop = DROP_FIRST_HALF;
- }
- }
- else {
- // measurement second half bitperiod
- if(!bit & (Uart.drop == DROP_NONE)) {
- Uart.drop = DROP_SECOND_HALF;
+ Uart.twoBits = (Uart.twoBits << 8) | bit;
+
+ if (Uart.state == STATE_UNSYNCD) { // not yet synced
+ if (Uart.highCnt < 7) { // wait for a stable unmodulated signal
+ if (Uart.twoBits == 0xffff) {
+ Uart.highCnt++;
+ } else {
+ Uart.highCnt = 0;
}
- else if(!bit) {
- // measured a drop in first and second half
- // which should not be possible
- Uart.state = STATE_ERROR_WAIT;
- //error = 0x01;
+ } else {
+ Uart.syncBit = 0xFFFF; // not set
+ // look for 00xx1111 (the start bit)
+ if ((Uart.twoBits & 0x6780) == 0x0780) Uart.syncBit = 7;
+ else if ((Uart.twoBits & 0x33C0) == 0x03C0) Uart.syncBit = 6;
+ else if ((Uart.twoBits & 0x19E0) == 0x01E0) Uart.syncBit = 5;
+ else if ((Uart.twoBits & 0x0CF0) == 0x00F0) Uart.syncBit = 4;
+ else if ((Uart.twoBits & 0x0678) == 0x0078) Uart.syncBit = 3;
+ else if ((Uart.twoBits & 0x033C) == 0x003C) Uart.syncBit = 2;
+ else if ((Uart.twoBits & 0x019E) == 0x001E) Uart.syncBit = 1;
+ else if ((Uart.twoBits & 0x00CF) == 0x000F) Uart.syncBit = 0;
+ if (Uart.syncBit != 0xFFFF) {
+ Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
+ Uart.startTime -= Uart.syncBit;
+ Uart.endTime = Uart.startTime;
+ Uart.state = STATE_START_OF_COMMUNICATION;
}
+ }
- Uart.posCnt = 0;
-
- switch(Uart.state) {
- case STATE_START_OF_COMMUNICATION:
- Uart.shiftReg = 0;
- if(Uart.drop == DROP_SECOND_HALF) {
- // error, should not happen in SOC
- Uart.state = STATE_ERROR_WAIT;
- //error = 0x02;
- }
- else {
- // correct SOC
- Uart.state = STATE_MILLER_Z;
- }
- break;
-
- case STATE_MILLER_Z:
- Uart.bitCnt++;
- Uart.shiftReg >>= 1;
- if(Uart.drop == DROP_NONE) {
- // logic '0' followed by sequence Y
- // end of communication
- Uart.state = STATE_UNSYNCD;
- EOC = TRUE;
- }
- // if(Uart.drop == DROP_FIRST_HALF) {
- // Uart.state = STATE_MILLER_Z; stay the same
- // we see a logic '0' }
- if(Uart.drop == DROP_SECOND_HALF) {
- // we see a logic '1'
- Uart.shiftReg |= 0x100;
- Uart.state = STATE_MILLER_X;
- }
- break;
-
- case STATE_MILLER_X:
- Uart.shiftReg >>= 1;
- if(Uart.drop == DROP_NONE) {
- // sequence Y, we see a '0'
- Uart.state = STATE_MILLER_Y;
- Uart.bitCnt++;
- }
- if(Uart.drop == DROP_FIRST_HALF) {
- // Would be STATE_MILLER_Z
- // but Z does not follow X, so error
- Uart.state = STATE_ERROR_WAIT;
- //error = 0x03;
- }
- if(Uart.drop == DROP_SECOND_HALF) {
- // We see a '1' and stay in state X
- Uart.shiftReg |= 0x100;
- Uart.bitCnt++;
- }
- break;
-
- case STATE_MILLER_Y:
- Uart.bitCnt++;
- Uart.shiftReg >>= 1;
- if(Uart.drop == DROP_NONE) {
- // logic '0' followed by sequence Y
- // end of communication
- Uart.state = STATE_UNSYNCD;
- EOC = TRUE;
- }
- if(Uart.drop == DROP_FIRST_HALF) {
- // we see a '0'
- Uart.state = STATE_MILLER_Z;
- }
- if(Uart.drop == DROP_SECOND_HALF) {
- // We see a '1' and go to state X
- Uart.shiftReg |= 0x100;
- Uart.state = STATE_MILLER_X;
- }
- break;
+ } else {
- case STATE_ERROR_WAIT:
- // That went wrong. Now wait for at least two bit periods
- // and try to sync again
- if(Uart.drop == DROP_NONE) {
- Uart.highCnt = 6;
- Uart.state = STATE_UNSYNCD;
+ if (IsMillerModulationNibble1(Uart.twoBits >> Uart.syncBit)) {
+ if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) { // Modulation in both halves - error
+ UartReset();
+ Uart.highCnt = 6;
+ } else { // Modulation in first half = Sequence Z = logic "0"
+ if (Uart.state == STATE_MILLER_X) { // error - must not follow after X
+ UartReset();
+ Uart.highCnt = 6;
+ } else {
+ Uart.bitCount++;
+ Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
+ Uart.state = STATE_MILLER_Z;
+ Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 6;
+ if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
+ Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
+ Uart.parityBits <<= 1; // make room for the parity bit
+ Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
+ Uart.bitCount = 0;
+ Uart.shiftReg = 0;
}
- break;
-
- default:
- Uart.state = STATE_UNSYNCD;
- Uart.highCnt = 0;
- break;
- }
-
- Uart.drop = DROP_NONE;
-
- // should have received at least one whole byte...
- if((Uart.bitCnt == 2) && EOC && (Uart.byteCnt > 0)) {
- return TRUE;
+ }
}
-
- if(Uart.bitCnt == 9) {
- Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff);
- Uart.byteCnt++;
-
- Uart.parityBits <<= 1;
- Uart.parityBits ^= ((Uart.shiftReg >> 8) & 0x01);
-
- if(EOC) {
- // when End of Communication received and
- // all data bits processed..
+ } else {
+ if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1"
+ Uart.bitCount++;
+ Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg
+ Uart.state = STATE_MILLER_X;
+ Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 2;
+ if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
+ Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
+ Uart.parityBits <<= 1; // make room for the new parity bit
+ Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
+ Uart.bitCount = 0;
+ Uart.shiftReg = 0;
+ }
+ } else { // no modulation in both halves - Sequence Y
+ if (Uart.state == STATE_MILLER_Z || Uart.state == STATE_MILLER_Y) { // Y after logic "0" - End of Communication
+ Uart.state = STATE_UNSYNCD;
+ if(Uart.len == 0 && Uart.bitCount > 0) { // if we decoded some bits
+ Uart.shiftReg >>= (9 - Uart.bitCount); // add them to the output
+ Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
+ Uart.parityBits <<= 1; // no parity bit - add "0"
+ Uart.bitCount--; // last "0" was part of the EOC sequence
+ }
return TRUE;
}
- Uart.bitCnt = 0;
- }
-
- /*if(error) {
- Uart.output[Uart.byteCnt] = 0xAA;
- Uart.byteCnt++;
- Uart.output[Uart.byteCnt] = error & 0xFF;
- Uart.byteCnt++;
- Uart.output[Uart.byteCnt] = 0xAA;
- Uart.byteCnt++;
- Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;
- Uart.byteCnt++;
- Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
- Uart.byteCnt++;
- Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;
- Uart.byteCnt++;
- Uart.output[Uart.byteCnt] = 0xAA;
- Uart.byteCnt++;
- return TRUE;
- }*/
- }
-
- }
- else {
- bit = Uart.bitBuffer & 0xf0;
- bit >>= 4;
- bit ^= 0x0F;
- if(bit) {
- // should have been high or at least (4 * 128) / fc
- // according to ISO this should be at least (9 * 128 + 20) / fc
- if(Uart.highCnt == 8) {
- // we went low, so this could be start of communication
- // it turns out to be safer to choose a less significant
- // syncbit... so we check whether the neighbour also represents the drop
- Uart.posCnt = 1; // apparently we are busy with our first half bit period
- Uart.syncBit = bit & 8;
- Uart.samples = 3;
- if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; }
- else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; }
- if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; }
- else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; }
- if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0;
- if(Uart.syncBit && (Uart.bitBuffer & 8)) {
- Uart.syncBit = 8;
-
- // the first half bit period is expected in next sample
- Uart.posCnt = 0;
- Uart.samples = 3;
+ if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC
+ UartReset();
+ Uart.highCnt = 6;
+ } else { // a logic "0"
+ Uart.bitCount++;
+ Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
+ Uart.state = STATE_MILLER_Y;
+ if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
+ Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
+ Uart.parityBits <<= 1; // make room for the parity bit
+ Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
+ Uart.bitCount = 0;
+ Uart.shiftReg = 0;
}
}
- else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; }
-
- Uart.syncBit <<= 4;
- Uart.state = STATE_START_OF_COMMUNICATION;
- Uart.drop = DROP_FIRST_HALF;
- Uart.bitCnt = 0;
- Uart.byteCnt = 0;
- Uart.parityBits = 0;
- //error = 0;
- }
- else {
- Uart.highCnt = 0;
}
}
- else {
- if(Uart.highCnt < 8) {
- Uart.highCnt++;
- }
- }
- }
+
+ }
- return FALSE;
+ return FALSE; // not finished yet, need more data
}
+
+
//=============================================================================
// ISO 14443 Type A - Manchester decoder
//=============================================================================
// Basics:
+// This decoder is used when the PM3 acts as a reader.
// The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
// at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
// ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
// 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
// 8 ticks unmodulated: Sequence F = end of communication
// 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
-// Note 1: the bitstream may start at any time (either in first or second nibble within the parameter bit). We therefore need to sync.
+// Note 1: the bitstream may start at any time. We therefore need to sync.
// Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
static tDemod Demod;
-inline RAMFUNC bool IsModulation(byte_t b)
-{
- if (b >= 5 || b == 3) // majority decision: 2 or more bits are set
- return true;
- else
- return false;
-
-}
+// Lookup-Table to decide if 4 raw bits are a modulation.
+// We accept three or four "1" in any position
+const bool Mod_Manchester_LUT[] = {
+ FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE,
+ FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE
+};
-inline RAMFUNC bool IsModulationNibble1(byte_t b)
-{
- return IsModulation((b & 0xE0) >> 5);
-}
+#define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
+#define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
-inline RAMFUNC bool IsModulationNibble2(byte_t b)
+
+void DemodReset()
{
- return IsModulation((b & 0x0E) >> 1);
+ Demod.state = DEMOD_UNSYNCD;
+ Demod.len = 0; // number of decoded data bytes
+ Demod.shiftReg = 0; // shiftreg to hold decoded data bits
+ Demod.parityBits = 0; //
+ Demod.collisionPos = 0; // Position of collision bit
+ Demod.twoBits = 0xffff; // buffer for 2 Bits
+ Demod.highCnt = 0;
+ Demod.startTime = 0;
+ Demod.endTime = 0;
}
-static RAMFUNC int ManchesterDecoding(int bit, uint16_t offset)
+// use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
+static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time)
{
+
+ Demod.twoBits = (Demod.twoBits << 8) | bit;
- switch (Demod.state) {
-
- case DEMOD_UNSYNCD: // not yet synced
- Demod.len = 0; // initialize number of decoded data bytes
- Demod.bitCount = offset; // initialize number of decoded data bits
- Demod.shiftReg = 0; // initialize shiftreg to hold decoded data bits
- Demod.parityBits = 0; // initialize parity bits
- Demod.collisionPos = 0; // Position of collision bit
-
- if (IsModulationNibble1(bit)
- && !IsModulationNibble2(bit)) { // this is the start bit
- Demod.samples = 8;
- if(trigger) LED_A_OFF();
+ if (Demod.state == DEMOD_UNSYNCD) {
+
+ if (Demod.highCnt < 2) { // wait for a stable unmodulated signal
+ if (Demod.twoBits == 0x0000) {
+ Demod.highCnt++;
+ } else {
+ Demod.highCnt = 0;
+ }
+ } else {
+ Demod.syncBit = 0xFFFF; // not set
+ if ((Demod.twoBits & 0x7700) == 0x7000) Demod.syncBit = 7;
+ else if ((Demod.twoBits & 0x3B80) == 0x3800) Demod.syncBit = 6;
+ else if ((Demod.twoBits & 0x1DC0) == 0x1C00) Demod.syncBit = 5;
+ else if ((Demod.twoBits & 0x0EE0) == 0x0E00) Demod.syncBit = 4;
+ else if ((Demod.twoBits & 0x0770) == 0x0700) Demod.syncBit = 3;
+ else if ((Demod.twoBits & 0x03B8) == 0x0380) Demod.syncBit = 2;
+ else if ((Demod.twoBits & 0x01DC) == 0x01C0) Demod.syncBit = 1;
+ else if ((Demod.twoBits & 0x00EE) == 0x00E0) Demod.syncBit = 0;
+ if (Demod.syncBit != 0xFFFF) {
+ Demod.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
+ Demod.startTime -= Demod.syncBit;
+ Demod.bitCount = offset; // number of decoded data bits
Demod.state = DEMOD_MANCHESTER_DATA;
- } else if (!IsModulationNibble1(bit) && IsModulationNibble2(bit)) { // this may be the first half of the start bit
- Demod.samples = 4;
- Demod.state = DEMOD_HALF_SYNCD;
}
- break;
+ }
+ } else {
- case DEMOD_HALF_SYNCD:
- Demod.samples += 8;
- if (IsModulationNibble1(bit)) { // error: this was not a start bit.
- Demod.state = DEMOD_UNSYNCD;
- } else {
- if (IsModulationNibble2(bit)) { // modulation in first half
- Demod.state = DEMOD_MOD_FIRST_HALF;
- } else { // no modulation in first half
- Demod.state = DEMOD_NOMOD_FIRST_HALF;
- }
- }
- break;
-
-
- case DEMOD_MOD_FIRST_HALF:
- Demod.samples += 8;
- Demod.bitCount++;
- if (IsModulationNibble1(bit)) { // modulation in both halfs - collision
+ if (IsManchesterModulationNibble1(Demod.twoBits >> Demod.syncBit)) { // modulation in first half
+ if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // ... and in second half = collision
if (!Demod.collisionPos) {
Demod.collisionPos = (Demod.len << 3) + Demod.bitCount;
}
} // modulation in first half only - Sequence D = 1
- Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg
- if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity)
- Demod.parityBits <<= 1; // make room for the parity bit
+ Demod.bitCount++;
+ Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // in both cases, add a 1 to the shiftreg
+ if(Demod.bitCount == 9) { // if we decoded a full byte (including parity)
Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
+ Demod.parityBits <<= 1; // make room for the parity bit
Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
Demod.bitCount = 0;
Demod.shiftReg = 0;
}
- if (IsModulationNibble2(bit)) { // modulation in first half
- Demod.state = DEMOD_MOD_FIRST_HALF;
- } else { // no modulation in first half
- Demod.state = DEMOD_NOMOD_FIRST_HALF;
- }
- break;
-
-
- case DEMOD_NOMOD_FIRST_HALF:
- if (IsModulationNibble1(bit)) { // modulation in second half only - Sequence E = 0
+ Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1) - 4;
+ } else { // no modulation in first half
+ if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // and modulation in second half = Sequence E = 0
Demod.bitCount++;
- Demod.samples += 8;
- Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg
+ Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg
if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity)
- Demod.parityBits <<= 1; // make room for the new parity bit
Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
+ Demod.parityBits <<= 1; // make room for the new parity bit
Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
Demod.bitCount = 0;
Demod.shiftReg = 0;
}
+ Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1);
} else { // no modulation in both halves - End of communication
- Demod.samples += 4;
- if(Demod.bitCount > 0) { // if we decoded bits
- Demod.shiftReg >>= (9 - Demod.bitCount); // add the remaining decoded bits to the output
- Demod.output[Demod.len++] = Demod.shiftReg & 0xff;
- // No parity bit, so just shift a 0
- Demod.parityBits <<= 1;
- }
- Demod.state = DEMOD_UNSYNCD; // start from the beginning
- return TRUE; // we are finished with decoding the raw data sequence
- }
- if (IsModulationNibble2(bit)) { // modulation in first half
- Demod.state = DEMOD_MOD_FIRST_HALF;
- } else { // no modulation in first half
- Demod.state = DEMOD_NOMOD_FIRST_HALF;
- }
- break;
-
-
- case DEMOD_MANCHESTER_DATA:
- Demod.samples += 8;
- if (IsModulationNibble1(bit)) { // modulation in first half
- if (IsModulationNibble2(bit) & 0x0f) { // ... and in second half = collision
- if (!Demod.collisionPos) {
- Demod.collisionPos = (Demod.len << 3) + Demod.bitCount;
- }
- } // modulation in first half only - Sequence D = 1
- Demod.bitCount++;
- Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // in both cases, add a 1 to the shiftreg
- if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity)
- Demod.parityBits <<= 1; // make room for the parity bit
- Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
- Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
- Demod.bitCount = 0;
- Demod.shiftReg = 0;
- }
- } else { // no modulation in first half
- if (IsModulationNibble2(bit)) { // and modulation in second half = Sequence E = 0
- Demod.bitCount++;
- Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg
- if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity)
- Demod.parityBits <<= 1; // make room for the new parity bit
- Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
- Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
- Demod.bitCount = 0;
- Demod.shiftReg = 0;
- }
- } else { // no modulation in both halves - End of communication
+ if (Demod.len > 0 || Demod.bitCount > 0) { // received something
if(Demod.bitCount > 0) { // if we decoded bits
Demod.shiftReg >>= (9 - Demod.bitCount); // add the remaining decoded bits to the output
Demod.output[Demod.len++] = Demod.shiftReg & 0xff;
// No parity bit, so just shift a 0
Demod.parityBits <<= 1;
}
- Demod.state = DEMOD_UNSYNCD; // start from the beginning
return TRUE; // we are finished with decoding the raw data sequence
+ } else { // nothing received. Start over
+ DemodReset();
}
}
+ }
}
// a good trigger condition to get started is probably when we see a
// response from the tag.
// triggered == FALSE -- to wait first for card
- int triggered = !(param & 0x03);
-
+ bool triggered = !(param & 0x03);
+
// The command (reader -> tag) that we're receiving.
// The length of a received command will in most cases be no more than 18 bytes.
// So 32 should be enough!
//uint8_t *trace = (uint8_t *)BigBuf;
// The DMA buffer, used to stream samples from the FPGA
- int8_t *dmaBuf = ((int8_t *)BigBuf) + DMA_BUFFER_OFFSET;
- int8_t *data = dmaBuf;
+ uint8_t *dmaBuf = ((uint8_t *)BigBuf) + DMA_BUFFER_OFFSET;
+ uint8_t *data = dmaBuf;
+ uint8_t previous_data = 0;
int maxDataLen = 0;
int dataLen = 0;
+ bool TagIsActive = FALSE;
+ bool ReaderIsActive = FALSE;
+
+ iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
// Set up the demodulator for tag -> reader responses.
Demod.output = receivedResponse;
- Demod.len = 0;
- Demod.state = DEMOD_UNSYNCD;
// Set up the demodulator for the reader -> tag commands
- memset(&Uart, 0, sizeof(Uart));
Uart.output = receivedCmd;
- Uart.byteCntMax = 32; // was 100 (greg)//////////////////
- Uart.state = STATE_UNSYNCD;
- // Setup for the DMA.
- FpgaSetupSsc();
+ // Setup and start DMA.
FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
-
- // And put the FPGA in the appropriate mode
- // Signal field is off with the appropriate LED
- LED_D_OFF();
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER);
- SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
-
- // Count of samples received so far, so that we can include timing
- // information in the trace buffer.
- rsamples = 0;
+
// And now we loop, receiving samples.
- while(true) {
+ for(uint32_t rsamples = 0; TRUE; ) {
+
if(BUTTON_PRESS()) {
DbpString("cancelled by button");
- goto done;
+ break;
}
LED_A_ON();
if (readBufDataP <= dmaBufDataP){
dataLen = dmaBufDataP - readBufDataP;
} else {
- dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP + 1;
+ dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP;
}
// test for length of buffer
if(dataLen > maxDataLen) {
maxDataLen = dataLen;
if(dataLen > 400) {
- Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
- goto done;
+ Dbprintf("blew circular buffer! dataLen=%d", dataLen);
+ break;
}
}
if(dataLen < 1) continue;
if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
+ Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
}
// secondary buffer sets as primary, secondary buffer was stopped
if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
LED_A_OFF();
- rsamples += 4;
- if(MillerDecoding((data[0] & 0xF0) >> 4)) {
- LED_C_ON();
+ if (rsamples & 0x01) { // Need two samples to feed Miller and Manchester-Decoder
+
+ if(!TagIsActive) { // no need to try decoding reader data if the tag is sending
+ uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
+ if (MillerDecoding(readerdata, (rsamples-1)*4)) {
+ LED_C_ON();
- // check - if there is a short 7bit request from reader
- if ((!triggered) && (param & 0x02) && (Uart.byteCnt == 1) && (Uart.bitCnt = 9)) triggered = TRUE;
+ // check - if there is a short 7bit request from reader
+ if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) triggered = TRUE;
- if(triggered) {
- if (!LogTrace(receivedCmd, Uart.byteCnt, 0 - Uart.samples, Uart.parityBits, TRUE)) break;
+ if(triggered) {
+ if (!LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, Uart.parityBits, TRUE)) break;
+ if (!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, TRUE)) break;
+ }
+ /* And ready to receive another command. */
+ UartReset();
+ /* And also reset the demod code, which might have been */
+ /* false-triggered by the commands from the reader. */
+ DemodReset();
+ LED_B_OFF();
+ }
+ ReaderIsActive = (Uart.state != STATE_UNSYNCD);
}
- /* And ready to receive another command. */
- Uart.state = STATE_UNSYNCD;
- /* And also reset the demod code, which might have been */
- /* false-triggered by the commands from the reader. */
- Demod.state = DEMOD_UNSYNCD;
- LED_B_OFF();
- }
- if(ManchesterDecoding(data[0], 0)) {
- LED_B_ON();
+ if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
+ uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
+ if(ManchesterDecoding(tagdata, 0, (rsamples-1)*4)) {
+ LED_B_ON();
- if (!LogTrace(receivedResponse, Demod.len, 0 - Demod.samples, Demod.parityBits, FALSE)) break;
+ if (!LogTrace(receivedResponse, Demod.len, Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER, Demod.parityBits, FALSE)) break;
+ if (!LogTrace(NULL, 0, Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER, 0, FALSE)) break;
- if ((!triggered) && (param & 0x01)) triggered = TRUE;
+ if ((!triggered) && (param & 0x01)) triggered = TRUE;
- // And ready to receive another response.
- memset(&Demod, 0, sizeof(Demod));
- Demod.output = receivedResponse;
- Demod.state = DEMOD_UNSYNCD;
- LED_C_OFF();
+ // And ready to receive another response.
+ DemodReset();
+ LED_C_OFF();
+ }
+ TagIsActive = (Demod.state != DEMOD_UNSYNCD);
+ }
}
+ previous_data = *data;
+ rsamples++;
data++;
- if(data > dmaBuf + DMA_BUFFER_SIZE) {
+ if(data == dmaBuf + DMA_BUFFER_SIZE) {
data = dmaBuf;
}
} // main cycle
DbpString("COMMAND FINISHED");
-done:
- AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
- Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.byteCnt=%x", maxDataLen, Uart.state, Uart.byteCnt);
- Dbprintf("Uart.byteCntMax=%x, traceLen=%x, Uart.output[0]=%08x", Uart.byteCntMax, traceLen, (int)Uart.output[0]);
+ FpgaDisableSscDma();
+ Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len);
+ Dbprintf("traceLen=%d, Uart.output[0]=%08x", traceLen, (uint32_t)Uart.output[0]);
LEDsoff();
}
// Send startbit
ToSend[++ToSendMax] = SEC_D;
+ LastProxToAirDuration = 8 * ToSendMax - 4;
for(i = 0; i < len; i++) {
int j;
// Get the parity bit
if ((dwParity >> i) & 0x01) {
ToSend[++ToSendMax] = SEC_D;
+ LastProxToAirDuration = 8 * ToSendMax - 4;
} else {
ToSend[++ToSendMax] = SEC_E;
+ LastProxToAirDuration = 8 * ToSendMax;
}
}
CodeIso14443aAsTagPar(cmd, len, GetParity(cmd, len));
}
-////-----------------------------------------------------------------------------
-//// This is to send a NACK kind of answer, its only 3 bits, I know it should be 4
-////-----------------------------------------------------------------------------
-//static void CodeStrangeAnswerAsTag()
-//{
-// int i;
-//
-// ToSendReset();
-//
-// // Correction bit, might be removed when not needed
-// ToSendStuffBit(0);
-// ToSendStuffBit(0);
-// ToSendStuffBit(0);
-// ToSendStuffBit(0);
-// ToSendStuffBit(1); // 1
-// ToSendStuffBit(0);
-// ToSendStuffBit(0);
-// ToSendStuffBit(0);
-//
-// // Send startbit
-// ToSend[++ToSendMax] = SEC_D;
-//
-// // 0
-// ToSend[++ToSendMax] = SEC_E;
-//
-// // 0
-// ToSend[++ToSendMax] = SEC_E;
-//
-// // 1
-// ToSend[++ToSendMax] = SEC_D;
-//
-// // Send stopbit
-// ToSend[++ToSendMax] = SEC_F;
-//
-// // Flush the buffer in FPGA!!
-// for(i = 0; i < 5; i++) {
-// ToSend[++ToSendMax] = SEC_F;
-// }
-//
-// // Convert from last byte pos to length
-// ToSendMax++;
-//}
static void Code4bitAnswerAsTag(uint8_t cmd)
{
for(i = 0; i < 4; i++) {
if(b & 1) {
ToSend[++ToSendMax] = SEC_D;
+ LastProxToAirDuration = 8 * ToSendMax - 4;
} else {
ToSend[++ToSendMax] = SEC_E;
+ LastProxToAirDuration = 8 * ToSendMax;
}
b >>= 1;
}
// Send stopbit
ToSend[++ToSendMax] = SEC_F;
- // Flush the buffer in FPGA!!
- for(i = 0; i < 5; i++) {
- ToSend[++ToSendMax] = SEC_F;
- }
-
// Convert from last byte pos to length
ToSendMax++;
}
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
// Now run a `software UART' on the stream of incoming samples.
+ UartReset();
Uart.output = received;
- Uart.byteCntMax = maxLen;
- Uart.state = STATE_UNSYNCD;
+
+ // clear RXRDY:
+ uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
for(;;) {
WDT_HIT();
if(BUTTON_PRESS()) return FALSE;
-
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
- AT91C_BASE_SSC->SSC_THR = 0x00;
- }
+
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
- uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
- if(MillerDecoding((b & 0xf0) >> 4)) {
- *len = Uart.byteCnt;
- return TRUE;
- }
- if(MillerDecoding(b & 0x0f)) {
- *len = Uart.byteCnt;
+ b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+ if(MillerDecoding(b, 0)) {
+ *len = Uart.len;
return TRUE;
}
- }
+ }
}
}
-static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, int correctionNeeded);
-int EmSend4bitEx(uint8_t resp, int correctionNeeded);
+static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, bool correctionNeeded);
+int EmSend4bitEx(uint8_t resp, bool correctionNeeded);
int EmSend4bit(uint8_t resp);
-int EmSendCmdExPar(uint8_t *resp, int respLen, int correctionNeeded, uint32_t par);
-int EmSendCmdExPar(uint8_t *resp, int respLen, int correctionNeeded, uint32_t par);
-int EmSendCmdEx(uint8_t *resp, int respLen, int correctionNeeded);
+int EmSendCmdExPar(uint8_t *resp, int respLen, bool correctionNeeded, uint32_t par);
+int EmSendCmdExPar(uint8_t *resp, int respLen, bool correctionNeeded, uint32_t par);
+int EmSendCmdEx(uint8_t *resp, int respLen, bool correctionNeeded);
int EmSendCmd(uint8_t *resp, int respLen);
int EmSendCmdPar(uint8_t *resp, int respLen, uint32_t par);
+bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint32_t reader_Parity,
+ uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint32_t tag_Parity);
static uint8_t* free_buffer_pointer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
size_t response_n;
uint8_t* modulation;
size_t modulation_n;
+ uint32_t ProxToAirDuration;
} tag_response_info_t;
void reset_free_buffer() {
}
bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) {
- // Exmaple response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
+ // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
// This will need the following byte array for a modulation sequence
// 144 data bits (18 * 8)
// 18 parity bits
// Copy the byte array, used for this modulation to the buffer position
memcpy(response_info->modulation,ToSend,ToSendMax);
- // Store the number of bytes that were used for encoding/modulation
+ // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
response_info->modulation_n = ToSendMax;
+ response_info->ProxToAirDuration = LastProxToAirDuration;
return true;
}
void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
{
// Enable and clear the trace
- tracing = TRUE;
iso14a_clear_trace();
+ iso14a_set_tracing(TRUE);
- // This function contains the tag emulation
uint8_t sak;
// The first response contains the ATQA (note: bytes are transmitted in reverse order).
uint8_t response6[] = { 0x04, 0x58, 0x00, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS
ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]);
- #define TAG_RESPONSE_COUNT 7
- tag_response_info_t responses[TAG_RESPONSE_COUNT] = {
- { .response = response1, .response_n = sizeof(response1) }, // Answer to request - respond with card type
- { .response = response2, .response_n = sizeof(response2) }, // Anticollision cascade1 - respond with uid
- { .response = response2a, .response_n = sizeof(response2a) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
- { .response = response3, .response_n = sizeof(response3) }, // Acknowledge select - cascade 1
- { .response = response3a, .response_n = sizeof(response3a) }, // Acknowledge select - cascade 2
- { .response = response5, .response_n = sizeof(response5) }, // Authentication answer (random nonce)
- { .response = response6, .response_n = sizeof(response6) }, // dummy ATS (pseudo-ATR), answer to RATS
- };
-
- // Allocate 512 bytes for the dynamic modulation, created when the reader querries for it
- // Such a response is less time critical, so we can prepare them on the fly
- #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
- #define DYNAMIC_MODULATION_BUFFER_SIZE 512
- uint8_t dynamic_response_buffer[DYNAMIC_RESPONSE_BUFFER_SIZE];
- uint8_t dynamic_modulation_buffer[DYNAMIC_MODULATION_BUFFER_SIZE];
- tag_response_info_t dynamic_response_info = {
- .response = dynamic_response_buffer,
- .response_n = 0,
- .modulation = dynamic_modulation_buffer,
- .modulation_n = 0
- };
+ #define TAG_RESPONSE_COUNT 7
+ tag_response_info_t responses[TAG_RESPONSE_COUNT] = {
+ { .response = response1, .response_n = sizeof(response1) }, // Answer to request - respond with card type
+ { .response = response2, .response_n = sizeof(response2) }, // Anticollision cascade1 - respond with uid
+ { .response = response2a, .response_n = sizeof(response2a) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
+ { .response = response3, .response_n = sizeof(response3) }, // Acknowledge select - cascade 1
+ { .response = response3a, .response_n = sizeof(response3a) }, // Acknowledge select - cascade 2
+ { .response = response5, .response_n = sizeof(response5) }, // Authentication answer (random nonce)
+ { .response = response6, .response_n = sizeof(response6) }, // dummy ATS (pseudo-ATR), answer to RATS
+ };
+
+ // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
+ // Such a response is less time critical, so we can prepare them on the fly
+ #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
+ #define DYNAMIC_MODULATION_BUFFER_SIZE 512
+ uint8_t dynamic_response_buffer[DYNAMIC_RESPONSE_BUFFER_SIZE];
+ uint8_t dynamic_modulation_buffer[DYNAMIC_MODULATION_BUFFER_SIZE];
+ tag_response_info_t dynamic_response_info = {
+ .response = dynamic_response_buffer,
+ .response_n = 0,
+ .modulation = dynamic_modulation_buffer,
+ .modulation_n = 0
+ };
- // Reset the offset pointer of the free buffer
- reset_free_buffer();
+ // Reset the offset pointer of the free buffer
+ reset_free_buffer();
- // Prepare the responses of the anticollision phase
+ // Prepare the responses of the anticollision phase
// there will be not enough time to do this at the moment the reader sends it REQA
- for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) {
- prepare_allocated_tag_modulation(&responses[i]);
- }
+ for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) {
+ prepare_allocated_tag_modulation(&responses[i]);
+ }
uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
- int len;
+ int len = 0;
// To control where we are in the protocol
int order = 0;
int cmdsRecvd = 0;
// We need to listen to the high-frequency, peak-detected path.
- SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
- FpgaSetupSsc();
+ iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
cmdsRecvd = 0;
- tag_response_info_t* p_response;
+ tag_response_info_t* p_response;
LED_A_ON();
for(;;) {
- // Clean receive command buffer
- memset(receivedCmd, 0x44, RECV_CMD_SIZE);
-
+ // Clean receive command buffer
+
if(!GetIso14443aCommandFromReader(receivedCmd, &len, RECV_CMD_SIZE)) {
DbpString("Button press");
break;
}
-
- if (tracing) {
- LogTrace(receivedCmd,len, 0, Uart.parityBits, TRUE);
- }
-
- p_response = NULL;
-
+
+ p_response = NULL;
+
// doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated
// Okay, look at the command now.
lastorder = order;
p_response = &responses[4]; order = 30;
} else if(receivedCmd[0] == 0x30) { // Received a (plain) READ
EmSendCmdEx(data+(4*receivedCmd[0]),16,false);
- Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
+ // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
// We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
- p_response = NULL;
+ p_response = NULL;
} else if(receivedCmd[0] == 0x50) { // Received a HALT
// DbpString("Reader requested we HALT!:");
- p_response = NULL;
+ if (tracing) {
+ LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
+ LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+ }
+ p_response = NULL;
} else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request
p_response = &responses[5]; order = 7;
} else if(receivedCmd[0] == 0xE0) { // Received a RATS request
- p_response = &responses[6]; order = 70;
- } else if (order == 7 && len ==8) { // Received authentication request
- uint32_t nr = bytes_to_num(receivedCmd,4);
- uint32_t ar = bytes_to_num(receivedCmd+4,4);
- Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr,ar);
- } else {
- // Check for ISO 14443A-4 compliant commands, look at left nibble
- switch (receivedCmd[0]) {
-
- case 0x0B:
- case 0x0A: { // IBlock (command)
- dynamic_response_info.response[0] = receivedCmd[0];
- dynamic_response_info.response[1] = 0x00;
- dynamic_response_info.response[2] = 0x90;
- dynamic_response_info.response[3] = 0x00;
- dynamic_response_info.response_n = 4;
- } break;
-
- case 0x1A:
- case 0x1B: { // Chaining command
- dynamic_response_info.response[0] = 0xaa | ((receivedCmd[0]) & 1);
- dynamic_response_info.response_n = 2;
- } break;
-
- case 0xaa:
- case 0xbb: {
- dynamic_response_info.response[0] = receivedCmd[0] ^ 0x11;
- dynamic_response_info.response_n = 2;
- } break;
-
- case 0xBA: { //
- memcpy(dynamic_response_info.response,"\xAB\x00",2);
- dynamic_response_info.response_n = 2;
- } break;
-
- case 0xCA:
- case 0xC2: { // Readers sends deselect command
- memcpy(dynamic_response_info.response,"\xCA\x00",2);
- dynamic_response_info.response_n = 2;
- } break;
-
- default: {
- // Never seen this command before
- Dbprintf("Received unknown command (len=%d):",len);
- Dbhexdump(len,receivedCmd,false);
- // Do not respond
- dynamic_response_info.response_n = 0;
- } break;
- }
+ if (tagType == 1 || tagType == 2) { // RATS not supported
+ EmSend4bit(CARD_NACK_NA);
+ p_response = NULL;
+ } else {
+ p_response = &responses[6]; order = 70;
+ }
+ } else if (order == 7 && len == 8) { // Received authentication request
+ if (tracing) {
+ LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
+ LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+ }
+ uint32_t nr = bytes_to_num(receivedCmd,4);
+ uint32_t ar = bytes_to_num(receivedCmd+4,4);
+ Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr,ar);
+ } else {
+ // Check for ISO 14443A-4 compliant commands, look at left nibble
+ switch (receivedCmd[0]) {
+
+ case 0x0B:
+ case 0x0A: { // IBlock (command)
+ dynamic_response_info.response[0] = receivedCmd[0];
+ dynamic_response_info.response[1] = 0x00;
+ dynamic_response_info.response[2] = 0x90;
+ dynamic_response_info.response[3] = 0x00;
+ dynamic_response_info.response_n = 4;
+ } break;
+
+ case 0x1A:
+ case 0x1B: { // Chaining command
+ dynamic_response_info.response[0] = 0xaa | ((receivedCmd[0]) & 1);
+ dynamic_response_info.response_n = 2;
+ } break;
+
+ case 0xaa:
+ case 0xbb: {
+ dynamic_response_info.response[0] = receivedCmd[0] ^ 0x11;
+ dynamic_response_info.response_n = 2;
+ } break;
+
+ case 0xBA: { //
+ memcpy(dynamic_response_info.response,"\xAB\x00",2);
+ dynamic_response_info.response_n = 2;
+ } break;
+
+ case 0xCA:
+ case 0xC2: { // Readers sends deselect command
+ memcpy(dynamic_response_info.response,"\xCA\x00",2);
+ dynamic_response_info.response_n = 2;
+ } break;
+
+ default: {
+ // Never seen this command before
+ if (tracing) {
+ LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
+ LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+ }
+ Dbprintf("Received unknown command (len=%d):",len);
+ Dbhexdump(len,receivedCmd,false);
+ // Do not respond
+ dynamic_response_info.response_n = 0;
+ } break;
+ }
- if (dynamic_response_info.response_n > 0) {
- // Copy the CID from the reader query
- dynamic_response_info.response[1] = receivedCmd[1];
+ if (dynamic_response_info.response_n > 0) {
+ // Copy the CID from the reader query
+ dynamic_response_info.response[1] = receivedCmd[1];
- // Add CRC bytes, always used in ISO 14443A-4 compliant cards
- AppendCrc14443a(dynamic_response_info.response,dynamic_response_info.response_n);
- dynamic_response_info.response_n += 2;
+ // Add CRC bytes, always used in ISO 14443A-4 compliant cards
+ AppendCrc14443a(dynamic_response_info.response,dynamic_response_info.response_n);
+ dynamic_response_info.response_n += 2;
- if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) {
- Dbprintf("Error preparing tag response");
- break;
- }
- p_response = &dynamic_response_info;
- }
+ if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) {
+ Dbprintf("Error preparing tag response");
+ if (tracing) {
+ LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
+ LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+ }
+ break;
+ }
+ p_response = &dynamic_response_info;
+ }
}
// Count number of wakeups received after a halt
// Count number of other messages after a halt
if(order != 6 && lastorder == 5) { happened2++; }
- // Look at last parity bit to determine timing of answer
- if((Uart.parityBits & 0x01) || receivedCmd[0] == 0x52) {
- // 1236, so correction bit needed
- //i = 0;
- }
-
if(cmdsRecvd > 999) {
DbpString("1000 commands later...");
break;
cmdsRecvd++;
if (p_response != NULL) {
- EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52);
- if (tracing) {
- LogTrace(p_response->response,p_response->response_n,0,SwapBits(GetParity(p_response->response,p_response->response_n),p_response->response_n),FALSE);
- if(traceLen > TRACE_SIZE) {
- DbpString("Trace full");
-// break;
- }
- }
- }
- }
+ EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52);
+ // do the tracing for the previous reader request and this tag answer:
+ EmLogTrace(Uart.output,
+ Uart.len,
+ Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
+ Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
+ Uart.parityBits,
+ p_response->response,
+ p_response->response_n,
+ LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
+ (LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
+ SwapBits(GetParity(p_response->response, p_response->response_n), p_response->response_n));
+ }
+
+ if (!tracing) {
+ Dbprintf("Trace Full. Simulation stopped.");
+ break;
+ }
+ }
Dbprintf("%x %x %x", happened, happened2, cmdsRecvd);
LED_A_OFF();
for (uint16_t i = 0; i < delay; i++) {
bitmask |= (0x01 << i);
}
- ToSend[++ToSendMax] = 0x00;
+ ToSend[ToSendMax++] = 0x00;
for (uint16_t i = 0; i < ToSendMax; i++) {
bits_to_shift = ToSend[i] & bitmask;
ToSend[i] = ToSend[i] >> delay;
}
}
-//-----------------------------------------------------------------------------
+
+//-------------------------------------------------------------------------------------
// Transmit the command (to the tag) that was placed in ToSend[].
// Parameter timing:
-// if NULL: ignored
-// if == 0: return time of transfer
+// if NULL: transfer at next possible time, taking into account
+// request guard time and frame delay time
+// if == 0: transfer immediately and return time of transfer
// if != 0: delay transfer until time specified
-//-----------------------------------------------------------------------------
+//-------------------------------------------------------------------------------------
static void TransmitFor14443a(const uint8_t *cmd, int len, uint32_t *timing)
{
- int c;
-
+
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
+ uint32_t ThisTransferTime = 0;
if (timing) {
if(*timing == 0) { // Measure time
- *timing = (GetCountMifare() + 8) & 0xfffffff8;
+ *timing = (GetCountSspClk() + 8) & 0xfffffff8;
} else {
PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
}
- if(MF_DBGLEVEL >= 4 && GetCountMifare() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
- while(GetCountMifare() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
- }
-
- for(c = 0; c < 10;) { // standard delay for each transfer (allow tag to be ready after last transmission?)
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
- AT91C_BASE_SSC->SSC_THR = 0x00;
- c++;
- }
+ if(MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
+ while(GetCountSspClk() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
+ LastTimeProxToAirStart = *timing;
+ } else {
+ ThisTransferTime = ((MAX(NextTransferTime, GetCountSspClk()) & 0xfffffff8) + 8);
+ while(GetCountSspClk() < ThisTransferTime);
+ LastTimeProxToAirStart = ThisTransferTime;
}
- c = 0;
+ // clear TXRDY
+ AT91C_BASE_SSC->SSC_THR = SEC_Y;
+
+ // for(uint16_t c = 0; c < 10;) { // standard delay for each transfer (allow tag to be ready after last transmission)
+ // if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+ // AT91C_BASE_SSC->SSC_THR = SEC_Y;
+ // c++;
+ // }
+ // }
+
+ uint16_t c = 0;
for(;;) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = cmd[c];
}
}
}
-
+
+ NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME);
+
}
+
//-----------------------------------------------------------------------------
// Prepare reader command (in bits, support short frames) to send to FPGA
//-----------------------------------------------------------------------------
void CodeIso14443aBitsAsReaderPar(const uint8_t * cmd, int bits, uint32_t dwParity)
{
- int i, j;
- int last;
- uint8_t b;
-
- ToSendReset();
-
- // Start of Communication (Seq. Z)
- ToSend[++ToSendMax] = SEC_Z;
- last = 0;
-
- size_t bytecount = nbytes(bits);
- // Generate send structure for the data bits
- for (i = 0; i < bytecount; i++) {
- // Get the current byte to send
- b = cmd[i];
- size_t bitsleft = MIN((bits-(i*8)),8);
-
- for (j = 0; j < bitsleft; j++) {
- if (b & 1) {
- // Sequence X
- ToSend[++ToSendMax] = SEC_X;
- last = 1;
- } else {
- if (last == 0) {
- // Sequence Z
- ToSend[++ToSendMax] = SEC_Z;
- } else {
- // Sequence Y
- ToSend[++ToSendMax] = SEC_Y;
- last = 0;
- }
- }
- b >>= 1;
- }
+ int i, j;
+ int last;
+ uint8_t b;
- // Only transmit (last) parity bit if we transmitted a complete byte
- if (j == 8) {
- // Get the parity bit
- if ((dwParity >> i) & 0x01) {
- // Sequence X
- ToSend[++ToSendMax] = SEC_X;
- last = 1;
- } else {
- if (last == 0) {
- // Sequence Z
- ToSend[++ToSendMax] = SEC_Z;
- } else {
- // Sequence Y
- ToSend[++ToSendMax] = SEC_Y;
- last = 0;
- }
- }
- }
- }
+ ToSendReset();
- // End of Communication
- if (last == 0) {
- // Sequence Z
- ToSend[++ToSendMax] = SEC_Z;
- } else {
- // Sequence Y
- ToSend[++ToSendMax] = SEC_Y;
- last = 0;
- }
- // Sequence Y
- ToSend[++ToSendMax] = SEC_Y;
+ // Start of Communication (Seq. Z)
+ ToSend[++ToSendMax] = SEC_Z;
+ LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
+ last = 0;
+
+ size_t bytecount = nbytes(bits);
+ // Generate send structure for the data bits
+ for (i = 0; i < bytecount; i++) {
+ // Get the current byte to send
+ b = cmd[i];
+ size_t bitsleft = MIN((bits-(i*8)),8);
+
+ for (j = 0; j < bitsleft; j++) {
+ if (b & 1) {
+ // Sequence X
+ ToSend[++ToSendMax] = SEC_X;
+ LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
+ last = 1;
+ } else {
+ if (last == 0) {
+ // Sequence Z
+ ToSend[++ToSendMax] = SEC_Z;
+ LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
+ } else {
+ // Sequence Y
+ ToSend[++ToSendMax] = SEC_Y;
+ last = 0;
+ }
+ }
+ b >>= 1;
+ }
+
+ // Only transmit (last) parity bit if we transmitted a complete byte
+ if (j == 8) {
+ // Get the parity bit
+ if ((dwParity >> i) & 0x01) {
+ // Sequence X
+ ToSend[++ToSendMax] = SEC_X;
+ LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
+ last = 1;
+ } else {
+ if (last == 0) {
+ // Sequence Z
+ ToSend[++ToSendMax] = SEC_Z;
+ LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
+ } else {
+ // Sequence Y
+ ToSend[++ToSendMax] = SEC_Y;
+ last = 0;
+ }
+ }
+ }
+ }
- // Just to be sure!
- ToSend[++ToSendMax] = SEC_Y;
- ToSend[++ToSendMax] = SEC_Y;
- ToSend[++ToSendMax] = SEC_Y;
+ // End of Communication: Logic 0 followed by Sequence Y
+ if (last == 0) {
+ // Sequence Z
+ ToSend[++ToSendMax] = SEC_Z;
+ LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
+ } else {
+ // Sequence Y
+ ToSend[++ToSendMax] = SEC_Y;
+ last = 0;
+ }
+ ToSend[++ToSendMax] = SEC_Y;
- // Convert from last character reference to length
- ToSendMax++;
+ // Convert to length of command:
+ ToSendMax++;
}
//-----------------------------------------------------------------------------
// Stop when button is pressed (return 1) or field was gone (return 2)
// Or return 0 when command is captured
//-----------------------------------------------------------------------------
-static int EmGetCmd(uint8_t *received, int *len, int maxLen)
+static int EmGetCmd(uint8_t *received, int *len)
{
*len = 0;
AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
// Now run a 'software UART' on the stream of incoming samples.
+ UartReset();
Uart.output = received;
- Uart.byteCntMax = maxLen;
- Uart.state = STATE_UNSYNCD;
+
+ // Clear RXRDY:
+ uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
for(;;) {
WDT_HIT();
analogAVG = 0;
}
}
- // transmit none
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
- AT91C_BASE_SSC->SSC_THR = 0x00;
- }
+
// receive and test the miller decoding
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
- volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
- if(MillerDecoding((b & 0xf0) >> 4)) {
- *len = Uart.byteCnt;
- if (tracing) LogTrace(received, *len, GetDeltaCountUS(), Uart.parityBits, TRUE);
- return 0;
- }
- if(MillerDecoding(b & 0x0f)) {
- *len = Uart.byteCnt;
- if (tracing) LogTrace(received, *len, GetDeltaCountUS(), Uart.parityBits, TRUE);
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+ b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+ if(MillerDecoding(b, 0)) {
+ *len = Uart.len;
return 0;
}
- }
+ }
+
}
}
-static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, int correctionNeeded)
-{
- int i, u = 0;
- uint8_t b = 0;
+static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, bool correctionNeeded)
+{
+ uint8_t b;
+ uint16_t i = 0;
+ uint32_t ThisTransferTime;
+
// Modulate Manchester
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
- AT91C_BASE_SSC->SSC_THR = 0x00;
- FpgaSetupSsc();
-
- // include correction bit
- i = 1;
- if((Uart.parityBits & 0x01) || correctionNeeded) {
+
+ // include correction bit if necessary
+ if (Uart.parityBits & 0x01) {
+ correctionNeeded = TRUE;
+ }
+ if(correctionNeeded) {
// 1236, so correction bit needed
i = 0;
+ } else {
+ i = 1;
}
+
+ // clear receiving shift register and holding register
+ while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
+ b = AT91C_BASE_SSC->SSC_RHR; (void) b;
+ while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
+ b = AT91C_BASE_SSC->SSC_RHR; (void) b;
+ // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
+ for (uint16_t j = 0; j < 5; j++) { // allow timeout - better late than never
+ while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
+ if (AT91C_BASE_SSC->SSC_RHR) break;
+ }
+
+ while ((ThisTransferTime = GetCountSspClk()) & 0x00000007);
+
+ // Clear TXRDY:
+ AT91C_BASE_SSC->SSC_THR = SEC_F;
+
// send cycle
- for(;;) {
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
- volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
- (void)b;
- }
+ for(; i <= respLen; ) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
- if(i > respLen) {
- b = 0xff; // was 0x00
- u++;
- } else {
- b = resp[i];
- i++;
- }
- AT91C_BASE_SSC->SSC_THR = b;
-
- if(u > 4) break;
+ AT91C_BASE_SSC->SSC_THR = resp[i++];
+ FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
}
+
if(BUTTON_PRESS()) {
break;
}
}
+ // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
+ for (i = 0; i < 2 ; ) {
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+ AT91C_BASE_SSC->SSC_THR = SEC_F;
+ FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+ i++;
+ }
+ }
+
+ LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0);
+
return 0;
}
-int EmSend4bitEx(uint8_t resp, int correctionNeeded){
- Code4bitAnswerAsTag(resp);
+int EmSend4bitEx(uint8_t resp, bool correctionNeeded){
+ Code4bitAnswerAsTag(resp);
int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
- if (tracing) LogTrace(&resp, 1, GetDeltaCountUS(), GetParity(&resp, 1), FALSE);
+ // do the tracing for the previous reader request and this tag answer:
+ EmLogTrace(Uart.output,
+ Uart.len,
+ Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
+ Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
+ Uart.parityBits,
+ &resp,
+ 1,
+ LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
+ (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
+ SwapBits(GetParity(&resp, 1), 1));
return res;
}
int EmSend4bit(uint8_t resp){
- return EmSend4bitEx(resp, 0);
+ return EmSend4bitEx(resp, false);
}
-int EmSendCmdExPar(uint8_t *resp, int respLen, int correctionNeeded, uint32_t par){
- CodeIso14443aAsTagPar(resp, respLen, par);
+int EmSendCmdExPar(uint8_t *resp, int respLen, bool correctionNeeded, uint32_t par){
+ CodeIso14443aAsTagPar(resp, respLen, par);
int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
- if (tracing) LogTrace(resp, respLen, GetDeltaCountUS(), par, FALSE);
+ // do the tracing for the previous reader request and this tag answer:
+ EmLogTrace(Uart.output,
+ Uart.len,
+ Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
+ Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
+ Uart.parityBits,
+ resp,
+ respLen,
+ LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
+ (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
+ SwapBits(GetParity(resp, respLen), respLen));
return res;
}
-int EmSendCmdEx(uint8_t *resp, int respLen, int correctionNeeded){
+int EmSendCmdEx(uint8_t *resp, int respLen, bool correctionNeeded){
return EmSendCmdExPar(resp, respLen, correctionNeeded, GetParity(resp, respLen));
}
int EmSendCmd(uint8_t *resp, int respLen){
- return EmSendCmdExPar(resp, respLen, 0, GetParity(resp, respLen));
+ return EmSendCmdExPar(resp, respLen, false, GetParity(resp, respLen));
}
int EmSendCmdPar(uint8_t *resp, int respLen, uint32_t par){
- return EmSendCmdExPar(resp, respLen, 0, par);
+ return EmSendCmdExPar(resp, respLen, false, par);
+}
+
+bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint32_t reader_Parity,
+ uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint32_t tag_Parity)
+{
+ if (tracing) {
+ // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
+ // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
+ // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
+ uint16_t reader_modlen = reader_EndTime - reader_StartTime;
+ uint16_t approx_fdt = tag_StartTime - reader_EndTime;
+ uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20;
+ reader_EndTime = tag_StartTime - exact_fdt;
+ reader_StartTime = reader_EndTime - reader_modlen;
+ if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_Parity, TRUE)) {
+ return FALSE;
+ } else if (!LogTrace(NULL, 0, reader_EndTime, 0, TRUE)) {
+ return FALSE;
+ } else if (!LogTrace(tag_data, tag_len, tag_StartTime, tag_Parity, FALSE)) {
+ return FALSE;
+ } else {
+ return (!LogTrace(NULL, 0, tag_EndTime, 0, FALSE));
+ }
+ } else {
+ return TRUE;
+ }
}
//-----------------------------------------------------------------------------
// If a response is captured return TRUE
// If it takes too long return FALSE
//-----------------------------------------------------------------------------
-static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint16_t offset, int maxLen, int *samples)
+static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint16_t offset, int maxLen)
{
- int c;
+ uint16_t c;
// Set FPGA mode to "reader listen mode", no modulation (listen
// only, since we are receiving, not transmitting).
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
// Now get the answer from the card
+ DemodReset();
Demod.output = receivedResponse;
- Demod.len = 0;
- Demod.state = DEMOD_UNSYNCD;
-
- uint8_t b;
+ // clear RXRDY:
+ uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+
c = 0;
for(;;) {
WDT_HIT();
- // if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
- // AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!!
- // if (elapsed) (*elapsed)++;
- // }
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
- if(c < iso14a_timeout) { c++; } else { return FALSE; }
b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
- if(ManchesterDecoding(b, offset)) {
- *samples = Demod.samples;
+ if(ManchesterDecoding(b, offset, 0)) {
+ NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD);
return TRUE;
+ } else if(c++ > iso14a_timeout) {
+ return FALSE;
}
}
}
void ReaderTransmitBitsPar(uint8_t* frame, int bits, uint32_t par, uint32_t *timing)
{
- CodeIso14443aBitsAsReaderPar(frame,bits,par);
+ CodeIso14443aBitsAsReaderPar(frame,bits,par);
- // Send command to tag
- TransmitFor14443a(ToSend, ToSendMax, timing);
- if(trigger)
- LED_A_ON();
+ // Send command to tag
+ TransmitFor14443a(ToSend, ToSendMax, timing);
+ if(trigger)
+ LED_A_ON();
- // Log reader command in trace buffer
- if (tracing) LogTrace(frame,nbytes(bits),0,par,TRUE);
+ // Log reader command in trace buffer
+ if (tracing) {
+ LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, par, TRUE);
+ LogTrace(NULL, 0, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, 0, TRUE);
+ }
}
void ReaderTransmitPar(uint8_t* frame, int len, uint32_t par, uint32_t *timing)
int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset)
{
- int samples = 0;
- if (!GetIso14443aAnswerFromTag(receivedAnswer,offset,160,&samples)) return FALSE;
- if (tracing) LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE);
- if(samples == 0) return FALSE;
+ if (!GetIso14443aAnswerFromTag(receivedAnswer,offset,160)) return FALSE;
+ if (tracing) {
+ LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.parityBits, FALSE);
+ LogTrace(NULL, 0, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, 0, FALSE);
+ }
return Demod.len;
}
int ReaderReceivePar(uint8_t *receivedAnswer, uint32_t *parptr)
{
- int samples = 0;
- if (!GetIso14443aAnswerFromTag(receivedAnswer,0,160,&samples)) return FALSE;
- if (tracing) LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE);
+ if (!GetIso14443aAnswerFromTag(receivedAnswer,0,160)) return FALSE;
+ if (tracing) {
+ LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.parityBits, FALSE);
+ LogTrace(NULL, 0, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, 0, FALSE);
+ }
*parptr = Demod.parityBits;
- if(samples == 0) return FALSE;
return Demod.len;
}
// Broadcast for a card, WUPA (0x52) will force response from all cards in the field
ReaderTransmitBitsPar(wupa,7,0, NULL);
+
// Receive the ATQA
if(!ReaderReceive(resp)) return 0;
// Dbprintf("atqa: %02x %02x",resp[0],resp[1]);
memcpy(uid_resp,resp,4);
}
uid_resp_len = 4;
- // Dbprintf("uid: %02x %02x %02x %02x",uid_resp[0],uid_resp[1],uid_resp[2],uid_resp[3]);
+ // Dbprintf("uid: %02x %02x %02x %02x",uid_resp[0],uid_resp[1],uid_resp[2],uid_resp[3]);
// calculate crypto UID. Always use last 4 Bytes.
if(cuid_ptr) {
return 1;
}
-void iso14443a_setup() {
+void iso14443a_setup(uint8_t fpga_minor_mode) {
+ FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
// Set up the synchronous serial port
FpgaSetupSsc();
- // Start from off (no field generated)
- // Signal field is off with the appropriate LED
-// LED_D_OFF();
-// FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- // SpinDelay(50);
-
+ // connect Demodulated Signal to ADC:
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
- // Now give it time to spin up.
// Signal field is on with the appropriate LED
- LED_D_ON();
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
- SpinDelay(7); // iso14443-3 specifies 5ms max.
+ if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD
+ || fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN) {
+ LED_D_ON();
+ } else {
+ LED_D_OFF();
+ }
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode);
- Demod.state = DEMOD_UNSYNCD;
- iso14a_timeout = 2048; //default
+ // Start the timer
+ StartCountSspClk();
+
+ DemodReset();
+ UartReset();
+ NextTransferTime = 2*DELAY_ARM2AIR_AS_READER;
+ iso14a_set_timeout(1050); // 10ms default
}
int iso14_apdu(uint8_t * cmd, size_t cmd_len, void * data) {
// Read an ISO 14443a tag. Send out commands and store answers.
//
//-----------------------------------------------------------------------------
-void ReaderIso14443a(UsbCommand * c)
+void ReaderIso14443a(UsbCommand *c)
{
iso14a_command_t param = c->arg[0];
- uint8_t * cmd = c->d.asBytes;
+ uint8_t *cmd = c->d.asBytes;
size_t len = c->arg[1];
size_t lenbits = c->arg[2];
uint32_t arg0 = 0;
iso14a_clear_trace();
}
- iso14a_set_tracing(true);
+ iso14a_set_tracing(TRUE);
if(param & ISO14A_REQUEST_TRIGGER) {
- iso14a_set_trigger(1);
+ iso14a_set_trigger(TRUE);
}
if(param & ISO14A_CONNECT) {
- iso14443a_setup();
+ iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
if(!(param & ISO14A_NO_SELECT)) {
iso14a_card_select_t *card = (iso14a_card_select_t*)buf;
arg0 = iso14443a_select_card(NULL,card,NULL);
iso14a_timeout = c->arg[2];
}
- if(param & ISO14A_SET_TIMEOUT) {
- iso14a_timeout = c->arg[2];
- }
-
if(param & ISO14A_APDU) {
arg0 = iso14_apdu(cmd, len, buf);
cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
if(param & ISO14A_APPEND_CRC) {
AppendCrc14443a(cmd,len);
len += 2;
+ lenbits += 16;
}
if(lenbits>0) {
+
ReaderTransmitBitsPar(cmd,lenbits,GetParity(cmd,lenbits/8), NULL);
} else {
ReaderTransmit(cmd,len, NULL);
}
if(param & ISO14A_REQUEST_TRIGGER) {
- iso14a_set_trigger(0);
+ iso14a_set_trigger(FALSE);
}
if(param & ISO14A_NO_DISCONNECT) {
static uint8_t mf_nr_ar3;
uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
+
iso14a_clear_trace();
- tracing = false;
+ iso14a_set_tracing(TRUE);
byte_t nt_diff = 0;
byte_t par = 0;
if (first_try) {
- StartCountMifare();
mf_nr_ar3 = 0;
- iso14443a_setup();
- while((GetCountMifare() & 0xffff0000) != 0x10000); // wait for counter to reset and "warm up"
- sync_time = GetCountMifare() & 0xfffffff8;
+ iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
+ sync_time = GetCountSspClk() & 0xfffffff8;
sync_cycles = 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
nt_attacked = 0;
nt = 0;
LED_B_OFF();
LED_C_OFF();
-
+
for(uint16_t i = 0; TRUE; i++) {
WDT_HIT();
continue;
}
- //keep the card active
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
-
sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
catch_up_cycles = 0;
// if we missed the sync time already, advance to the next nonce repeat
- while(GetCountMifare() > sync_time) {
+ while(GetCountSspClk() > sync_time) {
sync_time = (sync_time & 0xfffffff8) + sync_cycles;
}
}
}
- LogTrace((const uint8_t *)&nt, 4, 0, GetParity((const uint8_t *)&nt, 4), TRUE);
- LogTrace(par_list, 8, 0, GetParity(par_list, 8), TRUE);
- LogTrace(ks_list, 8, 0, GetParity(ks_list, 8), TRUE);
mf_nr_ar[3] &= 0x1F;
// Thats it...
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
- tracing = TRUE;
+
+ iso14a_set_tracing(FALSE);
}
/**
uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04};
uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
-
+
//Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
// This can be used in a reader-only attack.
// (it can also be retrieved via 'hf 14a list', but hey...
uint8_t ar_nr_collected = 0;
// clear trace
- iso14a_clear_trace();
-
- tracing = true;
+ iso14a_clear_trace();
+ iso14a_set_tracing(TRUE);
- // Authenticate response - nonce
+ // Authenticate response - nonce
uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
-
+
//-- Determine the UID
// Can be set from emulator memory, incoming data
// and can be 7 or 4 bytes long
- if(flags & FLAG_4B_UID_IN_DATA)
+ if (flags & FLAG_4B_UID_IN_DATA)
{
// 4B uid comes from data-portion of packet
memcpy(rUIDBCC1,datain,4);
rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
- }else if(flags & FLAG_7B_UID_IN_DATA)
- {
+ } else if (flags & FLAG_7B_UID_IN_DATA) {
// 7B uid comes from data-portion of packet
memcpy(&rUIDBCC1[1],datain,3);
memcpy(rUIDBCC2, datain+3, 4);
_7BUID = true;
- }
- else
- {
+ } else {
// get UID from emul memory
emlGetMemBt(receivedCmd, 7, 1);
_7BUID = !(receivedCmd[0] == 0x00);
emlGetMemBt(rUIDBCC2, 3, 4);
}
}
+
/*
* Regardless of what method was used to set the UID, set fifth byte and modify
* the ATQA for 4 or 7-byte UID
*/
-
rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
- if(_7BUID)
- {
+ if (_7BUID) {
rATQA[0] = 0x44;
rUIDBCC1[0] = 0x88;
rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
}
- // start mkseconds counter
- StartCountUS();
-
// We need to listen to the high-frequency, peak-detected path.
- SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
- FpgaSetupSsc();
+ iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
- SpinDelay(200);
if (MF_DBGLEVEL >= 1) {
if (!_7BUID) {
Dbprintf("4B UID: %02x%02x%02x%02x",rUIDBCC1[0] , rUIDBCC1[1] , rUIDBCC1[2] , rUIDBCC1[3]);
- }else
- {
+ } else {
Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",rUIDBCC1[0] , rUIDBCC1[1] , rUIDBCC1[2] , rUIDBCC1[3],rUIDBCC2[0],rUIDBCC2[1] ,rUIDBCC2[2] , rUIDBCC2[3]);
}
}
- // calibrate mkseconds counter
- GetDeltaCountUS();
- bool finished = false;
+
+ bool finished = FALSE;
while (!BUTTON_PRESS() && !finished) {
WDT_HIT();
//Now, get data
- res = EmGetCmd(receivedCmd, &len, RECV_CMD_SIZE); // (+ nextCycleTimeout)
+ res = EmGetCmd(receivedCmd, &len);
if (res == 2) { //Field is off!
cardSTATE = MFEMUL_NOFIELD;
LEDsoff();
continue;
- }else if(res == 1) break;//return value 1 means button press
-
-
+ } else if (res == 1) {
+ break; //return value 1 means button press
+ }
+
// REQ or WUP request in ANY state and WUP in HALTED state
if (len == 1 && ((receivedCmd[0] == 0x26 && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == 0x52)) {
selTimer = GetTickCount();
cardAUTHKEY = 0xff;
continue;
}
-
+
switch (cardSTATE) {
case MFEMUL_NOFIELD:
case MFEMUL_HALTED:
case MFEMUL_IDLE:{
+ LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
+ LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
break;
}
case MFEMUL_SELECT1:{
// select card
if (len == 9 &&
(receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) {
-
- if (!_7BUID)
- EmSendCmd(rSAK, sizeof(rSAK));
- else
- EmSendCmd(rSAK1, sizeof(rSAK1));
-
+ EmSendCmd(_7BUID?rSAK1:rSAK, sizeof(_7BUID?rSAK1:rSAK));
cuid = bytes_to_num(rUIDBCC1, 4);
if (!_7BUID) {
cardSTATE = MFEMUL_WORK;
break;
} else {
cardSTATE = MFEMUL_SELECT2;
- break;
}
}
-
break;
}
case MFEMUL_AUTH1:{
if( len != 8)
{
cardSTATE_TO_IDLE();
+ LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
+ LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
break;
}
uint32_t ar = bytes_to_num(receivedCmd, 4);
//Collect AR/NR
if(ar_nr_collected < 2){
- if(ar_nr_responses[ar_nr_collected*4+2] != ar)
- {// Avoid duplicates
- ar_nr_collected++;
+ if(ar_nr_responses[2] != ar)
+ {// Avoid duplicates... probably not necessary, ar should vary.
ar_nr_responses[ar_nr_collected*4] = cuid;
ar_nr_responses[ar_nr_collected*4+1] = nonce;
ar_nr_responses[ar_nr_collected*4+2] = ar;
ar_nr_responses[ar_nr_collected*4+3] = nr;
+ ar_nr_collected++;
}
}
// test if auth OK
if (cardRr != prng_successor(nonce, 64)){
if (MF_DBGLEVEL >= 2) Dbprintf("AUTH FAILED. cardRr=%08x, succ=%08x",cardRr, prng_successor(nonce, 64));
- //Shouldn't we respond anything here?
+ // Shouldn't we respond anything here?
// Right now, we don't nack or anything, which causes the
// reader to do a WUPA after a while. /Martin
cardSTATE_TO_IDLE();
+ LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
+ LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
break;
}
break;
}
case MFEMUL_SELECT2:{
- if (!len) break;
-
+ if (!len) {
+ LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
+ LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+ break;
+ }
if (len == 2 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x20)) {
EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2));
break;
if (len == 9 &&
(receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) {
EmSendCmd(rSAK, sizeof(rSAK));
-
cuid = bytes_to_num(rUIDBCC2, 4);
cardSTATE = MFEMUL_WORK;
LED_B_ON();
}
// i guess there is a command). go into the work state.
- if (len != 4) break;
+ if (len != 4) {
+ LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
+ LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+ break;
+ }
cardSTATE = MFEMUL_WORK;
//goto lbWORK;
//intentional fall-through to the next case-stmt
}
- case MFEMUL_WORK:{
- if (len == 0) break;
+ case MFEMUL_WORK:{
+ if (len == 0) {
+ LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
+ LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+ break;
+ }
+
bool encrypted_data = (cardAUTHKEY != 0xFF) ;
- if(encrypted_data)
- {
+ if(encrypted_data) {
// decrypt seqence
mf_crypto1_decrypt(pcs, receivedCmd, len);
}
-
+
if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) {
authTimer = GetTickCount();
cardAUTHSC = receivedCmd[1] / 4; // received block num
crypto1_word(pcs, cuid ^ nonce, 0);//Update crypto state
num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce
- }
- else{ // nested authentication
+ } else { // nested authentication
if (MF_DBGLEVEL >= 2) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
- ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0);
+ ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0);
num_to_bytes(ans, 4, rAUTH_AT);
}
EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
cardSTATE = MFEMUL_AUTH1;
break;
}
-
+
// rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
// BUT... ACK --> NACK
if (len == 1 && receivedCmd[0] == CARD_ACK) {
break;
}
- if(len != 4) break;
+ if(len != 4) {
+ LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
+ LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+ break;
+ }
if(receivedCmd[0] == 0x30 // read block
|| receivedCmd[0] == 0xA0 // write block
|| receivedCmd[0] == 0xC0
|| receivedCmd[0] == 0xC1
|| receivedCmd[0] == 0xC2 // inc dec restore
- || receivedCmd[0] == 0xB0) // transfer
- {
- if (receivedCmd[1] >= 16 * 4)
- {
-
+ || receivedCmd[0] == 0xB0) { // transfer
+ if (receivedCmd[1] >= 16 * 4) {
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
break;
}
- if (receivedCmd[1] / 4 != cardAUTHSC)
- {
+ if (receivedCmd[1] / 4 != cardAUTHSC) {
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC);
break;
mf_crypto1_encrypt(pcs, response, 18, &par);
EmSendCmdPar(response, 18, par);
numReads++;
- if(exitAfterNReads > 0 && numReads == exitAfterNReads)
- {
+ if(exitAfterNReads > 0 && numReads == exitAfterNReads) {
Dbprintf("%d reads done, exiting", numReads);
finished = true;
}
// write block
if (receivedCmd[0] == 0xA0) {
if (MF_DBGLEVEL >= 2) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd[1],receivedCmd[1]);
-
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
- //nextCycleTimeout = 50;
cardSTATE = MFEMUL_WRITEBL2;
cardWRBL = receivedCmd[1];
break;
- }
+ }
// increment, decrement, restore
if (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2) {
if (MF_DBGLEVEL >= 2) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
-
if (emlCheckValBl(receivedCmd[1])) {
if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
if (receivedCmd[0] == 0xC2)
cardSTATE = MFEMUL_INTREG_REST;
cardWRBL = receivedCmd[1];
-
break;
}
-
// transfer
if (receivedCmd[0] == 0xB0) {
if (MF_DBGLEVEL >= 2) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
-
if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1]))
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
else
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
-
break;
}
-
// halt
if (receivedCmd[0] == 0x50 && receivedCmd[1] == 0x00) {
LED_B_OFF();
LED_C_OFF();
cardSTATE = MFEMUL_HALTED;
if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer);
+ LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
+ LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
break;
}
// RATS
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
break;
}
-
// command not allowed
if (MF_DBGLEVEL >= 4) Dbprintf("Received command not allowed, nacking");
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
-
- // case break
break;
}
case MFEMUL_WRITEBL2:{
emlSetMem(receivedCmd, cardWRBL, 1);
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
cardSTATE = MFEMUL_WORK;
- break;
} else {
cardSTATE_TO_IDLE();
- break;
+ LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
+ LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
}
break;
}
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
cardSTATE_TO_IDLE();
break;
- }
+ }
+ LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
+ LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
cardINTREG = cardINTREG + ans;
cardSTATE = MFEMUL_WORK;
break;
cardSTATE_TO_IDLE();
break;
}
+ LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
+ LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
cardINTREG = cardINTREG - ans;
cardSTATE = MFEMUL_WORK;
break;
cardSTATE_TO_IDLE();
break;
}
+ LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
+ LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
cardSTATE = MFEMUL_WORK;
break;
}
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
- // add trace trailer
- memset(rAUTH_NT, 0x44, 4);
- LogTrace(rAUTH_NT, 4, 0, 0, TRUE);
if(flags & FLAG_INTERACTIVE)// Interactive mode flag, means we need to send ACK
{
//May just aswell send the collected ar_nr in the response aswell
cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,0,0,&ar_nr_responses,ar_nr_collected*4*4);
}
+
if(flags & FLAG_NR_AR_ATTACK)
{
- if(ar_nr_collected > 1)
- {
+ if(ar_nr_collected > 1) {
Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
- Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x",
+ Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
ar_nr_responses[0], // UID
ar_nr_responses[1], //NT
ar_nr_responses[2], //AR1
ar_nr_responses[6], //AR2
ar_nr_responses[7] //NR2
);
- }else
- {
+ } else {
Dbprintf("Failed to obtain two AR/NR pairs!");
- if(ar_nr_collected >0)
- {
- Dbprintf("Only got these: UID=%08d, nonce=%08d, AR1=%08d, NR1=%08d",
+ if(ar_nr_collected >0) {
+ Dbprintf("Only got these: UID=%08x, nonce=%08x, AR1=%08x, NR1=%08x",
ar_nr_responses[0], // UID
ar_nr_responses[1], //NT
ar_nr_responses[2], //AR1
//uint8_t *trace = (uint8_t *)BigBuf;
// The DMA buffer, used to stream samples from the FPGA
- int8_t *dmaBuf = ((int8_t *)BigBuf) + DMA_BUFFER_OFFSET;
- int8_t *data = dmaBuf;
+ uint8_t *dmaBuf = ((uint8_t *)BigBuf) + DMA_BUFFER_OFFSET;
+ uint8_t *data = dmaBuf;
+ uint8_t previous_data = 0;
int maxDataLen = 0;
int dataLen = 0;
+ bool ReaderIsActive = FALSE;
+ bool TagIsActive = FALSE;
+
+ iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
// Set up the demodulator for tag -> reader responses.
Demod.output = receivedResponse;
- Demod.len = 0;
- Demod.state = DEMOD_UNSYNCD;
// Set up the demodulator for the reader -> tag commands
- memset(&Uart, 0, sizeof(Uart));
Uart.output = receivedCmd;
- Uart.byteCntMax = 32; // was 100 (greg)//////////////////
- Uart.state = STATE_UNSYNCD;
// Setup for the DMA.
- FpgaSetupSsc();
- FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
+ FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
- // And put the FPGA in the appropriate mode
- // Signal field is off with the appropriate LED
LED_D_OFF();
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER);
- SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
// init sniffer
MfSniffInit();
- int sniffCounter = 0;
// And now we loop, receiving samples.
- while(true) {
+ for(uint32_t sniffCounter = 0; TRUE; ) {
+
if(BUTTON_PRESS()) {
DbpString("cancelled by button");
- goto done;
+ break;
}
LED_A_ON();
WDT_HIT();
- if (++sniffCounter > 65) {
- if (MfSniffSend(2000)) {
- FpgaEnableSscDma();
+ if ((sniffCounter & 0x0000FFFF) == 0) { // from time to time
+ // check if a transaction is completed (timeout after 2000ms).
+ // if yes, stop the DMA transfer and send what we have so far to the client
+ if (MfSniffSend(2000)) {
+ // Reset everything - we missed some sniffed data anyway while the DMA was stopped
+ sniffCounter = 0;
+ data = dmaBuf;
+ maxDataLen = 0;
+ ReaderIsActive = FALSE;
+ TagIsActive = FALSE;
+ FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
}
- sniffCounter = 0;
}
-
- int register readBufDataP = data - dmaBuf;
- int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR;
- if (readBufDataP <= dmaBufDataP){
- dataLen = dmaBufDataP - readBufDataP;
- } else {
- dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP + 1;
+
+ int register readBufDataP = data - dmaBuf; // number of bytes we have processed so far
+ int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; // number of bytes already transferred
+ if (readBufDataP <= dmaBufDataP){ // we are processing the same block of data which is currently being transferred
+ dataLen = dmaBufDataP - readBufDataP; // number of bytes still to be processed
+ } else {
+ dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed
}
// test for length of buffer
- if(dataLen > maxDataLen) {
- maxDataLen = dataLen;
+ if(dataLen > maxDataLen) { // we are more behind than ever...
+ maxDataLen = dataLen;
if(dataLen > 400) {
Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
- goto done;
+ break;
}
}
if(dataLen < 1) continue;
- // primary buffer was stopped( <-- we lost data!
+ // primary buffer was stopped ( <-- we lost data!
if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
LED_A_OFF();
- if(MillerDecoding((data[0] & 0xF0) >> 4)) {
- LED_C_INV();
- // check - if there is a short 7bit request from reader
- if (MfSniffLogic(receivedCmd, Uart.byteCnt, Uart.parityBits, Uart.bitCnt, TRUE)) break;
-
- /* And ready to receive another command. */
- Uart.state = STATE_UNSYNCD;
-
- /* And also reset the demod code */
- Demod.state = DEMOD_UNSYNCD;
- }
+ if (sniffCounter & 0x01) {
- if(ManchesterDecoding(data[0], 0)) {
- LED_C_INV();
+ if(!TagIsActive) { // no need to try decoding tag data if the reader is sending
+ uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
+ if(MillerDecoding(readerdata, (sniffCounter-1)*4)) {
+ LED_C_INV();
+ if (MfSniffLogic(receivedCmd, Uart.len, Uart.parityBits, Uart.bitCount, TRUE)) break;
- if (MfSniffLogic(receivedResponse, Demod.len, Demod.parityBits, Demod.bitCount, FALSE)) break;
+ /* And ready to receive another command. */
+ UartReset();
+
+ /* And also reset the demod code */
+ DemodReset();
+ }
+ ReaderIsActive = (Uart.state != STATE_UNSYNCD);
+ }
+
+ if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending
+ uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
+ if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) {
+ LED_C_INV();
- // And ready to receive another response.
- memset(&Demod, 0, sizeof(Demod));
- Demod.output = receivedResponse;
- Demod.state = DEMOD_UNSYNCD;
+ if (MfSniffLogic(receivedResponse, Demod.len, Demod.parityBits, Demod.bitCount, FALSE)) break;
- /* And also reset the uart code */
- Uart.state = STATE_UNSYNCD;
+ // And ready to receive another response.
+ DemodReset();
+ }
+ TagIsActive = (Demod.state != DEMOD_UNSYNCD);
+ }
}
+ previous_data = *data;
+ sniffCounter++;
data++;
- if(data > dmaBuf + DMA_BUFFER_SIZE) {
+ if(data == dmaBuf + DMA_BUFFER_SIZE) {
data = dmaBuf;
}
+
} // main cycle
DbpString("COMMAND FINISHED");
-done:
FpgaDisableSscDma();
MfSniffEnd();
- Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.byteCnt=%x Uart.byteCntMax=%x", maxDataLen, Uart.state, Uart.byteCnt, Uart.byteCntMax);
+ Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
LEDsoff();
}