]> cvs.zerfleddert.de Git - proxmark3-svn/blobdiff - client/ui.c
CHG: minor changes to this lua script. One case it returns NIL, which makes it...
[proxmark3-svn] / client / ui.c
index 094b8e56e5814210c133b638adb34f4c18940b2b..48a55b1fdfea12e5d9d9c26cc737d9e50b3049cb 100644 (file)
@@ -9,23 +9,11 @@
 // UI utilities
 //-----------------------------------------------------------------------------
 
-#include <stdarg.h>
-#include <stdlib.h>
-#include <stdio.h>
-#include <stdbool.h>
-#include <time.h>
-#include <readline/readline.h>
-#include <pthread.h>
-#include "loclass/cipherutils.h"
 #include "ui.h"
-
-//#include <liquid/liquid.h>
-#define M_PI 3.14159265358979323846264338327
-
 double CursorScaleFactor;
 int PlotGridX, PlotGridY, PlotGridXdefault= 64, PlotGridYdefault= 64;
 int offline;
-int flushAfterWrite = 0;  //buzzy
+int flushAfterWrite = 0;
 extern pthread_mutex_t print_lock;
 
 static char *logfilename = "proxmark3.log";
@@ -36,13 +24,13 @@ void PrintAndLog(char *fmt, ...)
        int saved_point;
        va_list argptr, argptr2;
        static FILE *logfile = NULL;
-       static int logging=1;
+       static int logging = 1;
 
        // lock this section to avoid interlacing prints from different threats
        pthread_mutex_lock(&print_lock);
   
        if (logging && !logfile) {
-               logfile=fopen(logfilename, "a");
+               logfile = fopen(logfilename, "a");
                if (!logfile) {
                        fprintf(stderr, "Can't open logfile, logging disabled!\n");
                        logging=0;
@@ -81,442 +69,38 @@ void PrintAndLog(char *fmt, ...)
        }
        va_end(argptr2);
 
-       if (flushAfterWrite == 1)  //buzzy
-       {
+       if (flushAfterWrite == 1) {
                fflush(NULL);
        }
        //release lock
        pthread_mutex_unlock(&print_lock);  
 }
 
-void SetLogFilename(char *fn)
-{
+void SetLogFilename(char *fn) {
   logfilename = fn;
 }
-
-int manchester_decode( int * data, const size_t len, uint8_t * dataout){
-       
-       int bitlength = 0;
-       int i, clock, high, low, startindex;
-       low = startindex = 0;
-       high = 1;
-       uint8_t bitStream[len];
-       
-       memset(bitStream, 0x00, len);
-       
-       /* Detect high and lows */
-       for (i = 0; i < len; i++) {
-               if (data[i] > high)
-                       high = data[i];
-               else if (data[i] < low)
-                       low = data[i];
-       }
-       
-       /* get clock */
-       clock = GetT55x7Clock( data, len, high );       
-       startindex = DetectFirstTransition(data, len, high);
-  
-       // PrintAndLog(" Clock       : %d", clock);
-       // PrintAndLog(" startindex  : %d", startindex);
-       
-       if (high != 1)
-               bitlength = ManchesterConvertFrom255(data, len, bitStream, high, low, clock, startindex);
-       else
-               bitlength= ManchesterConvertFrom1(data, len, bitStream, clock, startindex);
-
-       memcpy(dataout, bitStream, bitlength);
-       return bitlength;
-}
-
- int GetT55x7Clock( const int * data, const size_t len, int peak ){ 
-       int i,lastpeak,clock;
-       clock = 0xFFFF;
-       lastpeak = 0;
-       
-       /* Detect peak if we don't have one */
-       if (!peak) {
-               for (i = 0; i < len; ++i) {
-                       if (data[i] > peak) {
-                               peak = data[i];
-                       }
-               }
-       }
-       
-       for (i = 1; i < len; ++i) {
-               /* if this is the beginning of a peak */
-               if ( data[i-1] != data[i] &&  data[i] == peak) {
-                 /* find lowest difference between peaks */
-                       if (lastpeak && i - lastpeak < clock)
-                               clock = i - lastpeak;
-                       lastpeak = i;
-               }
-       }
-       //return clock;  
-       //defaults clock to precise values.
-       switch(clock){
-               case 8:
-               case 16:
-               case 32:
-               case 40:
-               case 50:
-               case 64:
-               case 100:
-               case 128:
-               return clock;
-               break;
-               default:  break;
-       }
-       
-       //PrintAndLog(" Found Clock : %d  - trying to adjust", clock);
-       
-       // When detected clock is 31 or 33 then then return 
-       int clockmod = clock%8;
-       if ( clockmod == 7 ) 
-               clock += 1;
-       else if ( clockmod == 1 )
-               clock -= 1;
-       
-       return clock;
- }
- int DetectFirstTransition(const int * data, const size_t len, int threshold){
-
-       int i =0;
-       /* now look for the first threshold */
-       for (; i < len; ++i) {
-               if (data[i] == threshold) {
-                       break;
-               }
-       }
-       return i;
- }
-
- int ManchesterConvertFrom255(const int * data, const size_t len, uint8_t * dataout, int high, int low, int clock, int startIndex){
-
-       int i, j, z, hithigh, hitlow, bitIndex, startType;
-       i = 0;
-       bitIndex = 0;
-       
-       int isDamp = 0;
-       int damplimit = (int)((high / 2) * 0.3);
-       int dampHi =  (high/2)+damplimit;
-       int dampLow = (high/2)-damplimit;
-       int firstST = 0;
-
-       // i = clock frame of data
-       for (; i < (int)(len / clock); i++)
-       {
-               hithigh = 0;
-               hitlow = 0;
-               startType = -1;
-               z = startIndex + (i*clock);
-               isDamp = 0;
-                       
-               /* Find out if we hit both high and low peaks */
-               for (j = 0; j < clock; j++)
-               {               
-                       if (data[z+j] == high){
-                               hithigh = 1;
-                               if ( startType == -1)
-                                       startType = 1;
-                       }
-                       
-                       if (data[z+j] == low ){
-                               hitlow = 1;
-                               if ( startType == -1)
-                                       startType = 0;
-                       } 
-               
-                       if (hithigh && hitlow)
-                         break;
-               }
-               
-               // No high value found, are we in a dampening field?
-               if ( !hithigh ) {
-                       //PrintAndLog(" # Entering damp test at index : %d (%d)", z+j, j);
-                       for (j = 0; j < clock; j++)
-                       {
-                               if ( 
-                                    (data[z+j] <= dampHi && data[z+j] >= dampLow)
-                                  ){
-                                  isDamp++;
-                               }
-                       }
-               }
-
-               /*  Manchester Switching..
-                       0: High -> Low   
-                       1: Low -> High  
-               */
-               if (startType == 0)
-                       dataout[bitIndex++] = 1;
-               else if (startType == 1) 
-                       dataout[bitIndex++] = 0;
-               else
-                       dataout[bitIndex++] = 2;
-                       
-               if ( isDamp > clock/2 ) {
-                       firstST++;
-               }
-               
-               if ( firstST == 4)
-                       break;
-       }
-       return bitIndex;
- }
- int ManchesterConvertFrom1(const int * data, const size_t len, uint8_t * dataout, int clock, int startIndex){
-
-       PrintAndLog(" Path B");
-       int i,j, bitindex, lc, tolerance, warnings;
-       warnings = 0;
-       int upperlimit = len*2/clock+8;
-       i = startIndex;
-       j = 0;
-       tolerance = clock/4;
-       uint8_t decodedArr[len];
-       
-       /* Detect duration between 2 successive transitions */
-       for (bitindex = 1; i < len; i++) {
-       
-               if (data[i-1] != data[i]) {
-                       lc = i - startIndex;
-                       startIndex = i;
-
-                       // Error check: if bitindex becomes too large, we do not
-                       // have a Manchester encoded bitstream or the clock is really wrong!
-                       if (bitindex > upperlimit ) {
-                               PrintAndLog("Error: the clock you gave is probably wrong, aborting.");
-                               return 0;
-                       }
-                       // Then switch depending on lc length:
-                       // Tolerance is 1/4 of clock rate (arbitrary)
-                       if (abs((lc-clock)/2) < tolerance) {
-                               // Short pulse : either "1" or "0"
-                               decodedArr[bitindex++] = data[i-1];
-                       } else if (abs(lc-clock) < tolerance) {
-                               // Long pulse: either "11" or "00"
-                               decodedArr[bitindex++] = data[i-1];
-                               decodedArr[bitindex++] = data[i-1];
-                       } else {
-                               ++warnings;
-                               PrintAndLog("Warning: Manchester decode error for pulse width detection.");
-                               if (warnings > 10) {
-                                       PrintAndLog("Error: too many detection errors, aborting.");
-                                       return 0; 
-                               }
-                       }
-               }
-       }
-       
-       /* 
-       * We have a decodedArr of "01" ("1") or "10" ("0")
-       * parse it into final decoded dataout
-    */ 
-    for (i = 0; i < bitindex; i += 2) {
-
-           if ((decodedArr[i] == 0) && (decodedArr[i+1] == 1)) {
-                       dataout[j++] = 1;
-               } else if ((decodedArr[i] == 1) && (decodedArr[i+1] == 0)) {
-                       dataout[j++] = 0;
-               } else {
-                       i++;
-                       warnings++;
-                       PrintAndLog("Unsynchronized, resync...");
-                       PrintAndLog("(too many of those messages mean the stream is not Manchester encoded)");
-
-                       if (warnings > 10) {    
-                               PrintAndLog("Error: too many decode errors, aborting.");
-                               return 0;
-                       }
-               }
-    }
-       
-       PrintAndLog("%s", sprint_hex(dataout, j));
-       return j;
- }
- void ManchesterDiffDecodedString(const uint8_t* bitstream, size_t len, uint8_t invert){
-       /* 
-       * We have a bitstream of "01" ("1") or "10" ("0")
-       * parse it into final decoded bitstream
-    */ 
-       int i, j, warnings; 
-       uint8_t decodedArr[(len/2)+1];
-
-       j = warnings = 0;
-       
-       uint8_t lastbit = 0;
-       
-    for (i = 0; i < len; i += 2) {
-       
-               uint8_t first = bitstream[i];
-               uint8_t second = bitstream[i+1];
-
-               if ( first == second ) {
-                       ++i;
-                       ++warnings;
-                       if (warnings > 10) {
-                               PrintAndLog("Error: too many decode errors, aborting.");
-                               return;
-                       }
-               } 
-               else if ( lastbit != first ) {
-                       decodedArr[j++] = 0 ^ invert;
-               }
-               else {
-                       decodedArr[j++] = 1 ^ invert;
-               }
-               lastbit = second;
-    }
-       
-       PrintAndLog("%s", sprint_hex(decodedArr, j));
-}
  
-void PrintPaddedManchester( uint8_t* bitStream, size_t len, size_t blocksize){
-
-       PrintAndLog(" Manchester decoded  : %d bits", len);
-         
-       uint8_t mod = len % blocksize;
-       uint8_t div = len / blocksize;
-       int i;
-  
-       // Now output the bitstream to the scrollback by line of 16 bits
-       for (i = 0; i < div*blocksize; i+=blocksize) {
-               PrintAndLog(" %s", sprint_bin(bitStream+i,blocksize) );
-       }
-       
-       if ( mod > 0 )
-               PrintAndLog(" %s", sprint_bin(bitStream+i, mod) );      
-}
-
-void iceFsk(int * data, const size_t len){
-
-       //34359738  == 125khz   (2^32 / 125) =
-       
-    // parameters
-    float phase_offset      = 0.00f;   // carrier phase offset
-    float frequency_offset  = 0.30f;   // carrier frequency offset
-    float wn                = 0.01f;   // pll bandwidth
-    float zeta              = 0.707f;  // pll damping factor
-    float K                 = 1000;    // pll loop gain
-    size_t n                = len;     // number of samples
-
-    // generate loop filter parameters (active PI design)
-    float t1 = K/(wn*wn);   // tau_1
-    float t2 = 2*zeta/wn;   // tau_2
-
-    // feed-forward coefficients (numerator)
-    float b0 = (4*K/t1)*(1.+t2/2.0f);
-    float b1 = (8*K/t1);
-    float b2 = (4*K/t1)*(1.-t2/2.0f);
-
-    // feed-back coefficients (denominator)
-    //    a0 =  1.0  is implied
-    float a1 = -2.0f;
-    float a2 =  1.0f;
-
-    // filter buffer
-    float v0=0.0f, v1=0.0f, v2=0.0f;
-    
-    // initialize states
-    float phi     = phase_offset;  // input signal's initial phase
-    float phi_hat = 0.0f;      // PLL's initial phase
-    
-    unsigned int i;
-    float complex x,y;
-       float complex output[n];
-       
-       for (i=0; i<n; i++) {
-               // INPUT SIGNAL
-               x = data[i];
-               phi += frequency_offset;
-               
-               // generate complex sinusoid
-               y = cosf(phi_hat) + _Complex_I*sinf(phi_hat);
-
-               output[i] = y;
-
-               // compute error estimate
-               float delta_phi = cargf( x * conjf(y) );
-
-               
-        // print results to standard output
-        printf("  %6u %12.8f %12.8f %12.8f %12.8f %12.8f\n",
-                  i,
-                  crealf(x), cimagf(x),
-                  crealf(y), cimagf(y),
-                  delta_phi);
-       
-               // push result through loop filter, updating phase estimate
-
-               // advance buffer
-               v2 = v1;  // shift center register to upper register
-               v1 = v0;  // shift lower register to center register
-
-               // compute new lower register
-               v0 = delta_phi - v1*a1 - v2*a2;
-
-               // compute new output
-               phi_hat = v0*b0 + v1*b1 + v2*b2;
-
-       }
-
-       for (i=0; i<len; ++i){
-               data[i] = (int)crealf(output[i]);
-       }
-}
-
-/* Sliding DFT
-   Smooths out 
-*/ 
-void iceFsk2(int * data, const size_t len){
-
-       int i, j;
-       int output[len];
-       
-       // for (i=0; i<len-5; ++i){
-               // for ( j=1; j <=5; ++j) {
-                       // output[i] += data[i*j];
-               // }
-               // output[i] /= 5;
-       // }
-       int rest = 127;
-       int tmp =0;
-       for (i=0; i<len; ++i){
-               if ( data[i] < 127)
-                       output[i] = 0;
-               else {
-                       tmp =  (100 * (data[i]-rest)) / rest;
-                       output[i] = (tmp > 60)? 100:0;
-               }
-       }
-       
-       for (j=0; j<len; ++j)
-               data[j] = output[j];
-}
-
 void iceFsk3(int * data, const size_t len){
 
        int i,j;
-       int output[len];
-    float fc            = 0.1125f;          // center frequency
-
+       
+       int * output =  (int* ) malloc(sizeof(int) * len);      
+       memset(output, 0x00, len);
+       float fc           = 0.1125f;          // center frequency
+       size_t adjustedLen = len;
+       
     // create very simple low-pass filter to remove images (2nd-order Butterworth)
     float complex iir_buf[3] = {0,0,0};
     float b[3] = {0.003621681514929,  0.007243363029857, 0.003621681514929};
     float a[3] = {1.000000000000000, -1.822694925196308, 0.837181651256023};
     
-    // process entire input file one sample at a time
-    float         sample      = 0;      // input sample read from file
-    float complex x_prime     = 1.0f;   // save sample for estimating frequency
+    float sample           = 0;      // input sample read from file
+    float complex x_prime  = 1.0f;   // save sample for estimating frequency
     float complex x;
                
-       for (i=0; i<len; ++i) {
+       for (i=0; i<adjustedLen; ++i) {
 
-               sample = data[i];
+               sample = data[i]+128;
                
         // remove DC offset and mix to complex baseband
         x = (sample - 127.5f) * cexpf( _Complex_I * 2 * M_PI * fc * i );
@@ -538,18 +122,19 @@ void iceFsk3(int * data, const size_t len){
     } 
 
        // show data
-       for (j=0; j<len; ++j)
+       for (j=0; j<adjustedLen; ++j)
                data[j] = output[j];
                
        CmdLtrim("30");
+       adjustedLen -= 30;
        
        // zero crossings.
-       for (j=0; j<len; ++j){
+       for (j=0; j<adjustedLen; ++j){
                if ( data[j] == 10) break;
        }
        int startOne =j;
        
-       for (;j<len; ++j){
+       for (;j<adjustedLen; ++j){
                if ( data[j] == -10 ) break;
        }
        int stopOne = j-1;
@@ -560,13 +145,14 @@ void iceFsk3(int * data, const size_t len){
        fieldlen = (fieldlen == 59 || fieldlen == 51)? 50 : fieldlen;
        if ( fieldlen != 40 && fieldlen != 50){
                printf("Detected field Length: %d \n", fieldlen);
-               printf("Can only handle len 40 or 50.  Aborting...");
+               printf("Can only handle 40 or 50.  Aborting...\n");
+               free(output);
                return;
        }
        
        // FSK sequence start == 000111
        int startPos = 0;
-       for (i =0; i<len; ++i){
+       for (i =0; i<adjustedLen; ++i){
                int dec = 0;
                for ( j = 0; j < 6*fieldlen; ++j){
                        dec += data[i + j];
@@ -579,27 +165,24 @@ void iceFsk3(int * data, const size_t len){
        
        printf("000111 position: %d \n", startPos);
 
-       startPos += 6*fieldlen+1;
+       startPos += 6*fieldlen+5;
        
+       int bit =0;
        printf("BINARY\n");
        printf("R/40 :  ");
-       for (i =startPos ; i < len; i += 40){
-               if ( data[i] > 0 ) 
-                       printf("1");
-               else
-                       printf("0");
+       for (i =startPos ; i < adjustedLen; i += 40){
+               bit = data[i]>0 ? 1:0;
+               printf("%d", bit );
        }
        printf("\n");   
        
        printf("R/50 :  ");
-       for (i =startPos ; i < len; i += 50){
-               if ( data[i] > 0 ) 
-                       printf("1");
-               else
-                       printf("0");
-       }
+       for (i =startPos ; i < adjustedLen; i += 50){
+               bit = data[i]>0 ? 1:0;
+               printf("%d", bit );     }
        printf("\n");   
        
+       free(output);
 }
 
 float complex cexpf (float complex Z)
Impressum, Datenschutz