X-Git-Url: http://cvs.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/0194ce8fc842da0e40b9d7bbfcb1837f508de9ce..9bef1216b98ab37573afa24195fe61f46e076232:/armsrc/iso14443a.c

diff --git a/armsrc/iso14443a.c b/armsrc/iso14443a.c
index 59edffc9..425352b9 100644
--- a/armsrc/iso14443a.c
+++ b/armsrc/iso14443a.c
@@ -9,19 +9,7 @@
 //-----------------------------------------------------------------------------
 // Routines to support ISO 14443 type A.
 //-----------------------------------------------------------------------------
-
-#include "proxmark3.h"
-#include "apps.h"
-#include "util.h"
-#include "string.h"
-#include "cmd.h"
-#include "iso14443crc.h"
 #include "iso14443a.h"
-#include "iso14443b.h"
-#include "crapto1.h"
-#include "mifareutil.h"
-#include "BigBuf.h"
-#include "parity.h"
 
 static uint32_t iso14a_timeout;
 int rsamples = 0;
@@ -510,6 +498,7 @@ static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non
 // Record the sequence of commands sent by the reader to the tag, with
 // triggering so that we start recording at the point that the tag is moved
 // near the reader.
+// "hf 14a sniff"
 //-----------------------------------------------------------------------------
 void RAMFUNC SniffIso14443a(uint8_t param) {
 	// param:
@@ -550,7 +539,10 @@ void RAMFUNC SniffIso14443a(uint8_t param) {
 	UartInit(receivedCmd, receivedCmdPar);
 	
 	// Setup and start DMA.
-	FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
+	if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, DMA_BUFFER_SIZE) ){
+		if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting"); 
+		return;
+	}
 	
 	// We won't start recording the frames that we acquire until we trigger;
 	// a good trigger condition to get started is probably when we see a
@@ -660,13 +652,13 @@ void RAMFUNC SniffIso14443a(uint8_t param) {
 		}
 	} // main cycle
 
+	if (MF_DBGLEVEL >= 1) {
+		Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len);
+		Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart.output[0]);
+	}
 	FpgaDisableSscDma();
-	LEDsoff();
-
-	Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len);
-	Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart.output[0]);
-	
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+	LEDsoff();
 	set_tracing(FALSE);	
 }
 
@@ -853,15 +845,18 @@ bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
 //-----------------------------------------------------------------------------
 // Main loop of simulated tag: receive commands from reader, decide what
 // response to send, and send it.
+// 'hf 14a sim'
 //-----------------------------------------------------------------------------
 void SimulateIso14443aTag(int tagType, int flags, byte_t* data) {
 
-	//Here, we collect CUID, NT, AR, NR, NT2, AR2, NR2
-	// This can be used in a reader-only attack.
-	uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0,0,0};
-	uint8_t ar_nr_collected = 0;
+	#define ATTACK_KEY_COUNT 8 // keep same as define in cmdhfmf.c -> readerAttack()
+	// init pseudorand
+	fast_prand();
+	
 	uint8_t sak = 0;
-					
+	uint32_t cuid = 0;			
+	uint32_t nonce = 0;
+	
 	// PACK response to PWD AUTH for EV1/NTAG
 	uint8_t response8[4] = {0,0,0,0};
 	// Counter for EV1/NTAG
@@ -869,6 +864,16 @@ void SimulateIso14443aTag(int tagType, int flags, byte_t* data) {
 	
 	// The first response contains the ATQA (note: bytes are transmitted in reverse order).
 	uint8_t response1[] = {0,0};
+
+	// Here, we collect CUID, block1, keytype1, NT1, NR1, AR1, CUID, block2, keytyp2, NT2, NR2, AR2
+	// it should also collect block, keytype.
+	uint8_t cardAUTHSC = 0;
+	uint8_t cardAUTHKEY = 0xff;  // no authentication
+	// allow collecting up to 8 sets of nonces to allow recovery of up to 8 keys
+
+	nonces_t ar_nr_nonces[ATTACK_KEY_COUNT]; // for attack types moebius
+	memset(ar_nr_nonces, 0x00, sizeof(ar_nr_nonces));
+	uint8_t	moebius_count = 0;
 	
 	switch (tagType) {
 		case 1: { // MIFARE Classic 1k 
@@ -909,11 +914,15 @@ void SimulateIso14443aTag(int tagType, int flags, byte_t* data) {
 				uint16_t start = 4 * (0+12);  
 				uint8_t emdata[8];
 				emlGetMemBt( emdata, start, sizeof(emdata));
-				memcpy(data, emdata, 3); //uid bytes 0-2
-				memcpy(data+3, emdata+4, 4); //uid bytes 3-7
+				memcpy(data, emdata, 3); // uid bytes 0-2
+				memcpy(data+3, emdata+4, 4); // uid bytes 3-7
 				flags |= FLAG_7B_UID_IN_DATA;
 			}
-		} break;		
+		} break;	
+		case 8: { // MIFARE Classic 4k
+			response1[0] = 0x02;
+			sak = 0x18;
+		} break;
 		default: {
 			Dbprintf("Error: unkown tagtype (%d)",tagType);
 			return;
@@ -926,7 +935,7 @@ void SimulateIso14443aTag(int tagType, int flags, byte_t* data) {
 	// For UID size 7, 
 	uint8_t response2a[5] = {0x00};
 	
-	if (flags & FLAG_7B_UID_IN_DATA) {
+	if ( (flags & FLAG_7B_UID_IN_DATA) == FLAG_7B_UID_IN_DATA ) {
 		response2[0] = 0x88;  // Cascade Tag marker
 		response2[1] = data[0];
 		response2[2] = data[1];
@@ -941,11 +950,14 @@ void SimulateIso14443aTag(int tagType, int flags, byte_t* data) {
 		// Configure the ATQA and SAK accordingly
 		response1[0] |= 0x40;
 		sak |= 0x04;
+		
+		cuid = bytes_to_num(data+3, 4);
 	} else {
 		memcpy(response2, data, 4);
 		// Configure the ATQA and SAK accordingly
 		response1[0] &= 0xBF;
 		sak &= 0xFB;
+		cuid = bytes_to_num(data, 4);
 	}
 
 	// Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
@@ -960,19 +972,21 @@ void SimulateIso14443aTag(int tagType, int flags, byte_t* data) {
 	response3a[0] = sak & 0xFB;
 	ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
 
-	uint8_t response5[] = { 0x01, 0x01, 0x01, 0x01 }; 				// Very random tag nonce
+	// Tag NONCE.
+	uint8_t response5[4]; 
+	
 	uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; 	// dummy ATS (pseudo-ATR), answer to RATS: 
 	// Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present, 
 	// TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
 	// TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
 	// TC(1) = 0x02: CID supported, NAD not supported
 	ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]);
-
+	
 	// Prepare GET_VERSION (different for UL EV-1 / NTAG)
-	//uint8_t response7_EV1[] = {0x00, 0x04, 0x03, 0x01, 0x01, 0x00, 0x0b, 0x03, 0xfd, 0xf7};  //EV1 48bytes VERSION.
-	//uint8_t response7_NTAG[] = {0x00, 0x04, 0x04, 0x02, 0x01, 0x00, 0x11, 0x03, 0x01, 0x9e}; //NTAG 215	
+	// uint8_t response7_EV1[] = {0x00, 0x04, 0x03, 0x01, 0x01, 0x00, 0x0b, 0x03, 0xfd, 0xf7};  //EV1 48bytes VERSION.
+	// uint8_t response7_NTAG[] = {0x00, 0x04, 0x04, 0x02, 0x01, 0x00, 0x11, 0x03, 0x01, 0x9e}; //NTAG 215	
 	// Prepare CHK_TEARING
-	//uint8_t response9[] =  {0xBD,0x90,0x3f};
+	// uint8_t response9[] =  {0xBD,0x90,0x3f};
 	
 	#define TAG_RESPONSE_COUNT 10
 	tag_response_info_t responses[TAG_RESPONSE_COUNT] = {
@@ -986,8 +1000,8 @@ void SimulateIso14443aTag(int tagType, int flags, byte_t* data) {
 
 		{ .response = response8,   .response_n = sizeof(response8) }  // EV1/NTAG PACK response
 	};	
-		//{ .response = response7_NTAG, .response_n = sizeof(response7_NTAG)}, // EV1/NTAG GET_VERSION response
-		//{ .response = response9,      .response_n = sizeof(response9)     }  // EV1/NTAG CHK_TEAR response
+		// { .response = response7_NTAG, .response_n = sizeof(response7_NTAG)}, // EV1/NTAG GET_VERSION response
+		// { .response = response9,      .response_n = sizeof(response9)     }  // EV1/NTAG CHK_TEAR response
 	
 
 	// Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
@@ -1038,10 +1052,9 @@ void SimulateIso14443aTag(int tagType, int flags, byte_t* data) {
 		
 		// Clean receive command buffer
 		if(!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)) {
-			DbpString("Button press");
+			Dbprintf("Emulator stopped. Tracing: %d  trace length: %d ", tracing, BigBuf_get_traceLen());
 			break;
-		}
-
+		}	
 		p_response = NULL;
 		
 		// Okay, look at the command now.
@@ -1062,23 +1075,27 @@ void SimulateIso14443aTag(int tagType, int flags, byte_t* data) {
 			uint8_t block = receivedCmd[1];
 			// if Ultralight or NTAG (4 byte blocks)
 			if ( tagType == 7 || tagType == 2 ) {
-				//first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
+				// first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
 				uint16_t start = 4 * (block+12);  
-					uint8_t emdata[MAX_MIFARE_FRAME_SIZE];
-					emlGetMemBt( emdata, start, 16);
-					AppendCrc14443a(emdata, 16);
-					EmSendCmdEx(emdata, sizeof(emdata), false);				
+				uint8_t emdata[MAX_MIFARE_FRAME_SIZE];
+				emlGetMemBt( emdata, start, 16);
+				AppendCrc14443a(emdata, 16);
+				EmSendCmdEx(emdata, sizeof(emdata), false);
 				// We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
 				p_response = NULL;
 			} else { // all other tags (16 byte block tags)
-				EmSendCmdEx(data+(4*receivedCmd[1]),16,false);
+				uint8_t emdata[MAX_MIFARE_FRAME_SIZE];
+				emlGetMemBt( emdata, block, 16);
+				AppendCrc14443a(emdata, 16);
+				EmSendCmdEx(emdata, sizeof(emdata), false);
+				// EmSendCmdEx(data+(4*receivedCmd[1]),16,false);
 				// Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
 				// We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
 				p_response = NULL;
 			}
 		} else if(receivedCmd[0] == MIFARE_ULEV1_FASTREAD) {	// Received a FAST READ (ranged read)				
 			uint8_t emdata[MAX_FRAME_SIZE];
-			//first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
+			// first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
 			int start =  (receivedCmd[1]+12) * 4; 
 			int len   = (receivedCmd[2] - receivedCmd[1] + 1) * 4;
 			emlGetMemBt( emdata, start, len);
@@ -1086,7 +1103,7 @@ void SimulateIso14443aTag(int tagType, int flags, byte_t* data) {
 			EmSendCmdEx(emdata, len+2, false);				
 			p_response = NULL;		
 		} else if(receivedCmd[0] == MIFARE_ULEV1_READSIG && tagType == 7) {	// Received a READ SIGNATURE -- 
-			//first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
+			// first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
 			uint16_t start = 4 * 4;
 			uint8_t emdata[34];
 			emlGetMemBt( emdata, start, 32);
@@ -1095,12 +1112,12 @@ void SimulateIso14443aTag(int tagType, int flags, byte_t* data) {
 			p_response = NULL;					
 		} else if (receivedCmd[0] == MIFARE_ULEV1_READ_CNT && tagType == 7) {	// Received a READ COUNTER -- 
 			uint8_t index = receivedCmd[1];
-			uint8_t data[] =  {0x00,0x00,0x00,0x14,0xa5};
+			uint8_t cmd[] =  {0x00,0x00,0x00,0x14,0xa5};
 			if ( counters[index] > 0) {
-				num_to_bytes(counters[index], 3, data);
-				AppendCrc14443a(data, sizeof(data)-2);
+				num_to_bytes(counters[index], 3, cmd);
+				AppendCrc14443a(cmd, sizeof(cmd)-2);
 			}
-			EmSendCmdEx(data,sizeof(data),false);				
+			EmSendCmdEx(cmd,sizeof(cmd),false);				
 			p_response = NULL;
 		} else if (receivedCmd[0] == MIFARE_ULEV1_INCR_CNT && tagType == 7) {	// Received a INC COUNTER -- 
 			// number of counter
@@ -1113,7 +1130,7 @@ void SimulateIso14443aTag(int tagType, int flags, byte_t* data) {
 			EmSendCmdEx(ack,sizeof(ack),false);
 			p_response = NULL;			
 		} else if(receivedCmd[0] == MIFARE_ULEV1_CHECKTEAR && tagType == 7) {	// Received a CHECK_TEARING_EVENT -- 
-			//first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
+			// first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
 			uint8_t emdata[3];
 			uint8_t counter=0;
 			if (receivedCmd[1]<3) counter = receivedCmd[1];
@@ -1124,16 +1141,29 @@ void SimulateIso14443aTag(int tagType, int flags, byte_t* data) {
 		} else if(receivedCmd[0] == ISO14443A_CMD_HALT) {	// Received a HALT
 			LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
 			p_response = NULL;
-		} else if(receivedCmd[0] == MIFARE_AUTH_KEYA || receivedCmd[0] == MIFARE_AUTH_KEYB) {	// Received an authentication request
-					
+		} else if(receivedCmd[0] == MIFARE_AUTH_KEYA || receivedCmd[0] == MIFARE_AUTH_KEYB) {	// Received an authentication request				
 			if ( tagType == 7 ) {   // IF NTAG /EV1  0x60 == GET_VERSION, not a authentication request.
 				uint8_t emdata[10];
 				emlGetMemBt( emdata, 0, 8 );
 				AppendCrc14443a(emdata, sizeof(emdata)-2);
-				EmSendCmdEx(emdata, sizeof(emdata), false);	
+				EmSendCmdEx(emdata, sizeof(emdata), false);
 				p_response = NULL;
 			} else {
-				p_response = &responses[5]; order = 7;
+								
+				cardAUTHKEY = receivedCmd[0] - 0x60;
+				cardAUTHSC = receivedCmd[1] / 4; // received block num
+				
+				// incease nonce at AUTH requests. this is time consuming.
+				nonce = prand();
+				//num_to_bytes(nonce, 4, response5);
+				num_to_bytes(nonce, 4, dynamic_response_info.response);				
+				dynamic_response_info.response_n = 4;
+
+				//prepare_tag_modulation(&responses[5], DYNAMIC_MODULATION_BUFFER_SIZE);
+				prepare_tag_modulation(&dynamic_response_info, DYNAMIC_MODULATION_BUFFER_SIZE);
+				p_response = &dynamic_response_info;
+				//p_response = &responses[5]; 
+				order = 7;
 			}
 		} else if(receivedCmd[0] == ISO14443A_CMD_RATS) {	// Received a RATS request
 			if (tagType == 1 || tagType == 2) {	// RATS not supported
@@ -1144,44 +1174,71 @@ void SimulateIso14443aTag(int tagType, int flags, byte_t* data) {
 			}
 		} else if (order == 7 && len == 8) { // Received {nr] and {ar} (part of authentication)
 			LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
-			uint32_t nonce = bytes_to_num(response5,4);
 			uint32_t nr = bytes_to_num(receivedCmd,4);
 			uint32_t ar = bytes_to_num(receivedCmd+4,4);
+		 
+			// Collect AR/NR per keytype & sector
+			if ( (flags & FLAG_NR_AR_ATTACK) == FLAG_NR_AR_ATTACK ) {
+				
+				int8_t index = -1;
+				int8_t empty = -1;
+				for (uint8_t i = 0; i < ATTACK_KEY_COUNT; i++) {
+					// find which index to use
+					if ( (cardAUTHSC == ar_nr_nonces[i].sector) &&  (cardAUTHKEY == ar_nr_nonces[i].keytype)) 
+						index = i;
+
+					// keep track of empty slots.
+					if ( ar_nr_nonces[i].state == EMPTY)
+						empty = i;
+				}
+				// if no empty slots.  Choose first and overwrite.
+				if ( index == -1 ) {
+					if ( empty == -1 ) {
+						index = 0;
+						ar_nr_nonces[index].state = EMPTY;
+					} else {
+						index = empty;
+					}
+				}
 
-			if(flags & FLAG_NR_AR_ATTACK ) {
-				if(ar_nr_collected < 2){
-					// Avoid duplicates... probably not necessary, nr should vary. 
-					//if(ar_nr_responses[3] != nr){						
-						ar_nr_responses[ar_nr_collected*4]   = 0;
-						ar_nr_responses[ar_nr_collected*4+1] = nonce;
-						ar_nr_responses[ar_nr_collected*4+2] = nr;
-						ar_nr_responses[ar_nr_collected*4+3] = ar;
-						ar_nr_collected++;
-					//}
-				}			
-
-				if(ar_nr_collected > 1 ) {		
-					if (MF_DBGLEVEL >= 2) {
-							Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
-							Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
-								ar_nr_responses[0], // CUID
-								ar_nr_responses[1], // NT
-								ar_nr_responses[2], // AR1
-								ar_nr_responses[3], // NR1
-								ar_nr_responses[6], // AR2
-								ar_nr_responses[7]  // NR2
-							);
+				switch(ar_nr_nonces[index].state) {
+					case EMPTY: {
+						// first nonce collect
+						ar_nr_nonces[index].cuid = cuid;
+						ar_nr_nonces[index].sector = cardAUTHSC;
+						ar_nr_nonces[index].keytype = cardAUTHKEY;
+						ar_nr_nonces[index].nonce = nonce;
+						ar_nr_nonces[index].nr = nr;
+						ar_nr_nonces[index].ar = ar;
+						ar_nr_nonces[index].state = FIRST;
+						break;
+					} 
+					case FIRST : { 
+						// second nonce collect
+						ar_nr_nonces[index].nonce2 = nonce;
+						ar_nr_nonces[index].nr2 = nr;
+						ar_nr_nonces[index].ar2 = ar;
+						ar_nr_nonces[index].state = SECOND;
+
+						// send to client
+						cmd_send(CMD_ACK, CMD_SIMULATE_MIFARE_CARD, 0, 0, &ar_nr_nonces[index], sizeof(nonces_t));
+						
+						ar_nr_nonces[index].state = EMPTY;
+						ar_nr_nonces[index].sector = 0;
+						ar_nr_nonces[index].keytype = 0;
+						
+						moebius_count++;
+						break;
 					}
-					uint8_t len = ar_nr_collected*5*4;
-					cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,len,0,&ar_nr_responses,len);
-					ar_nr_collected = 0;
-					memset(ar_nr_responses, 0x00, len);
+					default: break;
 				}
 			}
+			p_response = NULL;
+			
 		} else if (receivedCmd[0] == MIFARE_ULC_AUTH_1 ) { // ULC authentication, or Desfire Authentication
 		} else if (receivedCmd[0] == MIFARE_ULEV1_AUTH) { // NTAG / EV-1 authentication
 			if ( tagType == 7 ) {
-				uint16_t start = 13; //first 4 blocks of emu are [getversion answer - check tearing - pack - 0x00]
+				uint16_t start = 13; // first 4 blocks of emu are [getversion answer - check tearing - pack - 0x00]
 				uint8_t emdata[4];
 				emlGetMemBt( emdata, start, 2);
 				AppendCrc14443a(emdata, 2);
@@ -1216,8 +1273,8 @@ void SimulateIso14443aTag(int tagType, int flags, byte_t* data) {
 				  dynamic_response_info.response_n = 2;
 				} break;
 
-				case 0xaa:
-				case 0xbb: {
+				case 0xAA:
+				case 0xBB: {
 				  dynamic_response_info.response[0] = receivedCmd[0] ^ 0x11;
 				  dynamic_response_info.response_n = 2;
 				} break;
@@ -1250,11 +1307,11 @@ void SimulateIso14443aTag(int tagType, int flags, byte_t* data) {
 				dynamic_response_info.response[1] = receivedCmd[1];
 
 				// Add CRC bytes, always used in ISO 14443A-4 compliant cards
-				AppendCrc14443a(dynamic_response_info.response,dynamic_response_info.response_n);
+				AppendCrc14443a(dynamic_response_info.response, dynamic_response_info.response_n);
 				dynamic_response_info.response_n += 2;
         
 				if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) {
-					Dbprintf("Error preparing tag response");
+					DbpString("Error preparing tag response");
 					LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
 					break;
 				}
@@ -1268,6 +1325,11 @@ void SimulateIso14443aTag(int tagType, int flags, byte_t* data) {
 		// Count number of other messages after a halt
 		if(order != 6 && lastorder == 5) { happened2++; }
 
+		// comment this limit if you want to simulation longer		
+		if (!tracing) {
+			DbpString("Trace Full. Simulation stopped.");
+			break;
+		}
 		// comment this limit if you want to simulation longer
 		if(cmdsRecvd > 999) {
 			DbpString("1000 commands later...");
@@ -1292,24 +1354,55 @@ void SimulateIso14443aTag(int tagType, int flags, byte_t* data) {
 						(LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG, 
 						par);
 		}
-
-		// comment this limit if you want to simulation longer		
-		if (!tracing) {
-			Dbprintf("Trace Full. Simulation stopped.");
-			break;
-		}
 	}
 
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
 	set_tracing(FALSE);
 	BigBuf_free_keep_EM();
 	LED_A_OFF();
-	
+
+	/*	
+	if(flags & FLAG_NR_AR_ATTACK && MF_DBGLEVEL >= 1) {
+
+		for ( uint8_t	i = 0; i < ATTACK_KEY_COUNT; i++) {
+			if (ar_nr_collected[i] == 2) {
+				Dbprintf("Collected two pairs of AR/NR which can be used to extract %s from reader for sector %d:", (i<ATTACK_KEY_COUNT/2) ? "keyA" : "keyB", ar_nr_resp[i].sector);
+				Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
+						ar_nr_resp[i].cuid,  //UID
+						ar_nr_resp[i].nonce, //NT
+						ar_nr_resp[i].nr,    //NR1
+						ar_nr_resp[i].ar,    //AR1
+						ar_nr_resp[i].nr2,   //NR2
+						ar_nr_resp[i].ar2    //AR2
+						);
+			}
+		}	
+
+		for ( uint8_t	i = ATTACK_KEY_COUNT; i < ATTACK_KEY_COUNT*2; i++) {
+			if (ar_nr_collected[i] == 2) {
+				Dbprintf("Collected two pairs of AR/NR which can be used to extract %s from reader for sector %d:", (i<ATTACK_KEY_COUNT/2) ? "keyA" : "keyB", ar_nr_resp[i].sector);
+				Dbprintf("../tools/mfkey/mfkey32v2 %08x %08x %08x %08x %08x %08x %08x",
+						ar_nr_resp[i].cuid,  //UID
+						ar_nr_resp[i].nonce, //NT
+						ar_nr_resp[i].nr,    //NR1
+						ar_nr_resp[i].ar,    //AR1
+						ar_nr_resp[i].nonce2,//NT2
+						ar_nr_resp[i].nr2,   //NR2
+						ar_nr_resp[i].ar2    //AR2
+						);
+			}
+		}
+	}
+	*/
+		
 	if (MF_DBGLEVEL >= 4){
-		Dbprintf("-[ Wake ups after halt [%d]", happened);
-		Dbprintf("-[ Messages after halt [%d]", happened2);
-		Dbprintf("-[ Num of received cmd [%d]", cmdsRecvd);
+		Dbprintf("-[ Wake ups after halt  [%d]", happened);
+		Dbprintf("-[ Messages after halt  [%d]", happened2);
+		Dbprintf("-[ Num of received cmd  [%d]", cmdsRecvd);
+		Dbprintf("-[ Num of moebius tries [%d]", moebius_count);
 	}
+	
+	cmd_send(CMD_ACK,1,0,0,0,0);
 }
 
 // prepare a delayed transfer. This simply shifts ToSend[] by a number
@@ -1386,8 +1479,7 @@ static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing
 //-----------------------------------------------------------------------------
 // Prepare reader command (in bits, support short frames) to send to FPGA
 //-----------------------------------------------------------------------------
-void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity)
-{
+void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity) {
 	int i, j;
 	int last = 0;
 	uint8_t b;
@@ -1560,7 +1652,7 @@ int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded) {
 	b = AT91C_BASE_SSC->SSC_RHR; (void) b;
 	
 	// wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
-	for (uint16_t j = 0; j < 5; j++) {	// allow timeout - better late than never
+	for (uint8_t j = 0; j < 5; j++) {	// allow timeout - better late than never
 		while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
 		if (AT91C_BASE_SSC->SSC_RHR) break;
 	}
@@ -1704,14 +1796,12 @@ static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receive
 }
 
 void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing) {
+
 	CodeIso14443aBitsAsReaderPar(frame, bits, par);
-  
 	// Send command to tag
 	TransmitFor14443a(ToSend, ToSendMax, timing);
 	if(trigger) LED_A_ON();
   
-	// Log reader command in trace buffer
-	//LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, TRUE);
 	LogTrace(frame, nbytes(bits), (LastTimeProxToAirStart<<4) + DELAY_ARM2AIR_AS_READER, ((LastTimeProxToAirStart + LastProxToAirDuration)<<4) + DELAY_ARM2AIR_AS_READER, par, TRUE);
 }
 
@@ -1720,17 +1810,17 @@ void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *tim
 }
 
 void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing) {
-  // Generate parity and redirect
-  uint8_t par[MAX_PARITY_SIZE] = {0x00};
-  GetParity(frame, len/8, par);  
-  ReaderTransmitBitsPar(frame, len, par, timing);
+	// Generate parity and redirect
+	uint8_t par[MAX_PARITY_SIZE] = {0x00};
+	GetParity(frame, len/8, par);  
+	ReaderTransmitBitsPar(frame, len, par, timing);
 }
 
 void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing) {
-  // Generate parity and redirect
-  uint8_t par[MAX_PARITY_SIZE] = {0x00};
-  GetParity(frame, len, par);
-  ReaderTransmitBitsPar(frame, len*8, par, timing);
+	// Generate parity and redirect
+	uint8_t par[MAX_PARITY_SIZE] = {0x00};
+	GetParity(frame, len, par);
+	ReaderTransmitBitsPar(frame, len*8, par, timing);
 }
 
 int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity) {
@@ -1753,10 +1843,10 @@ int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity) {
 // if anticollision is false, then the UID must be provided in uid_ptr[] 
 // and num_cascades must be set (1: 4 Byte UID, 2: 7 Byte UID, 3: 10 Byte UID)
 int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr, bool anticollision, uint8_t num_cascades) {
-	uint8_t wupa[]       = { 0x52 };  // 0x26 - REQA  0x52 - WAKE-UP
-	uint8_t sel_all[]    = { 0x93,0x20 };
-	uint8_t sel_uid[]    = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
-	uint8_t rats[]       = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
+	uint8_t wupa[]       = { ISO14443A_CMD_WUPA };  // 0x26 - ISO14443A_CMD_REQA  0x52 - ISO14443A_CMD_WUPA
+	uint8_t sel_all[]    = { ISO14443A_CMD_ANTICOLL_OR_SELECT,0x20 };
+	uint8_t sel_uid[]    = { ISO14443A_CMD_ANTICOLL_OR_SELECT,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
+	uint8_t rats[]       = { ISO14443A_CMD_RATS,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
 	uint8_t resp[MAX_FRAME_SIZE] = {0}; // theoretically. A usual RATS will be much smaller
 	uint8_t resp_par[MAX_PARITY_SIZE] = {0};
 	byte_t uid_resp[4] = {0};
@@ -1784,6 +1874,9 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u
 			memset(uid_ptr,0,10);
 	}
 
+	// reset the PCB block number
+	iso14_pcb_blocknum = 0;
+	
 	// check for proprietary anticollision:
 	if ((resp[0] & 0x1F) == 0) return 3;
 	
@@ -1895,41 +1988,37 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u
 		p_hi14a_card->ats_len = len;
 	}
 
-	// reset the PCB block number
-	iso14_pcb_blocknum = 0;
-
 	// set default timeout based on ATS
 	iso14a_set_ATS_timeout(resp);
-
 	return 1;	
 }
 
 void iso14443a_setup(uint8_t fpga_minor_mode) {
+
 	FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
 	// Set up the synchronous serial port
 	FpgaSetupSsc();
 	// connect Demodulated Signal to ADC:
 	SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
 
-	FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode);
-	
 	LED_D_OFF();
 	// Signal field is on with the appropriate LED
 	if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD ||
 		fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN)
 		LED_D_ON();
 
-	// Prepare the demodulation functions
-	DemodReset();
-	UartReset();
-
-	iso14a_set_timeout(10*106); // 10ms default
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode);
 
-	//NextTransferTime = 2 * DELAY_ARM2AIR_AS_READER;
-	NextTransferTime = DELAY_ARM2AIR_AS_READER << 1;
+	SpinDelay(20);
 	
 	// Start the timer
 	StartCountSspClk();
+	
+	// Prepare the demodulation functions
+	DemodReset();
+	UartReset();
+	NextTransferTime = 2 * DELAY_ARM2AIR_AS_READER;
+	iso14a_set_timeout(10*106); // 20ms default	
 }
 
 int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) {
@@ -1958,13 +2047,12 @@ int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) {
 	{
 		iso14_pcb_blocknum ^= 1;
 	}
-
 	return len;
 }
 
+
 //-----------------------------------------------------------------------------
 // Read an ISO 14443a tag. Send out commands and store answers.
-//
 //-----------------------------------------------------------------------------
 void ReaderIso14443a(UsbCommand *c) {
 	iso14a_command_t param = c->arg[0];
@@ -2004,17 +2092,17 @@ void ReaderIso14443a(UsbCommand *c) {
 	}
 
 	if (param & ISO14A_RAW) {
-		if(param & ISO14A_APPEND_CRC) {
-			if(param & ISO14A_TOPAZMODE) {
+		if (param & ISO14A_APPEND_CRC) {
+			if (param & ISO14A_TOPAZMODE)
 				AppendCrc14443b(cmd,len);
-			} else {
+			else
 				AppendCrc14443a(cmd,len);
-			}
+			
 			len += 2;
 			if (lenbits) lenbits += 16;
 		}
-		if(lenbits>0) {				// want to send a specific number of bits (e.g. short commands)
-			if(param & ISO14A_TOPAZMODE) {
+		if (lenbits>0) {				// want to send a specific number of bits (e.g. short commands)
+			if (param & ISO14A_TOPAZMODE) {
 				int bits_to_send = lenbits;
 				uint16_t i = 0;
 				ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 7), NULL, NULL);		// first byte is always short (7bits) and no parity
@@ -2028,7 +2116,7 @@ void ReaderIso14443a(UsbCommand *c) {
 				ReaderTransmitBitsPar(cmd, lenbits, par, NULL);							// bytes are 8 bit with odd parity
 			}
 		} else {					// want to send complete bytes only
-			if(param & ISO14A_TOPAZMODE) {
+			if (param & ISO14A_TOPAZMODE) {
 				uint16_t i = 0;
 				ReaderTransmitBitsPar(&cmd[i++], 7, NULL, NULL);						// first byte: 7 bits, no paritiy
 				while (i < len) {
@@ -2060,31 +2148,29 @@ int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
 
 	if (nt1 == nt2) return 0;
 	
-	uint16_t i;
 	uint32_t nttmp1 = nt1;
 	uint32_t nttmp2 = nt2;
 
-	for (i = 1; i < (32768/8); ++i) {
-		nttmp1 = prng_successor(nttmp1, 1);
-		if (nttmp1 == nt2) return i;
-		nttmp2 = prng_successor(nttmp2, 1);
-		if (nttmp2 == nt1) return -i;
-		
+	// 0xFFFF -- Half up and half down to find distance between nonces
+	for (uint16_t i = 1; i < 32768/8; i += 8) {
+		nttmp1 = prng_successor(nttmp1, 1);	if (nttmp1 == nt2) return i;
 		nttmp1 = prng_successor(nttmp1, 1);	if (nttmp1 == nt2) return i+1;
-		nttmp2 = prng_successor(nttmp2, 1);	if (nttmp2 == nt1) return -(i+1);
 		nttmp1 = prng_successor(nttmp1, 1);	if (nttmp1 == nt2) return i+2;
-		nttmp2 = prng_successor(nttmp2, 1);	if (nttmp2 == nt1) return -(i+2);
 		nttmp1 = prng_successor(nttmp1, 1);	if (nttmp1 == nt2) return i+3;
-		nttmp2 = prng_successor(nttmp2, 1);	if (nttmp2 == nt1) return -(i+3);
 		nttmp1 = prng_successor(nttmp1, 1);	if (nttmp1 == nt2) return i+4;
-		nttmp2 = prng_successor(nttmp2, 1);	if (nttmp2 == nt1) return -(i+4);
 		nttmp1 = prng_successor(nttmp1, 1);	if (nttmp1 == nt2) return i+5;
-		nttmp2 = prng_successor(nttmp2, 1);	if (nttmp2 == nt1) return -(i+5);
 		nttmp1 = prng_successor(nttmp1, 1);	if (nttmp1 == nt2) return i+6;
-		nttmp2 = prng_successor(nttmp2, 1);	if (nttmp2 == nt1) return -(i+6);
 		nttmp1 = prng_successor(nttmp1, 1);	if (nttmp1 == nt2) return i+7;
-		nttmp2 = prng_successor(nttmp2, 1);	if (nttmp2 == nt1) return -(i+7);
-	}	
+		
+		nttmp2 = prng_successor(nttmp2, 1);	if (nttmp2 == nt1) return -i;
+		nttmp2 = prng_successor(nttmp2, 1);	if (nttmp2 == nt1) return -(i+1);
+		nttmp2 = prng_successor(nttmp2, 1);	if (nttmp2 == nt1) return -(i+2);
+		nttmp2 = prng_successor(nttmp2, 1);	if (nttmp2 == nt1) return -(i+3);
+		nttmp2 = prng_successor(nttmp2, 1);	if (nttmp2 == nt1) return -(i+4);
+		nttmp2 = prng_successor(nttmp2, 1);	if (nttmp2 == nt1) return -(i+5);
+		nttmp2 = prng_successor(nttmp2, 1);	if (nttmp2 == nt1) return -(i+6);
+		nttmp2 = prng_successor(nttmp2, 1);	if (nttmp2 == nt1) return -(i+7);		
+	}
 	// either nt1 or nt2 are invalid nonces	
 	return(-99999); 
 }
@@ -2095,9 +2181,10 @@ int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
 // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
 // (article by Nicolas T. Courtois, 2009)
 //-----------------------------------------------------------------------------
-void ReaderMifare(bool first_try, uint8_t block ) {
-	//uint8_t mf_auth[]    = { MIFARE_AUTH_KEYA,0x00,0xf5,0x7b };
-	uint8_t mf_auth[] 	= { MIFARE_AUTH_KEYA, block, 0x00, 0x00 };
+
+void ReaderMifare(bool first_try, uint8_t block, uint8_t keytype ) {
+	
+	uint8_t mf_auth[] 	= { keytype, block, 0x00, 0x00 };
 	uint8_t mf_nr_ar[]	= { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
 	uint8_t uid[10]		= {0,0,0,0,0,0,0,0,0,0};
 	uint8_t par_list[8]	= {0,0,0,0,0,0,0,0};
@@ -2120,7 +2207,7 @@ void ReaderMifare(bool first_try, uint8_t block ) {
 	uint16_t unexpected_random = 0;
 	uint16_t sync_tries = 0;
 
-	// static variables here, is re-used in the next call?
+	// static variables here, is re-used in the next call
 	static uint32_t nt_attacked = 0;
 	static uint32_t sync_time = 0;
 	static uint32_t sync_cycles = 0;
@@ -2130,23 +2217,23 @@ void ReaderMifare(bool first_try, uint8_t block ) {
 	#define PRNG_SEQUENCE_LENGTH	(1 << 16)
 	#define MAX_UNEXPECTED_RANDOM	4		// maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up.
 	#define MAX_SYNC_TRIES		32
-	#define MAX_STRATEGY		3
-
+	
+	AppendCrc14443a(mf_auth, 2);
+	
 	BigBuf_free(); BigBuf_Clear_ext(false);	
 	clear_trace();
-	set_tracing(TRUE);	
+	set_tracing(FALSE);	
 	iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
 
-	AppendCrc14443a(mf_auth, 2);
+	sync_time = GetCountSspClk() & 0xfffffff8;
+	sync_cycles = PRNG_SEQUENCE_LENGTH; // Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).		
+	nt_attacked = 0;
 	
-	if (first_try) { 
-		sync_time = GetCountSspClk() & 0xfffffff8;
-		sync_cycles = PRNG_SEQUENCE_LENGTH + 1130; //65536;	//0x10000	// Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
-		mf_nr_ar3 = 0;			
-		nt_attacked = 0;
+   if (MF_DBGLEVEL >= 4)	Dbprintf("Mifare::Sync %u", sync_time);
+				
+	if (first_try) {
+		mf_nr_ar3 = 0;
 		par_low = 0;
-
-		Dbprintf("FIRST: sync_time - %08X", sync_time);
 	} else {
 		// we were unsuccessful on a previous call. 
 		// Try another READER nonce (first 3 parity bits remain the same)
@@ -2214,9 +2301,9 @@ void ReaderMifare(bool first_try, uint8_t block ) {
 		// Transmit reader nonce with fake par
 		ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);
 	
-		WDT_HIT();
-		LED_B_ON();
-		if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet
+		// we didn't calibrate our clock yet,
+		// iceman: has to be calibrated every time.
+		if (previous_nt && !nt_attacked) { 
 
 			nt_distance = dist_nt(previous_nt, nt);
 			
@@ -2255,7 +2342,7 @@ void ReaderMifare(bool first_try, uint8_t block ) {
 		}
 		LED_B_OFF();
 
-		if ((nt != nt_attacked) && nt_attacked) { 	// we somehow lost sync. Try to catch up again...
+		if ( (nt != nt_attacked) && nt_attacked) { 	// we somehow lost sync. Try to catch up again...
 			
 			catch_up_cycles = ABS(dist_nt(nt_attacked, nt));
 			if (catch_up_cycles == 99999) {			// invalid nonce received. Don't resync on that one.
@@ -2328,7 +2415,7 @@ void ReaderMifare(bool first_try, uint8_t block ) {
 
 	mf_nr_ar[3] &= 0x1F;
 
-	if (MF_DBGLEVEL >= 1) Dbprintf("\nNumber of sent auth requestes: %u", i);
+	if (MF_DBGLEVEL >= 4) Dbprintf("Number of sent auth requestes: %u", i);
 	
 	uint8_t buf[28] = {0x00};
 	memset(buf, 0x00, sizeof(buf));
@@ -2345,6 +2432,7 @@ void ReaderMifare(bool first_try, uint8_t block ) {
 	set_tracing(FALSE);
 }
 
+
 /**
   *MIFARE 1K simulate.
   *
@@ -2358,6 +2446,10 @@ void ReaderMifare(bool first_try, uint8_t block ) {
   *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
   */
 void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain) {
+
+	// init pseudorand
+	fast_prand( GetTickCount() );
+	
 	int cardSTATE = MFEMUL_NOFIELD;
 	int _UID_LEN = 0;  // 4, 7, 10
 	int vHf = 0;	// in mV
@@ -2375,81 +2467,63 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 	struct Crypto1State mpcs = {0, 0};
 	struct Crypto1State *pcs;
 	pcs = &mpcs;
-	uint32_t numReads = 0;	//Counts numer of times reader read a block
+	uint32_t numReads = 0;	// Counts numer of times reader read a block
 	uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE] = {0x00};
 	uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE] = {0x00};
 	uint8_t response[MAX_MIFARE_FRAME_SIZE] = {0x00};
 	uint8_t response_par[MAX_MIFARE_PARITY_SIZE] = {0x00};
 	
-	uint8_t atqa[]   = {0x04, 0x00}; // Mifare classic 1k (4b UID)
-	uint8_t sak_4[]  = {0x08, 0x00, 0x00}; // Mifare Classic 
-	uint8_t sak_7[]  = {0x08, 0x00, 0x00}; // CL2 - 7b uid
-	uint8_t sak_10[] = {0x08, 0x00, 0x00}; // CL3 - 10b uid
-	//uint8_t sak[] = {0x09, 0x3f, 0xcc };  // Mifare Mini 
+	uint8_t atqa[]   = {0x04, 0x00}; // Mifare classic 1k
+	uint8_t sak_4[]  = {0x0C, 0x00, 0x00}; // CL1 - 4b uid
+	uint8_t sak_7[]  = {0x0C, 0x00, 0x00}; // CL2 - 7b uid
+	uint8_t sak_10[] = {0x0C, 0x00, 0x00}; // CL3 - 10b uid
+	// uint8_t sak[] = {0x09, 0x3f, 0xcc };  // Mifare Mini 
 	
 	uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; 
 	uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; 
 	uint8_t rUIDBCC3[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
 
-	uint8_t rAUTH_NT[] = {0x01, 0x01, 0x01, 0x01};	// very random nonce
-	//uint8_t rAUTH_NT[] = {0x55, 0x41, 0x49, 0x92};// nonce from nested? why this?
+	// TAG Nonce - Authenticate response
+	uint8_t rAUTH_NT[4];
+	uint32_t nonce = prand();
+	num_to_bytes(nonce, 4, rAUTH_NT);
+	
+	// uint8_t rAUTH_NT[] = {0x55, 0x41, 0x49, 0x92};// nonce from nested? why this?
 	uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
-		
-	// Here, we collect CUID, NT, AR, NR, NT2, AR2, NR2
+	
+	// Here, we collect CUID, NT, NR, AR, CUID2, NT2, NR2, AR2
 	// This can be used in a reader-only attack.
-	uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0};
-	uint8_t ar_nr_collected = 0;
+	nonces_t ar_nr_nonces[ATTACK_KEY_COUNT];
+	memset(ar_nr_nonces, 0x00, sizeof(ar_nr_nonces));
 
-	// Authenticate response - nonce
-	uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
-	
-	//-- Determine the UID
+	// -- Determine the UID
 	// Can be set from emulator memory or incoming data
 	// Length: 4,7,or 10 bytes
-	if ( flags & FLAG_UID_IN_EMUL ) {
-		emlGetMemBt(rUIDBCC1, 0, 4);
-		_UID_LEN = 4;
-	} else if (flags & FLAG_4B_UID_IN_DATA) {
+	if ( (flags & FLAG_UID_IN_EMUL) == FLAG_UID_IN_EMUL)
+		emlGetMemBt(datain, 0, 10);  // load 10bytes from EMUL to the datain pointer. to be used below.
+	
+	if ( (flags & FLAG_4B_UID_IN_DATA) == FLAG_4B_UID_IN_DATA) {
 		memcpy(rUIDBCC1, datain, 4);
 		_UID_LEN = 4;
-	} else if (flags & FLAG_7B_UID_IN_DATA) {
+	} else if ( (flags & FLAG_7B_UID_IN_DATA) == FLAG_7B_UID_IN_DATA) {
 		memcpy(&rUIDBCC1[1], datain,   3);
 		memcpy( rUIDBCC2,    datain+3, 4);
 		_UID_LEN = 7;
-	} else if (flags & FLAG_10B_UID_IN_DATA) {
+	} else if ( (flags & FLAG_10B_UID_IN_DATA) == FLAG_10B_UID_IN_DATA) {
 		memcpy(&rUIDBCC1[1], datain,   3);
-		memcpy(&rUIDBCC2[1], datain+3, 4);
-		memcpy( rUIDBCC3,    datain+7, 4);
+		memcpy(&rUIDBCC2[1], datain+3, 3);
+		memcpy( rUIDBCC3,    datain+6, 4);
 		_UID_LEN = 10;
 	}
 
-	/*
-	 * Save cuid to collected response array.
-	 * Set XOR BCC (fifth byte) and modify the ATQA for 4,7 or 10-byte UID	
-	 		atqa[] = 0x04, 0x00;
-			sak = 0x08;
-	if (flags & FLAG_7B_UID_IN_DATA) {
-		atqa[0] |= 0x40;
-		sak |= 0x04;
-	} else {
-		atqa[0] &= 0xBF;
-		sak &= 0xFB;
-		
-		// Prepare the mandatory SAK (for 4 and 7 byte UID)
-		uint8_t response3[3]  = {sak, 0x00, 0x00};
-		ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
-	*/
 	switch (_UID_LEN) {
 		case 4:
-			atqa[0] &= 0xBF;
-			sak_4[0] &= 0xFB;
-			ComputeCrc14443(CRC_14443_A, sak_4, 1, &sak_4[1], &sak_4[2]);
-			
+			sak_4[0] &= 0xFB;		
 			// save CUID
-			ar_nr_responses[0] = cuid = bytes_to_num(rUIDBCC1, 4);
+			cuid = bytes_to_num(rUIDBCC1, 4);
 			// BCC
 			rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
-			if (MF_DBGLEVEL >= 1)	{
+			if (MF_DBGLEVEL >= 2)	{
 				Dbprintf("4B UID: %02x%02x%02x%02x", 
 					rUIDBCC1[0],
 					rUIDBCC1[1],
@@ -2460,19 +2534,16 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 			break;
 		case 7:
 			atqa[0] |= 0x40;
-			sak_7[0] |= 0x04;
-			ComputeCrc14443(CRC_14443_A, sak_7, 1, &sak_7[1], &sak_7[2]);
-						
+			sak_7[0] &= 0xFB;						
 			// save CUID
-			ar_nr_responses[0] = cuid = bytes_to_num(rUIDBCC2, 4);
-			
-			rUIDBCC1[0] = 0x88; // CascadeTag, CT
+			cuid = bytes_to_num(rUIDBCC2, 4);			
+			 // CascadeTag, CT
+			rUIDBCC1[0] = 0x88;
 			// BCC
 			rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; 
 			rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3]; 
-			if (MF_DBGLEVEL >= 1)	{
+			if (MF_DBGLEVEL >= 2)	{
 				Dbprintf("7B UID: %02x %02x %02x %02x %02x %02x %02x",
-					//rUIDBCC1[0],
 					rUIDBCC1[1],
 					rUIDBCC1[2],
 					rUIDBCC1[3],
@@ -2484,27 +2555,23 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 			}
 			break;
 		case 10:
-			atqa[0] |= 0x40;
-			sak_10[0] |= 0x04;
-			ComputeCrc14443(CRC_14443_A, sak_10, 1, &sak_10[1], &sak_10[2]);
-						
+			atqa[0] |= 0x80;
+			sak_10[0] &= 0xFB;					
 			// save CUID
-			ar_nr_responses[0] = cuid = bytes_to_num(rUIDBCC3, 4);
-			rUIDBCC1[0] = 0x88; // CascadeTag, CT
+			cuid = bytes_to_num(rUIDBCC3, 4);
+			 // CascadeTag, CT
+			rUIDBCC1[0] = 0x88;
+			rUIDBCC2[0] = 0x88;
 			// BCC
 			rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
-			
-			rUIDBCC2[0] = 0x88; // CascadeTag, CT
-			// BCC
 			rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
 			rUIDBCC3[4] = rUIDBCC3[0] ^ rUIDBCC3[1] ^ rUIDBCC3[2] ^ rUIDBCC3[3];
-			if (MF_DBGLEVEL >= 1)	{
+
+			if (MF_DBGLEVEL >= 2)	{
 				Dbprintf("10B UID: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
-					//rUIDBCC1[0],
 					rUIDBCC1[1],
 					rUIDBCC1[2],
 					rUIDBCC1[3],
-					//rUIDBCC2[0],
 					rUIDBCC2[1],
 					rUIDBCC2[2],
 					rUIDBCC2[3],
@@ -2518,7 +2585,11 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 		default: 
 			break;
 	}
-
+	// calc some crcs
+	ComputeCrc14443(CRC_14443_A, sak_4, 1, &sak_4[1], &sak_4[2]);
+	ComputeCrc14443(CRC_14443_A, sak_7, 1, &sak_7[1], &sak_7[2]);
+	ComputeCrc14443(CRC_14443_A, sak_10, 1, &sak_10[1], &sak_10[2]);
+	
 	// We need to listen to the high-frequency, peak-detected path.
 	iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
 
@@ -2541,17 +2612,18 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 		} 
 		if (cardSTATE == MFEMUL_NOFIELD) continue;
 
-		//Now, get data
+		// Now, get data
 		res = EmGetCmd(receivedCmd, &len, receivedCmd_par);
 		if (res == 2) { //Field is off!
 			cardSTATE = MFEMUL_NOFIELD;
 			LEDsoff();
 			continue;
 		} else if (res == 1) {
-			break; 	//return value 1 means button press
+			break; 	// return value 1 means button press
 		}
 			
 		// REQ or WUP request in ANY state and WUP in HALTED state
+		// this if-statement doesn't match the specification above. (iceman)
 		if (len == 1 && ((receivedCmd[0] == ISO14443A_CMD_REQA && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == ISO14443A_CMD_WUPA)) {
 			selTimer = GetTickCount();
 			EmSendCmdEx(atqa, sizeof(atqa), (receivedCmd[0] == ISO14443A_CMD_WUPA));
@@ -2559,6 +2631,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 			crypto1_destroy(pcs);
 			cardAUTHKEY = 0xff;
 			LEDsoff();
+			nonce = prand(); 
 			continue;
 		}
 		
@@ -2626,9 +2699,8 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 							continue;
 						default:break;
 					}
-				} else {
-					cardSTATE_TO_IDLE();
-				}
+				} 
+				cardSTATE_TO_IDLE();
 				break;
 			}
 			case MFEMUL_SELECT3:{
@@ -2650,9 +2722,8 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 					LED_B_ON();
 					if (MF_DBGLEVEL >= 4)	Dbprintf("--> WORK. anticol3 time: %d", GetTickCount() - selTimer);
 					break;
-				} else {
-					cardSTATE_TO_IDLE();
 				}
+				cardSTATE_TO_IDLE();
 				break;
 			}
 			case MFEMUL_AUTH1:{
@@ -2662,25 +2733,67 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 					break;
 				}
 
-				uint32_t ar = bytes_to_num(receivedCmd, 4);
-				uint32_t nr = bytes_to_num(&receivedCmd[4], 4);
-
-				//Collect AR/NR
-				//if(ar_nr_collected < 2 && cardAUTHSC == 2){
-				if(ar_nr_collected < 2) {
-					if(ar_nr_responses[2] != ar) {
-						// Avoid duplicates... probably not necessary, ar should vary. 
-						//ar_nr_responses[ar_nr_collected*5]   = 0;
-						//ar_nr_responses[ar_nr_collected*5+1] = 0;
-						ar_nr_responses[ar_nr_collected*5+2] = nonce;
-						ar_nr_responses[ar_nr_collected*5+3] = nr;
-						ar_nr_responses[ar_nr_collected*5+4] = ar;
-						ar_nr_collected++;
-					}						
-					// Interactive mode flag, means we need to send ACK
-					finished = (flags & FLAG_INTERACTIVE && ar_nr_collected == 2);
+				uint32_t nr = bytes_to_num(receivedCmd, 4);
+				uint32_t ar = bytes_to_num(&receivedCmd[4], 4);
+
+				// Collect AR/NR per keytype & sector
+				if ( (flags & FLAG_NR_AR_ATTACK) == FLAG_NR_AR_ATTACK ) {
+					
+					int8_t index = -1;
+					int8_t empty = -1;
+					for (uint8_t i = 0; i < ATTACK_KEY_COUNT; i++) {
+						// find which index to use
+						if ( (cardAUTHSC == ar_nr_nonces[i].sector) &&  (cardAUTHKEY == ar_nr_nonces[i].keytype)) 
+							index = i;
+
+						// keep track of empty slots.
+						if ( ar_nr_nonces[i].state == EMPTY)
+							empty = i;
+					}
+					// if no empty slots.  Choose first and overwrite.
+					if ( index == -1 ) {
+						if ( empty == -1 ) {
+							index = 0;
+							ar_nr_nonces[index].state = EMPTY;
+						} else {
+							index = empty;
+						}
+					}
+
+					switch(ar_nr_nonces[index].state) {
+						case EMPTY: {
+							// first nonce collect
+							ar_nr_nonces[index].cuid = cuid;
+							ar_nr_nonces[index].sector = cardAUTHSC;
+							ar_nr_nonces[index].keytype = cardAUTHKEY;
+							ar_nr_nonces[index].nonce = nonce;
+							ar_nr_nonces[index].nr = nr;
+							ar_nr_nonces[index].ar = ar;
+							ar_nr_nonces[index].state = FIRST;
+							break;
+						} 
+						case FIRST : { 
+							// second nonce collect
+							ar_nr_nonces[index].nonce2 = nonce;
+							ar_nr_nonces[index].nr2 = nr;
+							ar_nr_nonces[index].ar2 = ar;
+							ar_nr_nonces[index].state = SECOND;
+
+							// send to client
+							cmd_send(CMD_ACK, CMD_SIMULATE_MIFARE_CARD, 0, 0, &ar_nr_nonces[index], sizeof(nonces_t));
+							
+							ar_nr_nonces[index].state = EMPTY;
+							ar_nr_nonces[index].sector = 0;
+							ar_nr_nonces[index].keytype = 0;
+							break;
+						}
+						default: break;
+					}
 				}
+
 				/*
+				// Interactive mode flag, means we need to send ACK
+				
 				crypto1_word(pcs, ar , 1);
 				cardRr = nr ^ crypto1_word(pcs, 0, 0);
 				
@@ -2704,7 +2817,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 				num_to_bytes(ans, 4, rAUTH_AT);
 				EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
 				LED_C_ON();
-
+				
 				if (MF_DBGLEVEL >= 4) {
 					Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d", 
 						cardAUTHSC, 
@@ -2736,7 +2849,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 
 					if (!encrypted_data) { 
 						// first authentication
-						crypto1_word(pcs, cuid ^ nonce, 0);//Update crypto state
+						crypto1_word(pcs, cuid ^ nonce, 0);// Update crypto state
 						num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce
 						
 						if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY  );
@@ -2914,39 +3027,10 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 		}
 	}
 
-	// Interactive mode flag, means we need to send ACK
-	if(flags & FLAG_INTERACTIVE) {
-		//May just aswell send the collected ar_nr in the response aswell
-		uint8_t len = ar_nr_collected*5*4;
-		cmd_send(CMD_ACK, CMD_SIMULATE_MIFARE_CARD, len, 0, &ar_nr_responses, len);
-	}
-
-	if(flags & FLAG_NR_AR_ATTACK && MF_DBGLEVEL >= 1 ) {
-		if(ar_nr_collected > 1 ) {
-			Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
-			Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
-					ar_nr_responses[0], // CUID
-					ar_nr_responses[1], // NT
-					ar_nr_responses[2], // AR1
-					ar_nr_responses[3], // NR1
-					ar_nr_responses[4], // AR2
-					ar_nr_responses[5]  // NR2
-				);
-		} else {
-			Dbprintf("Failed to obtain two AR/NR pairs!");
-			if(ar_nr_collected > 0 ) {
-				Dbprintf("Only got these: UID=%08x, nonce=%08x, AR1=%08x, NR1=%08x",
-						ar_nr_responses[0], // CUID
-						ar_nr_responses[1], // NT
-						ar_nr_responses[2], // AR1
-						ar_nr_responses[3]  // NR1
-					);
-			}
-		}
-	}
-	if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d  trace length: %d ", tracing, BigBuf_get_traceLen());
+	if (MF_DBGLEVEL >= 1) 
+		Dbprintf("Emulator stopped. Tracing: %d  trace length: %d ", tracing, BigBuf_get_traceLen());
 	
-	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+	cmd_send(CMD_ACK,1,0,0,0,0);	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
 	LEDsoff();
 	set_tracing(FALSE);
 }
@@ -2957,10 +3041,9 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 // 
 // if no activity for 2sec, it sends the collected data to the client.
 //-----------------------------------------------------------------------------
+// "hf mf sniff"
 void RAMFUNC SniffMifare(uint8_t param) {
-	// param:
-	// bit 0 - trigger from first card answer
-	// bit 1 - trigger from first reader 7-bit request
+
 	LEDsoff();
 
 	// free eventually allocated BigBuf memory
@@ -2994,8 +3077,12 @@ void RAMFUNC SniffMifare(uint8_t param) {
 	// Set up the demodulator for the reader -> tag commands
 	UartInit(receivedCmd, receivedCmdPar);
 
-	 // set transfer address and number of bytes. Start transfer.
-	FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
+	// Setup and start DMA.
+	// set transfer address and number of bytes. Start transfer.
+	if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, DMA_BUFFER_SIZE) ){
+		if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting"); 
+		return;
+	}
 
 	LED_D_OFF();
 
@@ -3022,7 +3109,11 @@ void RAMFUNC SniffMifare(uint8_t param) {
 				maxDataLen = 0;
 				ReaderIsActive = FALSE;
 				TagIsActive = FALSE;
-				FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
+				// Setup and start DMA. set transfer address and number of bytes. Start transfer.
+				if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, DMA_BUFFER_SIZE) ){
+					if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting"); 
+					return;
+				}				
 			}
 		}
 		
@@ -3097,10 +3188,11 @@ void RAMFUNC SniffMifare(uint8_t param) {
 			data = dmaBuf;
 
 	} // main cycle
-
+	
+	if (MF_DBGLEVEL >= 1) Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
+	
 	FpgaDisableSscDma();
 	MfSniffEnd();
-	if (MF_DBGLEVEL >= 1) Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
 	LEDsoff();
 	set_tracing(FALSE);