X-Git-Url: http://cvs.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/024b97c5076d1c644fe84b250882569923b67c0c..d04b71c168abf2655583c7817127e1f68efa328f:/armsrc/iso14443a.c

diff --git a/armsrc/iso14443a.c b/armsrc/iso14443a.c
index cf55e606..bfbc70c7 100644
--- a/armsrc/iso14443a.c
+++ b/armsrc/iso14443a.c
@@ -1,4 +1,4 @@
-//-----------------------------------------------------------------------------
+ //-----------------------------------------------------------------------------
 // Merlok - June 2011, 2012
 // Gerhard de Koning Gans - May 2008
 // Hagen Fritsch - June 2010
@@ -15,17 +15,15 @@
 #include "util.h"
 #include "string.h"
 #include "cmd.h"
-
 #include "iso14443crc.h"
 #include "iso14443a.h"
 #include "crapto1.h"
 #include "mifareutil.h"
+#include "BigBuf.h"
+#include "parity.h"
 
 static uint32_t iso14a_timeout;
-uint8_t *trace = (uint8_t *) BigBuf+TRACE_OFFSET;
 int rsamples = 0;
-int traceLen = 0;
-int tracing = TRUE;
 uint8_t trigger = 0;
 // the block number for the ISO14443-4 PCB
 static uint8_t iso14_pcb_blocknum = 0;
@@ -125,51 +123,43 @@ static uint32_t LastProxToAirDuration;
 #define	SEC_Y 0x00
 #define	SEC_Z 0xc0
 
-const uint8_t OddByteParity[256] = {
-  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
-  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
-  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
-  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
-  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
-  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
-  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
-  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
-  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
-  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
-  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
-  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
-  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
-  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
-  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
-  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
-};
-
 void iso14a_set_trigger(bool enable) {
 	trigger = enable;
 }
 
-void iso14a_clear_trace() {
-	memset(trace, 0x44, TRACE_SIZE);
-	traceLen = 0;
-}
-
-void iso14a_set_tracing(bool enable) {
-	tracing = enable;
-}
 
 void iso14a_set_timeout(uint32_t timeout) {
 	iso14a_timeout = timeout;
+	if(MF_DBGLEVEL >= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", iso14a_timeout, iso14a_timeout / 106);
+}
+
+
+void iso14a_set_ATS_timeout(uint8_t *ats) {
+
+	uint8_t tb1;
+	uint8_t fwi; 
+	uint32_t fwt;
+	
+	if (ats[0] > 1) {							// there is a format byte T0
+		if ((ats[1] & 0x20) == 0x20) {			// there is an interface byte TB(1)
+			if ((ats[1] & 0x10) == 0x10) {		// there is an interface byte TA(1) preceding TB(1)
+				tb1 = ats[3];
+			} else {
+				tb1 = ats[2];
+			}
+			fwi = (tb1 & 0xf0) >> 4;			// frame waiting indicator (FWI)
+			fwt = 256 * 16 * (1 << fwi);		// frame waiting time (FWT) in 1/fc
+			
+			iso14a_set_timeout(fwt/(8*16));
+		}
+	}
 }
 
+
 //-----------------------------------------------------------------------------
 // Generate the parity value for a byte sequence
 //
 //-----------------------------------------------------------------------------
-byte_t oddparity (const byte_t bt)
-{
-	return OddByteParity[bt];
-}
-
 void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par)
 {
 	uint16_t paritybit_cnt = 0;
@@ -178,7 +168,7 @@ void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par)
 
 	for (uint16_t i = 0; i < iLen; i++) {
 		// Generate the parity bits
-		parityBits |= ((OddByteParity[pbtCmd[i]]) << (7-paritybit_cnt));
+		parityBits |= ((oddparity8(pbtCmd[i])) << (7-paritybit_cnt));
 		if (paritybit_cnt == 7) {
 			par[paritybyte_cnt] = parityBits;	// save 8 Bits parity
 			parityBits = 0;						// and advance to next Parity Byte
@@ -199,61 +189,12 @@ void AppendCrc14443a(uint8_t* data, int len)
 	ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
 }
 
-// The function LogTrace() is also used by the iClass implementation in iClass.c
-bool RAMFUNC LogTrace(const uint8_t *btBytes, uint16_t iLen, uint32_t timestamp_start, uint32_t timestamp_end, uint8_t *parity, bool readerToTag)
+void AppendCrc14443b(uint8_t* data, int len)
 {
-	if (!tracing) return FALSE;
-	
-	uint16_t num_paritybytes = (iLen-1)/8 + 1;	// number of valid paritybytes in *parity
-	uint16_t duration = timestamp_end - timestamp_start;
-
-	// Return when trace is full
-	if (traceLen + sizeof(iLen) + sizeof(timestamp_start) + sizeof(duration) + num_paritybytes + iLen >= TRACE_SIZE) {
-		tracing = FALSE;	// don't trace any more
-		return FALSE;
-	}
-	
-	// Traceformat:
-	// 32 bits timestamp (little endian)
-	// 16 bits duration (little endian)
-	// 16 bits data length (little endian, Highest Bit used as readerToTag flag)
-	// y Bytes data
-	// x Bytes parity (one byte per 8 bytes data)
-	
-	// timestamp (start)
-	trace[traceLen++] = ((timestamp_start >> 0) & 0xff);
-	trace[traceLen++] = ((timestamp_start >> 8) & 0xff);
-	trace[traceLen++] = ((timestamp_start >> 16) & 0xff);
-	trace[traceLen++] = ((timestamp_start >> 24) & 0xff);
-	
-	// duration
-	trace[traceLen++] = ((duration >> 0) & 0xff);
-	trace[traceLen++] = ((duration >> 8) & 0xff);
-
-	// data length
-	trace[traceLen++] = ((iLen >> 0) & 0xff);
-	trace[traceLen++] = ((iLen >> 8) & 0xff);
-
-	// readerToTag flag
-	if (!readerToTag) {
-		trace[traceLen - 1] |= 0x80;
-	}
-
-	// data bytes
-	if (btBytes != NULL && iLen != 0) {
-		memcpy(trace + traceLen, btBytes, iLen);
-	}
-	traceLen += iLen;
-
-	// parity bytes
-	if (parity != NULL && iLen != 0) {
-		memcpy(trace + traceLen, parity, num_paritybytes);
-	}
-	traceLen += num_paritybytes;
-
-	return TRUE;
+	ComputeCrc14443(CRC_14443_B,data,len,data+len,data+len+1);
 }
 
+
 //=============================================================================
 // ISO 14443 Type A - Miller decoder
 //=============================================================================
@@ -273,13 +214,17 @@ bool RAMFUNC LogTrace(const uint8_t *btBytes, uint16_t iLen, uint32_t timestamp_
 static tUart Uart;
 
 // Lookup-Table to decide if 4 raw bits are a modulation.
-// We accept two or three consecutive "0" in any position with the rest "1"
+// We accept the following:
+// 0001  -   a 3 tick wide pause
+// 0011  -   a 2 tick wide pause, or a three tick wide pause shifted left
+// 0111  -   a 2 tick wide pause shifted left
+// 1001  -   a 2 tick wide pause shifted right
 const bool Mod_Miller_LUT[] = {
-	TRUE,  TRUE,  FALSE, TRUE,  FALSE, FALSE, FALSE, FALSE,
-	TRUE,  TRUE,  FALSE, FALSE, TRUE,  FALSE, FALSE, FALSE
+	FALSE,  TRUE, FALSE, TRUE,  FALSE, FALSE, FALSE, TRUE,
+	FALSE,  TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE
 };
-#define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x00F0) >> 4])
-#define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x000F)])
+#define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x000000F0) >> 4])
+#define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x0000000F)])
 
 void UartReset()
 {
@@ -289,16 +234,19 @@ void UartReset()
 	Uart.parityLen = 0;					// number of decoded parity bytes
 	Uart.shiftReg = 0;					// shiftreg to hold decoded data bits
 	Uart.parityBits = 0;				// holds 8 parity bits
-	Uart.twoBits = 0x0000;	 			// buffer for 2 Bits
-	Uart.highCnt = 0;
 	Uart.startTime = 0;
 	Uart.endTime = 0;
+	
+	Uart.byteCntMax = 0;
+	Uart.posCnt = 0;
+	Uart.syncBit = 9999;
 }
 
 void UartInit(uint8_t *data, uint8_t *parity)
 {
 	Uart.output = data;
 	Uart.parity = parity;
+	Uart.fourBits = 0x00000000;			// clear the buffer for 4 Bits
 	UartReset();
 }
 
@@ -306,45 +254,48 @@ void UartInit(uint8_t *data, uint8_t *parity)
 static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
 {
 
-	Uart.twoBits = (Uart.twoBits << 8) | bit;
+	Uart.fourBits = (Uart.fourBits << 8) | bit;
 	
-	if (Uart.state == STATE_UNSYNCD) {												// not yet synced
+	if (Uart.state == STATE_UNSYNCD) {											// not yet synced
 	
-		if (Uart.highCnt < 7) {													// wait for a stable unmodulated signal
-			if (Uart.twoBits == 0xffff) {
-				Uart.highCnt++;
-			} else {
-				Uart.highCnt = 0;
-			}
-		} else {	
-			Uart.syncBit = 0xFFFF; // not set
-			// look for 00xx1111 (the start bit)
-			if 		((Uart.twoBits & 0x6780) == 0x0780) Uart.syncBit = 7; 
-			else if ((Uart.twoBits & 0x33C0) == 0x03C0) Uart.syncBit = 6;
-			else if ((Uart.twoBits & 0x19E0) == 0x01E0) Uart.syncBit = 5;
-			else if ((Uart.twoBits & 0x0CF0) == 0x00F0) Uart.syncBit = 4;
-			else if ((Uart.twoBits & 0x0678) == 0x0078) Uart.syncBit = 3;
-			else if ((Uart.twoBits & 0x033C) == 0x003C) Uart.syncBit = 2;
-			else if ((Uart.twoBits & 0x019E) == 0x001E) Uart.syncBit = 1;
-			else if ((Uart.twoBits & 0x00CF) == 0x000F) Uart.syncBit = 0;
-			if (Uart.syncBit != 0xFFFF) {
+		Uart.syncBit = 9999; 													// not set
+		
+		// 00x11111 2|3 ticks pause followed by 6|5 ticks unmodulated	 	Sequence Z (a "0" or "start of communication")
+		// 11111111 8 ticks unmodulation									Sequence Y (a "0" or "end of communication" or "no information")
+		// 111100x1 4 ticks unmodulated followed by 2|3 ticks pause			Sequence X (a "1")
+
+		// The start bit is one ore more Sequence Y followed by a Sequence Z (... 11111111 00x11111). We need to distinguish from
+		// Sequence X followed by Sequence Y followed by Sequence Z     (111100x1 11111111 00x11111)
+		// we therefore look for a ...xx1111 11111111 00x11111xxxxxx... pattern 
+		// (12 '1's followed by 2 '0's, eventually followed by another '0', followed by 5 '1's)
+		//
+#define ISO14443A_STARTBIT_MASK		0x07FFEF80		// mask is    00001111 11111111 1110 1111 10000000
+#define ISO14443A_STARTBIT_PATTERN	0x07FF8F80		// pattern is 00001111 11111111 1000 1111 10000000
+
+		if		((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 0)) == ISO14443A_STARTBIT_PATTERN >> 0) Uart.syncBit = 7;
+		else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 1)) == ISO14443A_STARTBIT_PATTERN >> 1) Uart.syncBit = 6;
+		else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 2)) == ISO14443A_STARTBIT_PATTERN >> 2) Uart.syncBit = 5;
+		else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 3)) == ISO14443A_STARTBIT_PATTERN >> 3) Uart.syncBit = 4;
+		else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 4)) == ISO14443A_STARTBIT_PATTERN >> 4) Uart.syncBit = 3;
+		else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 5)) == ISO14443A_STARTBIT_PATTERN >> 5) Uart.syncBit = 2;
+		else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 6)) == ISO14443A_STARTBIT_PATTERN >> 6) Uart.syncBit = 1;
+		else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 7)) == ISO14443A_STARTBIT_PATTERN >> 7) Uart.syncBit = 0;
+
+		if (Uart.syncBit != 9999) {												// found a sync bit
 				Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
 				Uart.startTime -= Uart.syncBit;
 				Uart.endTime = Uart.startTime;
 				Uart.state = STATE_START_OF_COMMUNICATION;
 			}
-		}
 
 	} else {
 
-		if (IsMillerModulationNibble1(Uart.twoBits >> Uart.syncBit)) {			
-			if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) {		// Modulation in both halves - error
+		if (IsMillerModulationNibble1(Uart.fourBits >> Uart.syncBit)) {			
+			if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) {		// Modulation in both halves - error
 				UartReset();
-				Uart.highCnt = 6;
 			} else {															// Modulation in first half = Sequence Z = logic "0"
 				if (Uart.state == STATE_MILLER_X) {								// error - must not follow after X
 					UartReset();
-					Uart.highCnt = 6;
 				} else {
 					Uart.bitCount++;
 					Uart.shiftReg = (Uart.shiftReg >> 1);						// add a 0 to the shiftreg
@@ -364,7 +315,7 @@ static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
 				}
 			}
 		} else {
-			if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) {		// Modulation second half = Sequence X = logic "1"
+			if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) {		// Modulation second half = Sequence X = logic "1"
 				Uart.bitCount++;
 				Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100;					// add a 1 to the shiftreg
 				Uart.state = STATE_MILLER_X;
@@ -399,12 +350,11 @@ static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
 					if (Uart.len) {
 						return TRUE;											// we are finished with decoding the raw data sequence
 					} else {
-						UartReset();					// Nothing receiver - start over
+						UartReset();											// Nothing received - start over
 					}
 				}
 				if (Uart.state == STATE_START_OF_COMMUNICATION) {				// error - must not follow directly after SOC
 					UartReset();
-					Uart.highCnt = 6;
 				} else {														// a logic "0"
 					Uart.bitCount++;
 					Uart.shiftReg = (Uart.shiftReg >> 1);						// add a 0 to the shiftreg
@@ -471,6 +421,11 @@ void DemodReset()
 	Demod.highCnt = 0;
 	Demod.startTime = 0;
 	Demod.endTime = 0;
+	
+	//
+	Demod.bitCount = 0;
+	Demod.syncBit = 0xFFFF;
+	Demod.samples = 0;
 }
 
 void DemodInit(uint8_t *data, uint8_t *parity)
@@ -569,9 +524,7 @@ static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non
 				}
 			}
 		}
-			
 	} 
-
     return FALSE;	// not finished yet, need more data
 }
 
@@ -585,38 +538,33 @@ static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non
 // triggering so that we start recording at the point that the tag is moved
 // near the reader.
 //-----------------------------------------------------------------------------
-void RAMFUNC SnoopIso14443a(uint8_t param) {
+void RAMFUNC SniffIso14443a(uint8_t param) {
 	// param:
 	// bit 0 - trigger from first card answer
 	// bit 1 - trigger from first reader 7-bit request
-	
 	LEDsoff();
-	// init trace buffer
-	iso14a_clear_trace();
-	iso14a_set_tracing(TRUE);
 
-	// We won't start recording the frames that we acquire until we trigger;
-	// a good trigger condition to get started is probably when we see a
-	// response from the tag.
-	// triggered == FALSE -- to wait first for card
-	bool triggered = !(param & 0x03); 
+	iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
+	
+	// Allocate memory from BigBuf for some buffers
+	// free all previous allocations first
+	BigBuf_free();
+	
+	// init trace buffer
+	clear_trace();
+	set_tracing(TRUE);
 	
 	// The command (reader -> tag) that we're receiving.
-	// The length of a received command will in most cases be no more than 18 bytes.
-	// So 32 should be enough!
-	uint8_t *receivedCmd = ((uint8_t *)BigBuf) + RECV_CMD_OFFSET;
-	uint8_t *receivedCmdPar = ((uint8_t *)BigBuf) + RECV_CMD_PAR_OFFSET;
+	uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
+	uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
 	
 	// The response (tag -> reader) that we're receiving.
-	uint8_t *receivedResponse = ((uint8_t *)BigBuf) + RECV_RESP_OFFSET;
-	uint8_t *receivedResponsePar = ((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET;
-	
-	// As we receive stuff, we copy it from receivedCmd or receivedResponse
-	// into trace, along with its length and other annotations.
-	//uint8_t *trace = (uint8_t *)BigBuf;
+	uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE);
+	uint8_t *receivedResponsePar = BigBuf_malloc(MAX_PARITY_SIZE);
 	
 	// The DMA buffer, used to stream samples from the FPGA
-	uint8_t *dmaBuf = ((uint8_t *)BigBuf) + DMA_BUFFER_OFFSET;
+	uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
+
 	uint8_t *data = dmaBuf;
 	uint8_t previous_data = 0;
 	int maxDataLen = 0;
@@ -624,8 +572,6 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
 	bool TagIsActive = FALSE;
 	bool ReaderIsActive = FALSE;
 	
-	iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
-
 	// Set up the demodulator for tag -> reader responses.
 	DemodInit(receivedResponse, receivedResponsePar);
 	
@@ -635,6 +581,12 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
 	// Setup and start DMA.
 	FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
 	
+	// We won't start recording the frames that we acquire until we trigger;
+	// a good trigger condition to get started is probably when we see a
+	// response from the tag.
+	// triggered == FALSE -- to wait first for card
+	bool triggered = !(param & 0x03); 
+	
 	// And now we loop, receiving samples.
 	for(uint32_t rsamples = 0; TRUE; ) {
 
@@ -656,7 +608,7 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
 		// test for length of buffer
 		if(dataLen > maxDataLen) {
 			maxDataLen = dataLen;
-			if(dataLen > 400) {
+			if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
 				Dbprintf("blew circular buffer! dataLen=%d", dataLen);
 				break;
 			}
@@ -721,6 +673,9 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
 
 					// And ready to receive another response.
 					DemodReset();
+					// And reset the Miller decoder including itS (now outdated) input buffer
+					UartInit(receivedCmd, receivedCmdPar);
+
 					LED_C_OFF();
 				} 
 				TagIsActive = (Demod.state != DEMOD_UNSYNCD);
@@ -735,12 +690,13 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
 		}
 	} // main cycle
 
-	DbpString("COMMAND FINISHED");
-
 	FpgaDisableSscDma();
-	Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len);
-	Dbprintf("traceLen=%d, Uart.output[0]=%08x", traceLen, (uint32_t)Uart.output[0]);
 	LEDsoff();
+
+	Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len);
+	Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart.output[0]);
+	
+	set_tracing(FALSE);	
 }
 
 //-----------------------------------------------------------------------------
@@ -885,7 +841,7 @@ int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par);
 bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
 				 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity);
 
-static uint8_t* free_buffer_pointer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
+static uint8_t* free_buffer_pointer;
 
 typedef struct {
   uint8_t* response;
@@ -895,10 +851,6 @@ typedef struct {
   uint32_t ProxToAirDuration;
 } tag_response_info_t;
 
-void reset_free_buffer() {
-  free_buffer_pointer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
-}
-
 bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) {
 	// Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
 	// This will need the following byte array for a modulation sequence
@@ -910,7 +862,8 @@ bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffe
 	// ----------- +
 	//    166 bytes, since every bit that needs to be send costs us a byte
 	//
-  
+ 
+ 
   // Prepare the tag modulation bits from the message
   CodeIso14443aAsTag(response_info->response,response_info->response_n);
   
@@ -931,15 +884,24 @@ bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffe
   return true;
 }
 
+
+// "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit.
+// Coded responses need one byte per bit to transfer (data, parity, start, stop, correction) 
+// 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits
+// -> need 273 bytes buffer
+// 44 * 8 data bits, 44 * 1 parity bits, 9 start bits, 9 stop bits, 9 correction bits --370
+// 47 * 8 data bits, 47 * 1 parity bits, 10 start bits, 10 stop bits, 10 correction bits 
+#define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 453 
+
 bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
   // Retrieve and store the current buffer index
   response_info->modulation = free_buffer_pointer;
   
   // Determine the maximum size we can use from our buffer
-  size_t max_buffer_size = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + FREE_BUFFER_SIZE) - free_buffer_pointer;
+  size_t max_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE;
   
   // Forward the prepare tag modulation function to the inner function
-  if (prepare_tag_modulation(response_info,max_buffer_size)) {
+  if (prepare_tag_modulation(response_info, max_buffer_size)) {
     // Update the free buffer offset
     free_buffer_pointer += ToSendMax;
     return true;
@@ -952,16 +914,22 @@ bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
 // Main loop of simulated tag: receive commands from reader, decide what
 // response to send, and send it.
 //-----------------------------------------------------------------------------
-void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
+void SimulateIso14443aTag(int tagType, int flags, byte_t* data)
 {
-	// Enable and clear the trace
-	iso14a_clear_trace();
-	iso14a_set_tracing(TRUE);
-
+	uint32_t counters[] = {0,0,0};
+	//Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
+	// This can be used in a reader-only attack.
+	// (it can also be retrieved via 'hf 14a list', but hey...
+	uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0,0,0};
+	uint8_t ar_nr_collected = 0;
+	
 	uint8_t sak;
-
+					
+	// PACK response to PWD AUTH for EV1/NTAG
+	uint8_t response8[4] =  {0,0,0,0};
+	
 	// The first response contains the ATQA (note: bytes are transmitted in reverse order).
-	uint8_t response1[2];
+	uint8_t response1[2] =  {0,0};
 	
 	switch (tagType) {
 		case 1: { // MIFARE Classic
@@ -972,7 +940,7 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 		} break;
 		case 2: { // MIFARE Ultralight
 			// Says: I am a stupid memory tag, no crypto
-			response1[0] = 0x04;
+			response1[0] = 0x44;
 			response1[1] = 0x00;
 			sak = 0x00;
 		} break;
@@ -993,6 +961,31 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 			response1[0] = 0x01;
 			response1[1] = 0x0f;
 			sak = 0x01;
+		} break;
+		case 6: { // MIFARE Mini
+			// Says: I am a Mifare Mini, 320b
+			response1[0] = 0x44;
+			response1[1] = 0x00;
+			sak = 0x09;
+		} break;
+		case 7: { // NTAG?
+			// Says: I am a NTAG, 
+			response1[0] = 0x44;
+			response1[1] = 0x00;
+			sak = 0x00;
+			// PACK
+			response8[0] = 0x80;
+			response8[1] = 0x80;
+			ComputeCrc14443(CRC_14443_A, response8, 2, &response8[2], &response8[3]);
+			// uid not supplied then get from emulator memory
+			if (data[0]==0) {
+				uint16_t start = 4 * (0+12);  
+				uint8_t emdata[8];
+				emlGetMemBt( emdata, start, sizeof(emdata));
+				memcpy(data, emdata, 3); //uid bytes 0-2
+				memcpy(data+3, emdata+4, 4); //uid bytes 3-7
+				flags |= FLAG_7B_UID_IN_DATA;
+			}
 		} break;		
 		default: {
 			Dbprintf("Error: unkown tagtype (%d)",tagType);
@@ -1001,21 +994,29 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 	}
 	
 	// The second response contains the (mandatory) first 24 bits of the UID
-	uint8_t response2[5];
+	uint8_t response2[5] = {0x00};
 
 	// Check if the uid uses the (optional) part
-	uint8_t response2a[5];
-	if (uid_2nd) {
+	uint8_t response2a[5] = {0x00};
+	
+	if (flags & FLAG_7B_UID_IN_DATA) {
 		response2[0] = 0x88;
-		num_to_bytes(uid_1st,3,response2+1);
-		num_to_bytes(uid_2nd,4,response2a);
+		response2[1] = data[0];
+		response2[2] = data[1];
+		response2[3] = data[2];
+
+		response2a[0] = data[3];
+		response2a[1] = data[4];
+		response2a[2] = data[5];
+		response2a[3] = data[6]; //??
 		response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3];
 
 		// Configure the ATQA and SAK accordingly
 		response1[0] |= 0x40;
 		sak |= 0x04;
 	} else {
-		num_to_bytes(uid_1st,4,response2);
+		memcpy(response2, data, 4);
+		//num_to_bytes(uid_1st,4,response2);
 		// Configure the ATQA and SAK accordingly
 		response1[0] &= 0xBF;
 		sak &= 0xFB;
@@ -1025,12 +1026,12 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 	response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3];
 
 	// Prepare the mandatory SAK (for 4 and 7 byte UID)
-	uint8_t response3[3];
+	uint8_t response3[3]  = {0x00};
 	response3[0] = sak;
 	ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
 
 	// Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
-	uint8_t response3a[3];
+	uint8_t response3a[3]  = {0x00};
 	response3a[0] = sak & 0xFB;
 	ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
 
@@ -1042,7 +1043,14 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 	// TC(1) = 0x02: CID supported, NAD not supported
 	ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]);
 
-	#define TAG_RESPONSE_COUNT 7
+	// Prepare GET_VERSION (different for UL EV-1 / NTAG)
+	//uint8_t response7_EV1[] = {0x00, 0x04, 0x03, 0x01, 0x01, 0x00, 0x0b, 0x03, 0xfd, 0xf7};  //EV1 48bytes VERSION.
+	//uint8_t response7_NTAG[] = {0x00, 0x04, 0x04, 0x02, 0x01, 0x00, 0x11, 0x03, 0x01, 0x9e}; //NTAG 215
+	
+	// Prepare CHK_TEARING
+	//uint8_t response9[] =  {0xBD,0x90,0x3f};
+	
+	#define TAG_RESPONSE_COUNT 10
 	tag_response_info_t responses[TAG_RESPONSE_COUNT] = {
 		{ .response = response1,  .response_n = sizeof(response1)  },  // Answer to request - respond with card type
 		{ .response = response2,  .response_n = sizeof(response2)  },  // Anticollision cascade1 - respond with uid
@@ -1051,6 +1059,9 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 		{ .response = response3a, .response_n = sizeof(response3a) },  // Acknowledge select - cascade 2
 		{ .response = response5,  .response_n = sizeof(response5)  },  // Authentication answer (random nonce)
 		{ .response = response6,  .response_n = sizeof(response6)  },  // dummy ATS (pseudo-ATR), answer to RATS
+		//{ .response = response7_NTAG, .response_n = sizeof(response7_NTAG)}, // EV1/NTAG GET_VERSION response
+		{ .response = response8,   .response_n = sizeof(response8) },  // EV1/NTAG PACK response
+		//{ .response = response9,      .response_n = sizeof(response9)     }  // EV1/NTAG CHK_TEAR response
 	};
 
 	// Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
@@ -1066,9 +1077,20 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 		.modulation_n = 0
 	};
   
-	// Reset the offset pointer of the free buffer
-	reset_free_buffer();
-  
+	// We need to listen to the high-frequency, peak-detected path.
+	iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
+
+	BigBuf_free_keep_EM();
+
+	// allocate buffers:
+	uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
+	uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
+	free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE);
+
+	// clear trace
+	clear_trace();
+	set_tracing(TRUE);
+
 	// Prepare the responses of the anticollision phase
 	// there will be not enough time to do this at the moment the reader sends it REQA
 	for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) {
@@ -1086,20 +1108,12 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 	int happened2 = 0;
 	int cmdsRecvd = 0;
 
-	// We need to listen to the high-frequency, peak-detected path.
-	iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
-
-	// buffers used on software Uart:
-	uint8_t *receivedCmd = ((uint8_t *)BigBuf) + RECV_CMD_OFFSET;
-	uint8_t *receivedCmdPar = ((uint8_t *)BigBuf) + RECV_CMD_PAR_OFFSET;
-
 	cmdsRecvd = 0;
 	tag_response_info_t* p_response;
 
 	LED_A_ON();
 	for(;;) {
 		// Clean receive command buffer
-		
 		if(!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)) {
 			DbpString("Button press");
 			break;
@@ -1122,10 +1136,81 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 		} else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) {	// Received a SELECT (cascade 2)
 			p_response = &responses[4]; order = 30;
 		} else if(receivedCmd[0] == 0x30) {	// Received a (plain) READ
-			EmSendCmdEx(data+(4*receivedCmd[1]),16,false);
-			// Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
-			// We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
+			uint8_t block = receivedCmd[1];
+			// if Ultralight or NTAG (4 byte blocks)
+			if ( tagType == 7 || tagType == 2 ) {
+				//first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
+				uint16_t start = 4 * (block+12);  
+					uint8_t emdata[MAX_MIFARE_FRAME_SIZE];
+					emlGetMemBt( emdata, start, 16);
+					AppendCrc14443a(emdata, 16);
+					EmSendCmdEx(emdata, sizeof(emdata), false);				
+				// We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
+				p_response = NULL;
+			} else { // all other tags (16 byte block tags)
+				EmSendCmdEx(data+(4*receivedCmd[1]),16,false);
+				// Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
+				// We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
+				p_response = NULL;
+			}
+		} else if(receivedCmd[0] == 0x3A) {	// Received a FAST READ (ranged read)
+				
+				uint8_t emdata[MAX_FRAME_SIZE];
+				//first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
+				int start =  (receivedCmd[1]+12) * 4; 
+				int len   = (receivedCmd[2] - receivedCmd[1] + 1) * 4;
+				emlGetMemBt( emdata, start, len);
+				AppendCrc14443a(emdata, len);
+				EmSendCmdEx(emdata, len+2, false);				
+				p_response = NULL;
+				
+		} else if(receivedCmd[0] == 0x3C && tagType == 7) {	// Received a READ SIGNATURE -- 
+				// ECC data,  taken from a NTAG215 amiibo token. might work. LEN: 32, + 2 crc
+				//first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
+				uint16_t start = 4 * 4;
+				uint8_t emdata[34];
+				emlGetMemBt( emdata, start, 32);
+				AppendCrc14443a(emdata, 32);
+				EmSendCmdEx(emdata, sizeof(emdata), false);
+				//uint8_t data[] = {0x56,0x06,0xa6,0x4f,0x43,0x32,0x53,0x6f,
+				//				  0x43,0xda,0x45,0xd6,0x61,0x38,0xaa,0x1e,
+				//				  0xcf,0xd3,0x61,0x36,0xca,0x5f,0xbb,0x05,
+				//				  0xce,0x21,0x24,0x5b,0xa6,0x7a,0x79,0x07,
+				//				  0x00,0x00};
+				//AppendCrc14443a(data, sizeof(data)-2);
+				//EmSendCmdEx(data,sizeof(data),false);
+				p_response = NULL;					
+		} else if (receivedCmd[0] == 0x39 && tagType == 7) {	// Received a READ COUNTER -- 
+			uint8_t index = receivedCmd[1];
+			uint8_t data[] =  {0x00,0x00,0x00,0x14,0xa5};
+			if ( counters[index] > 0) {
+				num_to_bytes(counters[index], 3, data);
+				AppendCrc14443a(data, sizeof(data)-2);
+			}
+			EmSendCmdEx(data,sizeof(data),false);				
+			p_response = NULL;
+		} else if (receivedCmd[0] == 0xA5 && tagType == 7) {	// Received a INC COUNTER -- 
+			// number of counter
+			uint8_t counter = receivedCmd[1];
+			uint32_t val = bytes_to_num(receivedCmd+2,4);
+			counters[counter] = val;
+		
+			// send ACK
+			uint8_t ack[] = {0x0a};
+			EmSendCmdEx(ack,sizeof(ack),false);
+			p_response = NULL;
+			
+		} else if(receivedCmd[0] == 0x3E && tagType == 7) {	// Received a CHECK_TEARING_EVENT -- 
+			//first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
+			uint8_t emdata[3];
+			uint8_t counter=0;
+			if (receivedCmd[1]<3) counter = receivedCmd[1];
+			emlGetMemBt( emdata, 10+counter, 1);
+			AppendCrc14443a(emdata, sizeof(emdata)-2);
+			EmSendCmdEx(emdata, sizeof(emdata), false);	
 			p_response = NULL;
+			//p_response = &responses[9];				
+		
 		} else if(receivedCmd[0] == 0x50) {	// Received a HALT
 
 			if (tracing) {
@@ -1133,7 +1218,17 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 			}
 			p_response = NULL;
 		} else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) {	// Received an authentication request
-			p_response = &responses[5]; order = 7;
+					
+			if ( tagType == 7 ) {   // IF NTAG /EV1  0x60 == GET_VERSION, not a authentication request.
+				uint8_t emdata[10];
+				emlGetMemBt( emdata, 0, 8 );
+				AppendCrc14443a(emdata, sizeof(emdata)-2);
+				EmSendCmdEx(emdata, sizeof(emdata), false);	
+				p_response = NULL;
+				//p_response = &responses[7];
+			} else {
+				p_response = &responses[5]; order = 7;
+			}
 		} else if(receivedCmd[0] == 0xE0) {	// Received a RATS request
 			if (tagType == 1 || tagType == 2) {	// RATS not supported
 				EmSend4bit(CARD_NACK_NA);
@@ -1145,15 +1240,85 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 			if (tracing) {
 				LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
 			}
+			uint32_t nonce = bytes_to_num(response5,4);
 			uint32_t nr = bytes_to_num(receivedCmd,4);
 			uint32_t ar = bytes_to_num(receivedCmd+4,4);
-			Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr,ar);
+			//Dbprintf("Auth attempt {nonce}{nr}{ar}: %08x %08x %08x", nonce, nr, ar);
+
+			if(flags & FLAG_NR_AR_ATTACK )
+			{
+				if(ar_nr_collected < 2){
+					// Avoid duplicates... probably not necessary, nr should vary. 
+					//if(ar_nr_responses[3] != nr){						
+						ar_nr_responses[ar_nr_collected*5]   = 0;
+						ar_nr_responses[ar_nr_collected*5+1] = 0;
+						ar_nr_responses[ar_nr_collected*5+2] = nonce;
+						ar_nr_responses[ar_nr_collected*5+3] = nr;
+						ar_nr_responses[ar_nr_collected*5+4] = ar;
+						ar_nr_collected++;
+					//}
+				}			
+
+				if(ar_nr_collected > 1 ) {
+				
+					if (MF_DBGLEVEL >= 2) {
+							Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
+							Dbprintf("../tools/mfkey/mfkey32 %07x%08x %08x %08x %08x %08x %08x",
+								ar_nr_responses[0], // UID1
+								ar_nr_responses[1], // UID2
+								ar_nr_responses[2], // NT
+								ar_nr_responses[3], // AR1
+								ar_nr_responses[4], // NR1
+								ar_nr_responses[8], // AR2
+								ar_nr_responses[9]  // NR2
+							);
+							Dbprintf("../tools/mfkey/mfkey32v2 %06x%08x %08x %08x %08x %08x %08x %08x",
+								ar_nr_responses[0], // UID1
+								ar_nr_responses[1], // UID2
+								ar_nr_responses[2], // NT1
+								ar_nr_responses[3], // AR1
+								ar_nr_responses[4], // NR1
+								ar_nr_responses[7], // NT2
+								ar_nr_responses[8], // AR2
+								ar_nr_responses[9]  // NR2
+								);
+					}
+					uint8_t len = ar_nr_collected*5*4;
+					cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,len,0,&ar_nr_responses,len);
+					ar_nr_collected = 0;
+					memset(ar_nr_responses, 0x00, len);
+				}
+			}
+		} else if (receivedCmd[0] == 0x1a ) // ULC authentication
+		{
+			
+		}
+		else if (receivedCmd[0] == 0x1b) // NTAG / EV-1 authentication
+		{
+			if ( tagType == 7 ) {
+				uint16_t start = 13; //first 4 blocks of emu are [getversion answer - check tearing - pack - 0x00]
+				uint8_t emdata[4];
+				emlGetMemBt( emdata, start, 2);
+				AppendCrc14443a(emdata, 2);
+				EmSendCmdEx(emdata, sizeof(emdata), false);
+				p_response = NULL;
+				//p_response =  &responses[8]; // PACK response
+				uint32_t pwd = bytes_to_num(receivedCmd+1,4);
+				
+				if ( MF_DBGLEVEL >= 3)  Dbprintf("Auth attempt: %08x", pwd);	
+			}
 		} else {
 			// Check for ISO 14443A-4 compliant commands, look at left nibble
 			switch (receivedCmd[0]) {
-
+				case 0x02:
+				case 0x03: {  // IBlock (command no CID)
+					dynamic_response_info.response[0] = receivedCmd[0];
+					dynamic_response_info.response[1] = 0x90;
+					dynamic_response_info.response[2] = 0x00;
+					dynamic_response_info.response_n = 3;
+				} break;
 				case 0x0B:
-				case 0x0A: { // IBlock (command)
+				case 0x0A: { // IBlock (command CID)
 				  dynamic_response_info.response[0] = receivedCmd[0];
 				  dynamic_response_info.response[1] = 0x00;
 				  dynamic_response_info.response[2] = 0x90;
@@ -1173,15 +1338,17 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 				  dynamic_response_info.response_n = 2;
 				} break;
 				  
-				case 0xBA: { //
-				  memcpy(dynamic_response_info.response,"\xAB\x00",2);
-				  dynamic_response_info.response_n = 2;
+				case 0xBA: { // ping / pong
+					dynamic_response_info.response[0] = 0xAB;
+					dynamic_response_info.response[1] = 0x00;
+					dynamic_response_info.response_n = 2;
 				} break;
 
 				case 0xCA:
 				case 0xC2: { // Readers sends deselect command
-				  memcpy(dynamic_response_info.response,"\xCA\x00",2);
-				  dynamic_response_info.response_n = 2;
+					dynamic_response_info.response[0] = 0xCA;
+					dynamic_response_info.response[1] = 0x00;
+					dynamic_response_info.response_n = 2;
 				} break;
 
 				default: {
@@ -1251,8 +1418,16 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 		}
 	}
 
-	Dbprintf("%x %x %x", happened, happened2, cmdsRecvd);
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+	set_tracing(FALSE);
+	BigBuf_free_keep_EM();
 	LED_A_OFF();
+	
+	if (MF_DBGLEVEL >= 4){
+		Dbprintf("-[ Wake ups after halt [%d]", happened);
+		Dbprintf("-[ Messages after halt [%d]", happened2);
+		Dbprintf("-[ Num of received cmd [%d]", cmdsRecvd);
+	}
 }
 
 
@@ -1263,7 +1438,7 @@ void PrepareDelayedTransfer(uint16_t delay)
 	uint8_t bitmask = 0;
 	uint8_t bits_to_shift = 0;
 	uint8_t bits_shifted = 0;
-	
+
 	delay &= 0x07;
 	if (delay) {
 		for (uint16_t i = 0; i < delay; i++) {
@@ -1372,7 +1547,7 @@ void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8
 		}
 
 		// Only transmit parity bit if we transmitted a complete byte
-		if (j == 8) {
+		if (j == 8 && parity != NULL) {
 			// Get the parity bit
 			if (parity[i>>3] & (0x80 >> (i&0x0007))) {
 				// Sequence X
@@ -1417,6 +1592,7 @@ void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *p
   CodeIso14443aBitsAsReaderPar(cmd, len*8, parity);
 }
 
+
 //-----------------------------------------------------------------------------
 // Wait for commands from reader
 // Stop when button is pressed (return 1) or field was gone (return 2)
@@ -1439,9 +1615,9 @@ static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
 	// Set ADC to read field strength
 	AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
 	AT91C_BASE_ADC->ADC_MR =
-				ADC_MODE_PRESCALE(32) |
-				ADC_MODE_STARTUP_TIME(16) |
-				ADC_MODE_SAMPLE_HOLD_TIME(8);
+				ADC_MODE_PRESCALE(63) |
+				ADC_MODE_STARTUP_TIME(1) |
+				ADC_MODE_SAMPLE_HOLD_TIME(15);
 	AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF);
 	// start ADC
 	AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
@@ -1451,7 +1627,7 @@ static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
 
 	// Clear RXRDY:
     uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
-
+	
 	for(;;) {
 		WDT_HIT();
 
@@ -1463,7 +1639,7 @@ static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
 			analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF];
 			AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
 			if (analogCnt >= 32) {
-				if ((33000 * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
+				if ((MAX_ADC_HF_VOLTAGE * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
 					vtime = GetTickCount();
 					if (!timer) timer = vtime;
 					// 50ms no field --> card to idle state
@@ -1526,26 +1702,25 @@ static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNe
 	AT91C_BASE_SSC->SSC_THR = SEC_F;
 
 	// send cycle
-	for(; i <= respLen; ) {
+	for(; i < respLen; ) {
 		if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
 			AT91C_BASE_SSC->SSC_THR = resp[i++];
 			FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
 		}
 	
-		if(BUTTON_PRESS()) {
-			break;
-		}
+		if(BUTTON_PRESS()) break;
 	}
 
 	// Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
-	for (i = 0; i < 2 ; ) {
+	uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3;
+	for (i = 0; i <= fpga_queued_bits/8 + 1; ) {
 		if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
 			AT91C_BASE_SSC->SSC_THR = SEC_F;
 			FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
 			i++;
 		}
 	}
-	
+
 	LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0);
 
 	return 0;
@@ -1634,7 +1809,7 @@ bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_Start
 //-----------------------------------------------------------------------------
 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset)
 {
-	uint32_t c;
+	uint32_t c = 0x00;
 	
 	// Set FPGA mode to "reader listen mode", no modulation (listen
 	// only, since we are receiving, not transmitting).
@@ -1647,8 +1822,7 @@ static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receive
 
 	// clear RXRDY:
     uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
-	
-	c = 0;
+
 	for(;;) {
 		WDT_HIT();
 
@@ -1657,7 +1831,7 @@ static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receive
 			if(ManchesterDecoding(b, offset, 0)) {
 				NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD);
 				return TRUE;
-			} else if (c++ > iso14a_timeout) {
+			} else if (c++ > iso14a_timeout && Demod.state == DEMOD_UNSYNCD) {
 				return FALSE; 
 			}
 		}
@@ -1718,16 +1892,18 @@ int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity)
 	return Demod.len;
 }
 
-/* performs iso14443a anticollision procedure
- * fills the uid pointer unless NULL
- * fills resp_data unless NULL */
-int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr) {
+// performs iso14443a anticollision (optional) and card select procedure
+// fills the uid and cuid pointer unless NULL
+// fills the card info record unless NULL
+// if anticollision is false, then the UID must be provided in uid_ptr[] 
+// and num_cascades must be set (1: 4 Byte UID, 2: 7 Byte UID, 3: 10 Byte UID)
+int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr, bool anticollision, uint8_t num_cascades) {
 	uint8_t wupa[]       = { 0x52 };  // 0x26 - REQA  0x52 - WAKE-UP
 	uint8_t sel_all[]    = { 0x93,0x20 };
 	uint8_t sel_uid[]    = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
 	uint8_t rats[]       = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
-	uint8_t *resp = ((uint8_t *)BigBuf) + RECV_RESP_OFFSET;
-	uint8_t *resp_par = ((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET;
+	uint8_t resp[MAX_FRAME_SIZE]; // theoretically. A usual RATS will be much smaller
+	uint8_t resp_par[MAX_PARITY_SIZE];
 	byte_t uid_resp[4];
 	size_t uid_resp_len;
 
@@ -1736,7 +1912,7 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u
 	int len;
 
 	// Broadcast for a card, WUPA (0x52) will force response from all cards in the field
-    ReaderTransmitBitsPar(wupa,7,0, NULL);
+    ReaderTransmitBitsPar(wupa, 7, NULL, NULL);
 	
 	// Receive the ATQA
 	if(!ReaderReceive(resp, resp_par)) return 0;
@@ -1747,11 +1923,18 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u
 		memset(p_hi14a_card->uid,0,10);
 	}
 
+	if (anticollision) {
 	// clear uid
 	if (uid_ptr) {
 		memset(uid_ptr,0,10);
 	}
+	}
 
+	// check for proprietary anticollision:
+	if ((resp[0] & 0x1F) == 0) {
+		return 3;
+	}
+	
 	// OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
 	// which case we need to make a cascade 2 request and select - this is a long UID
 	// While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
@@ -1759,6 +1942,7 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u
 		// SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
 		sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
 
+		if (anticollision) {
 		// SELECT_ALL
 		ReaderTransmit(sel_all, sizeof(sel_all), NULL);
 		if (!ReaderReceive(resp, resp_par)) return 0;
@@ -1772,7 +1956,7 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u
 				Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
 				for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) {	// add valid UID bits before collision point
 					uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
-					uid_resp[uid_resp_bits & 0xf8] |= UIDbit << (uid_resp_bits % 8);
+					uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8);
 				}
 				uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8);					// next time select the card(s) with a 1 in the collision position
 				uid_resp_bits++;
@@ -1794,6 +1978,14 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u
 		} else {		// no collision, use the response to SELECT_ALL as current uid
 			memcpy(uid_resp, resp, 4);
 		}
+		} else {
+			if (cascade_level < num_cascades - 1) {
+				uid_resp[0] = 0x88;
+				memcpy(uid_resp+1, uid_ptr+cascade_level*3, 3);
+			} else {
+				memcpy(uid_resp, uid_ptr+cascade_level*3, 4);
+			}
+		}
 		uid_resp_len = 4;
 
 		// calculate crypto UID. Always use last 4 Bytes.
@@ -1803,7 +1995,7 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u
 
 		// Construct SELECT UID command
 		sel_uid[1] = 0x70;													// transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
-		memcpy(sel_uid+2, uid_resp, 4);										// the UID
+		memcpy(sel_uid+2, uid_resp, 4);										// the UID received during anticollision, or the provided UID
 		sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5];  	// calculate and add BCC
 		AppendCrc14443a(sel_uid, 7);										// calculate and add CRC
 		ReaderTransmit(sel_uid, sizeof(sel_uid), NULL);
@@ -1819,11 +2011,10 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u
 			uid_resp[0] = uid_resp[1];
 			uid_resp[1] = uid_resp[2];
 			uid_resp[2] = uid_resp[3]; 
-
 			uid_resp_len = 3;
 		}
 
-		if(uid_ptr) {
+		if(uid_ptr && anticollision) {
 			memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
 		}
 
@@ -1855,6 +2046,10 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u
 
 	// reset the PCB block number
 	iso14_pcb_blocknum = 0;
+
+	// set default timeout based on ATS
+	iso14a_set_ATS_timeout(resp);
+
 	return 1;	
 }
 
@@ -1880,7 +2075,7 @@ void iso14443a_setup(uint8_t fpga_minor_mode) {
 	DemodReset();
 	UartReset();
 	NextTransferTime = 2*DELAY_ARM2AIR_AS_READER;
-	iso14a_set_timeout(1050); // 10ms default
+	iso14a_set_timeout(10*106); // 10ms default
 }
 
 int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) {
@@ -1919,17 +2114,18 @@ void ReaderIso14443a(UsbCommand *c)
 {
 	iso14a_command_t param = c->arg[0];
 	uint8_t *cmd = c->d.asBytes;
-	size_t len = c->arg[1];
-	size_t lenbits = c->arg[2];
+	size_t len = c->arg[1] & 0xffff;
+	size_t lenbits = c->arg[1] >> 16;
+	uint32_t timeout = c->arg[2];
 	uint32_t arg0 = 0;
 	byte_t buf[USB_CMD_DATA_SIZE];
 	uint8_t par[MAX_PARITY_SIZE];
   
 	if(param & ISO14A_CONNECT) {
-		iso14a_clear_trace();
+		clear_trace();
 	}
 
-	iso14a_set_tracing(TRUE);
+	set_tracing(TRUE);
 
 	if(param & ISO14A_REQUEST_TRIGGER) {
 		iso14a_set_trigger(TRUE);
@@ -1939,13 +2135,13 @@ void ReaderIso14443a(UsbCommand *c)
 		iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
 		if(!(param & ISO14A_NO_SELECT)) {
 			iso14a_card_select_t *card = (iso14a_card_select_t*)buf;
-			arg0 = iso14443a_select_card(NULL,card,NULL);
+			arg0 = iso14443a_select_card(NULL,card,NULL, true, 0);
 			cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t));
 		}
 	}
 
 	if(param & ISO14A_SET_TIMEOUT) {
-		iso14a_set_timeout(c->arg[2]);
+		iso14a_set_timeout(timeout);
 	}
 
 	if(param & ISO14A_APDU) {
@@ -1955,15 +2151,38 @@ void ReaderIso14443a(UsbCommand *c)
 
 	if(param & ISO14A_RAW) {
 		if(param & ISO14A_APPEND_CRC) {
-			AppendCrc14443a(cmd,len);
+			if(param & ISO14A_TOPAZMODE) {
+				AppendCrc14443b(cmd,len);
+			} else {
+				AppendCrc14443a(cmd,len);
+			}
 			len += 2;
 			if (lenbits) lenbits += 16;
 		}
-		if(lenbits>0) {
+		if(lenbits>0) {				// want to send a specific number of bits (e.g. short commands)
+			if(param & ISO14A_TOPAZMODE) {
+				int bits_to_send = lenbits;
+				uint16_t i = 0;
+				ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 7), NULL, NULL);		// first byte is always short (7bits) and no parity
+				bits_to_send -= 7;
+				while (bits_to_send > 0) {
+					ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 8), NULL, NULL);	// following bytes are 8 bit and no parity
+					bits_to_send -= 8;
+				}
+			} else {
 			GetParity(cmd, lenbits/8, par);
-			ReaderTransmitBitsPar(cmd, lenbits, par, NULL);
+				ReaderTransmitBitsPar(cmd, lenbits, par, NULL);							// bytes are 8 bit with odd parity
+			}
+		} else {					// want to send complete bytes only
+			if(param & ISO14A_TOPAZMODE) {
+				uint16_t i = 0;
+				ReaderTransmitBitsPar(&cmd[i++], 7, NULL, NULL);						// first byte: 7 bits, no paritiy
+				while (i < len) {
+					ReaderTransmitBitsPar(&cmd[i++], 8, NULL, NULL);					// following bytes: 8 bits, no paritiy
+				}
 		} else {
-			ReaderTransmit(cmd,len, NULL);
+				ReaderTransmit(cmd,len, NULL);											// 8 bits, odd parity
+			}
 		}
 		arg0 = ReaderReceive(buf, par);
 		cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
@@ -1978,6 +2197,7 @@ void ReaderIso14443a(UsbCommand *c)
 	}
 
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+	set_tracing(FALSE);
 	LEDsoff();
 }
 
@@ -1995,7 +2215,7 @@ int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
 	nttmp1 = nt1;
 	nttmp2 = nt2;
 	
-	for (i = 1; i < 32768; i++) {
+	for (i = 1; i < 0xFFFF; i++) {
 		nttmp1 = prng_successor(nttmp1, 1);
 		if (nttmp1 == nt2) return i;
 		nttmp2 = prng_successor(nttmp2, 1);
@@ -2019,11 +2239,18 @@ void ReaderMifare(bool first_try)
 	uint8_t mf_nr_ar[]   = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
 	static uint8_t mf_nr_ar3;
 
-	uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + RECV_RESP_OFFSET);
-	uint8_t* receivedAnswerPar = (((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET);
+	uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
+	uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
 
-	iso14a_clear_trace();
-	iso14a_set_tracing(TRUE);
+	if (first_try) { 
+		iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
+	}
+	
+	// free eventually allocated BigBuf memory. We want all for tracing.
+	BigBuf_free();
+	
+	clear_trace();
+	set_tracing(TRUE);
 
 	byte_t nt_diff = 0;
 	uint8_t par[1] = {0};	// maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
@@ -2038,20 +2265,20 @@ void ReaderMifare(bool first_try)
 	byte_t par_list[8] = {0x00};
 	byte_t ks_list[8] = {0x00};
 
-	static uint32_t sync_time;
-	static uint32_t sync_cycles;
+   #define PRNG_SEQUENCE_LENGTH  (1 << 16);
+	static uint32_t sync_time = 0;
+	static int32_t sync_cycles = 0;
 	int catch_up_cycles = 0;
 	int last_catch_up = 0;
+	uint16_t elapsed_prng_sequences;
 	uint16_t consecutive_resyncs = 0;
 	int isOK = 0;
 
 	if (first_try) { 
 		mf_nr_ar3 = 0;
-		iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
 		sync_time = GetCountSspClk() & 0xfffffff8;
-		sync_cycles = 65536;									// theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
+		sync_cycles = PRNG_SEQUENCE_LENGTH; //65536;	//0x10000			// theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
 		nt_attacked = 0;
-		nt = 0;
 		par[0] = 0;
 	}
 	else {
@@ -2065,33 +2292,84 @@ void ReaderMifare(bool first_try)
 	LED_B_OFF();
 	LED_C_OFF();
 	
+
+	#define MAX_UNEXPECTED_RANDOM	4		// maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up.
+	#define MAX_SYNC_TRIES			32
+	#define NUM_DEBUG_INFOS			8		// per strategy
+	#define MAX_STRATEGY			3
+	uint16_t unexpected_random = 0;
+	uint16_t sync_tries = 0;
+	int16_t debug_info_nr = -1;
+	uint16_t strategy = 0;
+	int32_t debug_info[MAX_STRATEGY][NUM_DEBUG_INFOS];
+	uint32_t select_time;
+	uint32_t halt_time;
   
 	for(uint16_t i = 0; TRUE; i++) {
 		
+		LED_C_ON();
 		WDT_HIT();
 
 		// Test if the action was cancelled
 		if(BUTTON_PRESS()) {
+			isOK = -1;
 			break;
 		}
 		
-		LED_C_ON();
+		if (strategy == 2) {
+			// test with additional hlt command
+			halt_time = 0;
+			int len = mifare_sendcmd_short(NULL, false, 0x50, 0x00, receivedAnswer, receivedAnswerPar, &halt_time);
+			if (len && MF_DBGLEVEL >= 3) {
+				Dbprintf("Unexpected response of %d bytes to hlt command (additional debugging).", len);
+			}
+		}
 
-		if(!iso14443a_select_card(uid, NULL, &cuid)) {
+		if (strategy == 3) {
+			// test with FPGA power off/on
+			FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+			SpinDelay(200);
+			iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
+			SpinDelay(100);
+		}
+		
+		if(!iso14443a_select_card(uid, NULL, &cuid, true, 0)) {
 			if (MF_DBGLEVEL >= 1)	Dbprintf("Mifare: Can't select card");
 			continue;
 		}
+		select_time = GetCountSspClk();
 
-		sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
-		catch_up_cycles = 0;
+		elapsed_prng_sequences = 1;
+		if (debug_info_nr == -1) {
+			sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
+			catch_up_cycles = 0;
 
-		// if we missed the sync time already, advance to the next nonce repeat
-		while(GetCountSspClk() > sync_time) {
-			sync_time = (sync_time & 0xfffffff8) + sync_cycles;
-		}
+			// if we missed the sync time already, advance to the next nonce repeat
+			while(GetCountSspClk() > sync_time) {
+				elapsed_prng_sequences++;
+				sync_time = (sync_time & 0xfffffff8) + sync_cycles;
+			}
 
-		// Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked) 
-		ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
+			// Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked) 
+			ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
+		} else {
+			// collect some information on tag nonces for debugging:
+			#define DEBUG_FIXED_SYNC_CYCLES	PRNG_SEQUENCE_LENGTH
+			if (strategy == 0) {
+				// nonce distances at fixed time after card select:
+				sync_time = select_time + DEBUG_FIXED_SYNC_CYCLES;
+			} else if (strategy == 1) {
+				// nonce distances at fixed time between authentications:
+				sync_time = sync_time + DEBUG_FIXED_SYNC_CYCLES;
+			} else if (strategy == 2) {
+				// nonce distances at fixed time after halt:
+				sync_time = halt_time + DEBUG_FIXED_SYNC_CYCLES;
+			} else {
+				// nonce_distances at fixed time after power on
+				sync_time = DEBUG_FIXED_SYNC_CYCLES;
+			}
+			ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
+		}			
 
 		// Receive the (4 Byte) "random" nonce
 		if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) {
@@ -2109,13 +2387,37 @@ void ReaderMifare(bool first_try)
 			int nt_distance = dist_nt(previous_nt, nt);
 			if (nt_distance == 0) {
 				nt_attacked = nt;
-			}
-			else {
-				if (nt_distance == -99999) { // invalid nonce received, try again
-					continue;
+			} else {
+				if (nt_distance == -99999) { // invalid nonce received
+					unexpected_random++;
+					if (unexpected_random > MAX_UNEXPECTED_RANDOM) {
+						isOK = -3;		// Card has an unpredictable PRNG. Give up	
+						break;
+					} else {
+						continue;		// continue trying...
+					}
+				}
+				if (++sync_tries > MAX_SYNC_TRIES) {
+					if (strategy > MAX_STRATEGY || MF_DBGLEVEL < 3) {
+						isOK = -4; 			// Card's PRNG runs at an unexpected frequency or resets unexpectedly
+						break;
+					} else {				// continue for a while, just to collect some debug info
+						debug_info[strategy][debug_info_nr] = nt_distance;
+						debug_info_nr++;
+						if (debug_info_nr == NUM_DEBUG_INFOS) {
+							strategy++;
+							debug_info_nr = 0;
+						}
+						continue;
+					}
+				}
+				sync_cycles = (sync_cycles - nt_distance/elapsed_prng_sequences);
+				if (sync_cycles <= 0) {
+					sync_cycles += PRNG_SEQUENCE_LENGTH;
+				}
+				if (MF_DBGLEVEL >= 3) {
+					Dbprintf("calibrating in cycle %d. nt_distance=%d, elapsed_prng_sequences=%d, new sync_cycles: %d\n", i, nt_distance, elapsed_prng_sequences, sync_cycles);
 				}
-				sync_cycles = (sync_cycles - nt_distance);
-				if (MF_DBGLEVEL >= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i, nt_distance, sync_cycles);
 				continue;
 			}
 		}
@@ -2126,6 +2428,7 @@ void ReaderMifare(bool first_try)
 				catch_up_cycles = 0;
 				continue;
 			}
+			catch_up_cycles /= elapsed_prng_sequences;
 			if (catch_up_cycles == last_catch_up) {
 				consecutive_resyncs++;
 			}
@@ -2139,6 +2442,9 @@ void ReaderMifare(bool first_try)
 			else {	
 				sync_cycles = sync_cycles + catch_up_cycles;
 				if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
+				last_catch_up = 0;
+				catch_up_cycles = 0;
+				consecutive_resyncs = 0;
 			}
 			continue;
 		}
@@ -2146,12 +2452,10 @@ void ReaderMifare(bool first_try)
 		consecutive_resyncs = 0;
 		
 		// Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
-		if (ReaderReceive(receivedAnswer, receivedAnswerPar))
-		{
+		if (ReaderReceive(receivedAnswer, receivedAnswerPar)) {
 			catch_up_cycles = 8; 	// the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
 	
-			if (nt_diff == 0)
-			{
+			if (nt_diff == 0) {
 				par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
 			}
 
@@ -2174,6 +2478,10 @@ void ReaderMifare(bool first_try)
 			if (nt_diff == 0 && first_try)
 			{
 				par[0]++;
+				if (par[0] == 0x00) {		// tried all 256 possible parities without success. Card doesn't send NACK.
+					isOK = -2;
+					break;
+				}
 			} else {
 				par[0] = ((par[0] & 0x1F) + 1) | par_low;
 			}
@@ -2183,6 +2491,16 @@ void ReaderMifare(bool first_try)
 
 	mf_nr_ar[3] &= 0x1F;
 	
+	if (isOK == -4) {
+		if (MF_DBGLEVEL >= 3) {
+			for (uint16_t i = 0; i <= MAX_STRATEGY; i++) {
+				for(uint16_t j = 0; j < NUM_DEBUG_INFOS; j++) {
+					Dbprintf("collected debug info[%d][%d] = %d", i, j, debug_info[i][j]);
+				}
+			}
+		}
+	}
+	
 	byte_t buf[28];
 	memcpy(buf + 0,  uid, 4);
 	num_to_bytes(nt, 4, buf + 4);
@@ -2196,7 +2514,7 @@ void ReaderMifare(bool first_try)
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
 	LEDsoff();
 
-	iso14a_set_tracing(FALSE);
+	set_tracing(FALSE);
 }
 
 /**
@@ -2221,7 +2539,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 	uint8_t cardWRBL = 0;
 	uint8_t cardAUTHSC = 0;
 	uint8_t cardAUTHKEY = 0xff;  // no authentication
-	uint32_t cardRr = 0;
+//	uint32_t cardRr = 0;
 	uint32_t cuid = 0;
 	//uint32_t rn_enc = 0;
 	uint32_t ans = 0;
@@ -2231,30 +2549,27 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 	struct Crypto1State *pcs;
 	pcs = &mpcs;
 	uint32_t numReads = 0;//Counts numer of times reader read a block
-	uint8_t* receivedCmd = get_bigbufptr_recvcmdbuf();
-	uint8_t* receivedCmd_par = receivedCmd + MAX_FRAME_SIZE;
-	uint8_t* response = get_bigbufptr_recvrespbuf();
-	uint8_t* response_par = response + MAX_FRAME_SIZE;
+	uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
+	uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE];
+	uint8_t response[MAX_MIFARE_FRAME_SIZE];
+	uint8_t response_par[MAX_MIFARE_PARITY_SIZE];
 	
 	uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
 	uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
 	uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
-	uint8_t rSAK[] = {0x08, 0xb6, 0xdd};
+	uint8_t rSAK[] = {0x08, 0xb6, 0xdd}; // Mifare Classic
+	//uint8_t rSAK[] = {0x09, 0x3f, 0xcc };  // Mifare Mini 
 	uint8_t rSAK1[] = {0x04, 0xda, 0x17};
 
-	uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04};
+	uint8_t rAUTH_NT[] = {0x01, 0x01, 0x01, 0x01};
 	uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
 		
-	//Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
+	//Here, we collect UID1,UID2,NT,AR,NR,0,0,NT2,AR2,NR2
 	// This can be used in a reader-only attack.
 	// (it can also be retrieved via 'hf 14a list', but hey...
-	uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0};
+	uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0,0,0};
 	uint8_t ar_nr_collected = 0;
 
-	// clear trace
-    iso14a_clear_trace();
-	iso14a_set_tracing(TRUE);
-
 	// Authenticate response - nonce
 	uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
 	
@@ -2284,6 +2599,11 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 		}
 	}
 
+	// save uid.
+	ar_nr_responses[0*5]   = bytes_to_num(rUIDBCC1+1, 3);
+	if ( _7BUID )
+		ar_nr_responses[0*5+1] = bytes_to_num(rUIDBCC2, 4);
+
 	/*
 	 * Regardless of what method was used to set the UID, set fifth byte and modify
 	 * the ATQA for 4 or 7-byte UID
@@ -2292,13 +2612,10 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 	if (_7BUID) {
 		rATQA[0] = 0x44;
 		rUIDBCC1[0] = 0x88;
+		rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
 		rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
 	}
 
-	// We need to listen to the high-frequency, peak-detected path.
-	iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
-
-
 	if (MF_DBGLEVEL >= 1)	{
 		if (!_7BUID) {
 			Dbprintf("4B UID: %02x%02x%02x%02x", 
@@ -2310,15 +2627,24 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 		}
 	}
 
+	// We need to listen to the high-frequency, peak-detected path.
+	iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
+
+	// free eventually allocated BigBuf memory but keep Emulator Memory
+	BigBuf_free_keep_EM();
+
+	// clear trace
+	clear_trace();
+	set_tracing(TRUE);
+
+
 	bool finished = FALSE;
-	while (!BUTTON_PRESS() && !finished) {
+	while (!BUTTON_PRESS() && !finished && !usb_poll_validate_length()) {
 		WDT_HIT();
 
 		// find reader field
-		// Vref = 3300mV, and an 10:1 voltage divider on the input
-		// can measure voltages up to 33000 mV
 		if (cardSTATE == MFEMUL_NOFIELD) {
-			vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
+			vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
 			if (vHf > MF_MINFIELDV) {
 				cardSTATE_TO_IDLE();
 				LED_A_ON();
@@ -2327,7 +2653,6 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 		if(cardSTATE == MFEMUL_NOFIELD) continue;
 
 		//Now, get data
-
 		res = EmGetCmd(receivedCmd, &len, receivedCmd_par);
 		if (res == 2) { //Field is off!
 			cardSTATE = MFEMUL_NOFIELD;
@@ -2393,38 +2718,47 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 					LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
 					break;
 				}
+
 				uint32_t ar = bytes_to_num(receivedCmd, 4);
 				uint32_t nr = bytes_to_num(&receivedCmd[4], 4);
 
 				//Collect AR/NR
+				//if(ar_nr_collected < 2 && cardAUTHSC == 2){
 				if(ar_nr_collected < 2){
 					if(ar_nr_responses[2] != ar)
 					{// Avoid duplicates... probably not necessary, ar should vary. 
-						ar_nr_responses[ar_nr_collected*4] = cuid;
-						ar_nr_responses[ar_nr_collected*4+1] = nonce;
-						ar_nr_responses[ar_nr_collected*4+2] = ar;
-						ar_nr_responses[ar_nr_collected*4+3] = nr;
+						//ar_nr_responses[ar_nr_collected*5]   = 0;
+						//ar_nr_responses[ar_nr_collected*5+1] = 0;
+						ar_nr_responses[ar_nr_collected*5+2] = nonce;
+						ar_nr_responses[ar_nr_collected*5+3] = nr;
+						ar_nr_responses[ar_nr_collected*5+4] = ar;
 						ar_nr_collected++;
+					}						
+					// Interactive mode flag, means we need to send ACK
+					if(flags & FLAG_INTERACTIVE && ar_nr_collected == 2)
+					{
+						finished = true;
 					}
 				}
 
 				// --- crypto
-				crypto1_word(pcs, ar , 1);
-				cardRr = nr ^ crypto1_word(pcs, 0, 0);
-
-				// test if auth OK
-				if (cardRr != prng_successor(nonce, 64)){
-					if (MF_DBGLEVEL >= 2) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
-							cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
-							cardRr, prng_successor(nonce, 64));
+				//crypto1_word(pcs, ar , 1);
+				//cardRr = nr ^ crypto1_word(pcs, 0, 0);
+
+				//test if auth OK
+				//if (cardRr != prng_successor(nonce, 64)){
+					
+					//if (MF_DBGLEVEL >= 4) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
+					//	cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
+					//		cardRr, prng_successor(nonce, 64));
 					// Shouldn't we respond anything here?
 					// Right now, we don't nack or anything, which causes the
 					// reader to do a WUPA after a while. /Martin
 					// -- which is the correct response. /piwi
-					cardSTATE_TO_IDLE();
-					LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
-					break;
-				}
+					//cardSTATE_TO_IDLE();
+					//LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
+					//break;
+				//}
 
 				ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0);
 
@@ -2499,6 +2833,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 						ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0); 
 						num_to_bytes(ans, 4, rAUTH_AT);
 					}
+
 					EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
 					//Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
 					cardSTATE = MFEMUL_AUTH1;
@@ -2531,13 +2866,13 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 						|| receivedCmd[0] == 0xB0) { // transfer
 					if (receivedCmd[1] >= 16 * 4) {
 						EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
-						if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
+						if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
 						break;
 					}
 
 					if (receivedCmd[1] / 4 != cardAUTHSC) {
 						EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
-						if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC);
+						if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC);
 						break;
 					}
 				}
@@ -2551,7 +2886,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 					mf_crypto1_encrypt(pcs, response, 18, response_par);
 					EmSendCmdPar(response, 18, response_par);
 					numReads++;
-					if(exitAfterNReads > 0 && numReads == exitAfterNReads) {
+					if(exitAfterNReads > 0 && numReads >= exitAfterNReads) {
 						Dbprintf("%d reads done, exiting", numReads);
 						finished = true;
 					}
@@ -2569,7 +2904,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 				if (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2) {
 					if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
 					if (emlCheckValBl(receivedCmd[1])) {
-						if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
+						if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
 						EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
 						break;
 					}
@@ -2671,38 +3006,52 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 	if(flags & FLAG_INTERACTIVE)// Interactive mode flag, means we need to send ACK
 	{
 		//May just aswell send the collected ar_nr in the response aswell
-		cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,0,0,&ar_nr_responses,ar_nr_collected*4*4);
+		uint8_t len = ar_nr_collected*5*4;
+		cmd_send(CMD_ACK, CMD_SIMULATE_MIFARE_CARD, len, 0, &ar_nr_responses, len);
 	}
 
-	if(flags & FLAG_NR_AR_ATTACK)
+	if(flags & FLAG_NR_AR_ATTACK && MF_DBGLEVEL >= 1 )
 	{
-		if(ar_nr_collected > 1) {
+		if(ar_nr_collected > 1 ) {
 			Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
-			Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
-					 ar_nr_responses[0], // UID
-					ar_nr_responses[1], //NT
-					ar_nr_responses[2], //AR1
-					ar_nr_responses[3], //NR1
-					ar_nr_responses[6], //AR2
-					ar_nr_responses[7] //NR2
+			Dbprintf("../tools/mfkey/mfkey32 %06x%08x %08x %08x %08x %08x %08x",
+					ar_nr_responses[0], // UID1
+					ar_nr_responses[1], // UID2
+					ar_nr_responses[2], // NT
+					ar_nr_responses[3], // AR1
+					ar_nr_responses[4], // NR1
+					ar_nr_responses[8], // AR2
+					ar_nr_responses[9]  // NR2
+					);
+			Dbprintf("../tools/mfkey/mfkey32v2 %06x%08x %08x %08x %08x %08x %08x %08x",
+					ar_nr_responses[0], // UID1
+					ar_nr_responses[1], // UID2
+					ar_nr_responses[2], // NT1
+					ar_nr_responses[3], // AR1
+					ar_nr_responses[4], // NR1
+					ar_nr_responses[7], // NT2
+					ar_nr_responses[8], // AR2
+					ar_nr_responses[9]  // NR2
 					);
 		} else {
 			Dbprintf("Failed to obtain two AR/NR pairs!");
-			if(ar_nr_collected >0) {
-				Dbprintf("Only got these: UID=%08x, nonce=%08x, AR1=%08x, NR1=%08x",
-						ar_nr_responses[0], // UID
-						ar_nr_responses[1], //NT
-						ar_nr_responses[2], //AR1
-						ar_nr_responses[3] //NR1
+			if(ar_nr_collected > 0 ) {
+				Dbprintf("Only got these: UID=%06x%08x, nonce=%08x, AR1=%08x, NR1=%08x",
+						ar_nr_responses[0], // UID1
+						ar_nr_responses[1], // UID2
+						ar_nr_responses[2], // NT
+						ar_nr_responses[3], // AR1
+						ar_nr_responses[4]  // NR1
 						);
 			}
 		}
 	}
-	if (MF_DBGLEVEL >= 1)	Dbprintf("Emulator stopped. Tracing: %d  trace length: %d ",	tracing, traceLen);
+	if (MF_DBGLEVEL >= 1)	Dbprintf("Emulator stopped. Tracing: %d  trace length: %d ", tracing, BigBuf_get_traceLen());
+	
+	set_tracing(FALSE);
 }
 
 
-
 //-----------------------------------------------------------------------------
 // MIFARE sniffer. 
 // 
@@ -2715,24 +3064,24 @@ void RAMFUNC SniffMifare(uint8_t param) {
 	// C(red) A(yellow) B(green)
 	LEDsoff();
 	// init trace buffer
-	iso14a_clear_trace();
-	iso14a_set_tracing(TRUE);
+	clear_trace();
+	set_tracing(TRUE);
 
 	// The command (reader -> tag) that we're receiving.
 	// The length of a received command will in most cases be no more than 18 bytes.
 	// So 32 should be enough!
-	uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
-	uint8_t *receivedCmdPar = ((uint8_t *)BigBuf) + RECV_CMD_PAR_OFFSET;
+	uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
+	uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE];
 	// The response (tag -> reader) that we're receiving.
-	uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RESP_OFFSET);
-	uint8_t *receivedResponsePar = ((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET;
+	uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE];
+	uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE];
 
-	// As we receive stuff, we copy it from receivedCmd or receivedResponse
-	// into trace, along with its length and other annotations.
-	//uint8_t *trace = (uint8_t *)BigBuf;
-	
-	// The DMA buffer, used to stream samples from the FPGA
-	uint8_t *dmaBuf = ((uint8_t *)BigBuf) + DMA_BUFFER_OFFSET;
+	iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
+
+	// free eventually allocated BigBuf memory
+	BigBuf_free();
+	// allocate the DMA buffer, used to stream samples from the FPGA
+	uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
 	uint8_t *data = dmaBuf;
 	uint8_t previous_data = 0;
 	int maxDataLen = 0;
@@ -2740,8 +3089,6 @@ void RAMFUNC SniffMifare(uint8_t param) {
 	bool ReaderIsActive = FALSE;
 	bool TagIsActive = FALSE;
 
-	iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
-
 	// Set up the demodulator for tag -> reader responses.
 	DemodInit(receivedResponse, receivedResponsePar);
 
@@ -2791,7 +3138,7 @@ void RAMFUNC SniffMifare(uint8_t param) {
 		// test for length of buffer
 		if(dataLen > maxDataLen) {					// we are more behind than ever...
 			maxDataLen = dataLen;					
-			if(dataLen > 400) {
+			if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
 				Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
 				break;
 			}
@@ -2821,7 +3168,7 @@ void RAMFUNC SniffMifare(uint8_t param) {
 					if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, TRUE)) break;
 
 					/* And ready to receive another command. */
-					UartReset();
+					UartInit(receivedCmd, receivedCmdPar);
 					
 					/* And also reset the demod code */
 					DemodReset();
@@ -2838,6 +3185,8 @@ void RAMFUNC SniffMifare(uint8_t param) {
 
 					// And ready to receive another response.
 					DemodReset();
+					// And reset the Miller decoder including its (now outdated) input buffer
+					UartInit(receivedCmd, receivedCmdPar);
 				}
 				TagIsActive = (Demod.state != DEMOD_UNSYNCD);
 			}
@@ -2852,11 +3201,9 @@ void RAMFUNC SniffMifare(uint8_t param) {
 
 	} // main cycle
 
-	DbpString("COMMAND FINISHED");
-
 	FpgaDisableSscDma();
 	MfSniffEnd();
-	
-	Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
 	LEDsoff();
+	Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
+	set_tracing(FALSE);
 }