X-Git-Url: http://cvs.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/02d352fea75385d80b49a7ab8703692ae307f073..051643995984009593bcb8180ff9f9d570af7df5:/armsrc/iso14443a.c

diff --git a/armsrc/iso14443a.c b/armsrc/iso14443a.c
index b9fb9bae..c4298fcb 100644
--- a/armsrc/iso14443a.c
+++ b/armsrc/iso14443a.c
@@ -1,4 +1,4 @@
-//-----------------------------------------------------------------------------
+ //-----------------------------------------------------------------------------
 // Merlok - June 2011, 2012
 // Gerhard de Koning Gans - May 2008
 // Hagen Fritsch - June 2010
@@ -20,6 +20,8 @@
 #include "crapto1.h"
 #include "mifareutil.h"
 #include "BigBuf.h"
+#include "parity.h"
+
 static uint32_t iso14a_timeout;
 int rsamples = 0;
 uint8_t trigger = 0;
@@ -104,8 +106,6 @@ static uint32_t NextTransferTime;
 static uint32_t LastTimeProxToAirStart;
 static uint32_t LastProxToAirDuration;
 
-
-
 // CARD TO READER - manchester
 // Sequence D: 11110000 modulation with subcarrier during first half
 // Sequence E: 00001111 modulation with subcarrier during second half
@@ -121,37 +121,15 @@ static uint32_t LastProxToAirDuration;
 #define	SEC_Y 0x00
 #define	SEC_Z 0xc0
 
-const uint8_t OddByteParity[256] = {
-  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
-  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
-  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
-  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
-  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
-  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
-  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
-  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
-  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
-  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
-  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
-  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
-  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
-  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
-  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
-  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
-};
-
-
 void iso14a_set_trigger(bool enable) {
 	trigger = enable;
 }
 
-
 void iso14a_set_timeout(uint32_t timeout) {
 	iso14a_timeout = timeout;
 	if(MF_DBGLEVEL >= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", iso14a_timeout, iso14a_timeout / 106);
 }
 
-
 void iso14a_set_ATS_timeout(uint8_t *ats) {
 
 	uint8_t tb1;
@@ -160,29 +138,26 @@ void iso14a_set_ATS_timeout(uint8_t *ats) {
 	
 	if (ats[0] > 1) {							// there is a format byte T0
 		if ((ats[1] & 0x20) == 0x20) {			// there is an interface byte TB(1)
-			if ((ats[1] & 0x10) == 0x10) {		// there is an interface byte TA(1) preceding TB(1)
+
+			if ((ats[1] & 0x10) == 0x10)		// there is an interface byte TA(1) preceding TB(1)
 				tb1 = ats[3];
-			} else {
+			else
 				tb1 = ats[2];
-			}
+
 			fwi = (tb1 & 0xf0) >> 4;			// frame waiting indicator (FWI)
-			fwt = 256 * 16 * (1 << fwi);		// frame waiting time (FWT) in 1/fc
+			//fwt = 256 * 16 * (1 << fwi);		// frame waiting time (FWT) in 1/fc
+			fwt = 4096 * (1 << fwi);
 			
-			iso14a_set_timeout(fwt/(8*16));
+			//iso14a_set_timeout(fwt/(8*16));
+			iso14a_set_timeout(fwt/128);
 		}
 	}
 }
 
-
 //-----------------------------------------------------------------------------
 // Generate the parity value for a byte sequence
 //
 //-----------------------------------------------------------------------------
-byte_t oddparity (const byte_t bt)
-{
-	return OddByteParity[bt];
-}
-
 void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par)
 {
 	uint16_t paritybit_cnt = 0;
@@ -191,7 +166,7 @@ void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par)
 
 	for (uint16_t i = 0; i < iLen; i++) {
 		// Generate the parity bits
-		parityBits |= ((OddByteParity[pbtCmd[i]]) << (7-paritybit_cnt));
+		parityBits |= ((oddparity8(pbtCmd[i])) << (7-paritybit_cnt));
 		if (paritybit_cnt == 7) {
 			par[paritybyte_cnt] = parityBits;	// save 8 Bits parity
 			parityBits = 0;						// and advance to next Parity Byte
@@ -561,23 +536,22 @@ static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non
 // triggering so that we start recording at the point that the tag is moved
 // near the reader.
 //-----------------------------------------------------------------------------
-void RAMFUNC SnoopIso14443a(uint8_t param) {
+void RAMFUNC SniffIso14443a(uint8_t param) {
 	// param:
 	// bit 0 - trigger from first card answer
 	// bit 1 - trigger from first reader 7-bit request
-	
 	LEDsoff();
 
-	// We won't start recording the frames that we acquire until we trigger;
-	// a good trigger condition to get started is probably when we see a
-	// response from the tag.
-	// triggered == FALSE -- to wait first for card
-	bool triggered = !(param & 0x03); 
+	iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
 	
 	// Allocate memory from BigBuf for some buffers
 	// free all previous allocations first
 	BigBuf_free();
-
+	
+	// init trace buffer
+	clear_trace();
+	set_tracing(TRUE);
+	
 	// The command (reader -> tag) that we're receiving.
 	uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
 	uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
@@ -589,10 +563,6 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
 	// The DMA buffer, used to stream samples from the FPGA
 	uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
 
-	// init trace buffer
-	clear_trace();
-	set_tracing(TRUE);
-
 	uint8_t *data = dmaBuf;
 	uint8_t previous_data = 0;
 	int maxDataLen = 0;
@@ -600,8 +570,6 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
 	bool TagIsActive = FALSE;
 	bool ReaderIsActive = FALSE;
 	
-	iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
-
 	// Set up the demodulator for tag -> reader responses.
 	DemodInit(receivedResponse, receivedResponsePar);
 	
@@ -611,6 +579,12 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
 	// Setup and start DMA.
 	FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
 	
+	// We won't start recording the frames that we acquire until we trigger;
+	// a good trigger condition to get started is probably when we see a
+	// response from the tag.
+	// triggered == FALSE -- to wait first for card
+	bool triggered = !(param & 0x03); 
+	
 	// And now we loop, receiving samples.
 	for(uint32_t rsamples = 0; TRUE; ) {
 
@@ -714,12 +688,13 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
 		}
 	} // main cycle
 
-	DbpString("COMMAND FINISHED");
-
 	FpgaDisableSscDma();
+	LEDsoff();
+
 	Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len);
 	Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart.output[0]);
-	LEDsoff();
+	
+	set_tracing(FALSE);	
 }
 
 //-----------------------------------------------------------------------------
@@ -775,7 +750,7 @@ static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *par
 
 static void CodeIso14443aAsTag(const uint8_t *cmd, uint16_t len)
 {
-	uint8_t par[MAX_PARITY_SIZE];
+	uint8_t par[MAX_PARITY_SIZE] = {0};
 	
 	GetParity(cmd, len, par);
 	CodeIso14443aAsTagPar(cmd, len, par);
@@ -912,7 +887,9 @@ bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffe
 // Coded responses need one byte per bit to transfer (data, parity, start, stop, correction) 
 // 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits
 // -> need 273 bytes buffer
-#define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 273
+// 44 * 8 data bits, 44 * 1 parity bits, 9 start bits, 9 stop bits, 9 correction bits --370
+// 47 * 8 data bits, 47 * 1 parity bits, 10 start bits, 10 stop bits, 10 correction bits 
+#define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 453 
 
 bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
   // Retrieve and store the current buffer index
@@ -935,12 +912,22 @@ bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
 // Main loop of simulated tag: receive commands from reader, decide what
 // response to send, and send it.
 //-----------------------------------------------------------------------------
-void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
+void SimulateIso14443aTag(int tagType, int flags, byte_t* data)
 {
+	uint32_t counters[] = {0,0,0};
+	//Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
+	// This can be used in a reader-only attack.
+	// (it can also be retrieved via 'hf 14a list', but hey...
+	uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0,0,0};
+	uint8_t ar_nr_collected = 0;
+	
 	uint8_t sak;
-
+					
+	// PACK response to PWD AUTH for EV1/NTAG
+	uint8_t response8[4] =  {0,0,0,0};
+	
 	// The first response contains the ATQA (note: bytes are transmitted in reverse order).
-	uint8_t response1[2];
+	uint8_t response1[2] =  {0,0};
 	
 	switch (tagType) {
 		case 1: { // MIFARE Classic
@@ -951,7 +938,7 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 		} break;
 		case 2: { // MIFARE Ultralight
 			// Says: I am a stupid memory tag, no crypto
-			response1[0] = 0x04;
+			response1[0] = 0x44;
 			response1[1] = 0x00;
 			sak = 0x00;
 		} break;
@@ -972,6 +959,31 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 			response1[0] = 0x01;
 			response1[1] = 0x0f;
 			sak = 0x01;
+		} break;
+		case 6: { // MIFARE Mini
+			// Says: I am a Mifare Mini, 320b
+			response1[0] = 0x44;
+			response1[1] = 0x00;
+			sak = 0x09;
+		} break;
+		case 7: { // NTAG?
+			// Says: I am a NTAG, 
+			response1[0] = 0x44;
+			response1[1] = 0x00;
+			sak = 0x00;
+			// PACK
+			response8[0] = 0x80;
+			response8[1] = 0x80;
+			ComputeCrc14443(CRC_14443_A, response8, 2, &response8[2], &response8[3]);
+			// uid not supplied then get from emulator memory
+			if (data[0]==0) {
+				uint16_t start = 4 * (0+12);  
+				uint8_t emdata[8];
+				emlGetMemBt( emdata, start, sizeof(emdata));
+				memcpy(data, emdata, 3); //uid bytes 0-2
+				memcpy(data+3, emdata+4, 4); //uid bytes 3-7
+				flags |= FLAG_7B_UID_IN_DATA;
+			}
 		} break;		
 		default: {
 			Dbprintf("Error: unkown tagtype (%d)",tagType);
@@ -985,17 +997,24 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 	// Check if the uid uses the (optional) part
 	uint8_t response2a[5] = {0x00};
 	
-	if (uid_2nd) {
+	if (flags & FLAG_7B_UID_IN_DATA) {
 		response2[0] = 0x88;
-		num_to_bytes(uid_1st,3,response2+1);
-		num_to_bytes(uid_2nd,4,response2a);
+		response2[1] = data[0];
+		response2[2] = data[1];
+		response2[3] = data[2];
+
+		response2a[0] = data[3];
+		response2a[1] = data[4];
+		response2a[2] = data[5];
+		response2a[3] = data[6]; //??
 		response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3];
 
 		// Configure the ATQA and SAK accordingly
 		response1[0] |= 0x40;
 		sak |= 0x04;
 	} else {
-		num_to_bytes(uid_1st,4,response2);
+		memcpy(response2, data, 4);
+		//num_to_bytes(uid_1st,4,response2);
 		// Configure the ATQA and SAK accordingly
 		response1[0] &= 0xBF;
 		sak &= 0xFB;
@@ -1022,7 +1041,14 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 	// TC(1) = 0x02: CID supported, NAD not supported
 	ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]);
 
-	#define TAG_RESPONSE_COUNT 7
+	// Prepare GET_VERSION (different for UL EV-1 / NTAG)
+	//uint8_t response7_EV1[] = {0x00, 0x04, 0x03, 0x01, 0x01, 0x00, 0x0b, 0x03, 0xfd, 0xf7};  //EV1 48bytes VERSION.
+	//uint8_t response7_NTAG[] = {0x00, 0x04, 0x04, 0x02, 0x01, 0x00, 0x11, 0x03, 0x01, 0x9e}; //NTAG 215
+	
+	// Prepare CHK_TEARING
+	//uint8_t response9[] =  {0xBD,0x90,0x3f};
+	
+	#define TAG_RESPONSE_COUNT 10
 	tag_response_info_t responses[TAG_RESPONSE_COUNT] = {
 		{ .response = response1,  .response_n = sizeof(response1)  },  // Answer to request - respond with card type
 		{ .response = response2,  .response_n = sizeof(response2)  },  // Anticollision cascade1 - respond with uid
@@ -1031,7 +1057,12 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 		{ .response = response3a, .response_n = sizeof(response3a) },  // Acknowledge select - cascade 2
 		{ .response = response5,  .response_n = sizeof(response5)  },  // Authentication answer (random nonce)
 		{ .response = response6,  .response_n = sizeof(response6)  },  // dummy ATS (pseudo-ATR), answer to RATS
-	};
+
+		{ .response = response8,   .response_n = sizeof(response8) }  // EV1/NTAG PACK response
+	};	
+		//{ .response = response7_NTAG, .response_n = sizeof(response7_NTAG)}, // EV1/NTAG GET_VERSION response
+		//{ .response = response9,      .response_n = sizeof(response9)     }  // EV1/NTAG CHK_TEAR response
+	
 
 	// Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
 	// Such a response is less time critical, so we can prepare them on the fly
@@ -1046,6 +1077,9 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 		.modulation_n = 0
 	};
   
+	// We need to listen to the high-frequency, peak-detected path.
+	iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
+
 	BigBuf_free_keep_EM();
 
 	// allocate buffers:
@@ -1059,9 +1093,8 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 
 	// Prepare the responses of the anticollision phase
 	// there will be not enough time to do this at the moment the reader sends it REQA
-	for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) {
+	for (size_t i=0; i<TAG_RESPONSE_COUNT; i++)
 		prepare_allocated_tag_modulation(&responses[i]);
-	}
 
 	int len = 0;
 
@@ -1074,16 +1107,15 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 	int happened2 = 0;
 	int cmdsRecvd = 0;
 
-	// We need to listen to the high-frequency, peak-detected path.
-	iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
-
 	cmdsRecvd = 0;
 	tag_response_info_t* p_response;
 
 	LED_A_ON();
 	for(;;) {
-		// Clean receive command buffer
 		
+		WDT_HIT();
+		
+		// Clean receive command buffer
 		if(!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)) {
 			DbpString("Button press");
 			break;
@@ -1106,18 +1138,96 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 		} else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) {	// Received a SELECT (cascade 2)
 			p_response = &responses[4]; order = 30;
 		} else if(receivedCmd[0] == 0x30) {	// Received a (plain) READ
-			EmSendCmdEx(data+(4*receivedCmd[1]),16,false);
-			// Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
-			// We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
+			uint8_t block = receivedCmd[1];
+			// if Ultralight or NTAG (4 byte blocks)
+			if ( tagType == 7 || tagType == 2 ) {
+				//first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
+				uint16_t start = 4 * (block+12);  
+					uint8_t emdata[MAX_MIFARE_FRAME_SIZE];
+					emlGetMemBt( emdata, start, 16);
+					AppendCrc14443a(emdata, 16);
+					EmSendCmdEx(emdata, sizeof(emdata), false);				
+				// We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
+				p_response = NULL;
+			} else { // all other tags (16 byte block tags)
+				EmSendCmdEx(data+(4*receivedCmd[1]),16,false);
+				// Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
+				// We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
+				p_response = NULL;
+			}
+		} else if(receivedCmd[0] == 0x3A) {	// Received a FAST READ (ranged read)
+				
+				uint8_t emdata[MAX_FRAME_SIZE];
+				//first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
+				int start =  (receivedCmd[1]+12) * 4; 
+				int len   = (receivedCmd[2] - receivedCmd[1] + 1) * 4;
+				emlGetMemBt( emdata, start, len);
+				AppendCrc14443a(emdata, len);
+				EmSendCmdEx(emdata, len+2, false);				
+				p_response = NULL;
+				
+		} else if(receivedCmd[0] == 0x3C && tagType == 7) {	// Received a READ SIGNATURE -- 
+				// ECC data,  taken from a NTAG215 amiibo token. might work. LEN: 32, + 2 crc
+				//first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
+				uint16_t start = 4 * 4;
+				uint8_t emdata[34];
+				emlGetMemBt( emdata, start, 32);
+				AppendCrc14443a(emdata, 32);
+				EmSendCmdEx(emdata, sizeof(emdata), false);
+				//uint8_t data[] = {0x56,0x06,0xa6,0x4f,0x43,0x32,0x53,0x6f,
+				//				  0x43,0xda,0x45,0xd6,0x61,0x38,0xaa,0x1e,
+				//				  0xcf,0xd3,0x61,0x36,0xca,0x5f,0xbb,0x05,
+				//				  0xce,0x21,0x24,0x5b,0xa6,0x7a,0x79,0x07,
+				//				  0x00,0x00};
+				//AppendCrc14443a(data, sizeof(data)-2);
+				//EmSendCmdEx(data,sizeof(data),false);
+				p_response = NULL;					
+		} else if (receivedCmd[0] == 0x39 && tagType == 7) {	// Received a READ COUNTER -- 
+			uint8_t index = receivedCmd[1];
+			uint8_t data[] =  {0x00,0x00,0x00,0x14,0xa5};
+			if ( counters[index] > 0) {
+				num_to_bytes(counters[index], 3, data);
+				AppendCrc14443a(data, sizeof(data)-2);
+			}
+			EmSendCmdEx(data,sizeof(data),false);				
 			p_response = NULL;
+		} else if (receivedCmd[0] == 0xA5 && tagType == 7) {	// Received a INC COUNTER -- 
+			// number of counter
+			uint8_t counter = receivedCmd[1];
+			uint32_t val = bytes_to_num(receivedCmd+2,4);
+			counters[counter] = val;
+		
+			// send ACK
+			uint8_t ack[] = {0x0a};
+			EmSendCmdEx(ack,sizeof(ack),false);
+			p_response = NULL;
+			
+		} else if(receivedCmd[0] == 0x3E && tagType == 7) {	// Received a CHECK_TEARING_EVENT -- 
+			//first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
+			uint8_t emdata[3];
+			uint8_t counter=0;
+			if (receivedCmd[1]<3) counter = receivedCmd[1];
+			emlGetMemBt( emdata, 10+counter, 1);
+			AppendCrc14443a(emdata, sizeof(emdata)-2);
+			EmSendCmdEx(emdata, sizeof(emdata), false);	
+			p_response = NULL;
+			//p_response = &responses[9];				
+		
 		} else if(receivedCmd[0] == 0x50) {	// Received a HALT
-
-			if (tracing) {
-				LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
-			}
+			LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
 			p_response = NULL;
 		} else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) {	// Received an authentication request
-			p_response = &responses[5]; order = 7;
+					
+			if ( tagType == 7 ) {   // IF NTAG /EV1  0x60 == GET_VERSION, not a authentication request.
+				uint8_t emdata[10];
+				emlGetMemBt( emdata, 0, 8 );
+				AppendCrc14443a(emdata, sizeof(emdata)-2);
+				EmSendCmdEx(emdata, sizeof(emdata), false);	
+				p_response = NULL;
+				//p_response = &responses[7];
+			} else {
+				p_response = &responses[5]; order = 7;
+			}
 		} else if(receivedCmd[0] == 0xE0) {	// Received a RATS request
 			if (tagType == 1 || tagType == 2) {	// RATS not supported
 				EmSend4bit(CARD_NACK_NA);
@@ -1126,18 +1236,86 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 				p_response = &responses[6]; order = 70;
 			}
 		} else if (order == 7 && len == 8) { // Received {nr] and {ar} (part of authentication)
-			if (tracing) {
-				LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
-			}
+			LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
+			uint32_t nonce = bytes_to_num(response5,4);
 			uint32_t nr = bytes_to_num(receivedCmd,4);
 			uint32_t ar = bytes_to_num(receivedCmd+4,4);
-			Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr,ar);
+			//Dbprintf("Auth attempt {nonce}{nr}{ar}: %08x %08x %08x", nonce, nr, ar);
+
+			if(flags & FLAG_NR_AR_ATTACK )
+			{
+				if(ar_nr_collected < 2){
+					// Avoid duplicates... probably not necessary, nr should vary. 
+					//if(ar_nr_responses[3] != nr){						
+						ar_nr_responses[ar_nr_collected*5]   = 0;
+						ar_nr_responses[ar_nr_collected*5+1] = 0;
+						ar_nr_responses[ar_nr_collected*5+2] = nonce;
+						ar_nr_responses[ar_nr_collected*5+3] = nr;
+						ar_nr_responses[ar_nr_collected*5+4] = ar;
+						ar_nr_collected++;
+					//}
+				}			
+
+				if(ar_nr_collected > 1 ) {
+				
+					if (MF_DBGLEVEL >= 2) {
+							Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
+							Dbprintf("../tools/mfkey/mfkey32 %07x%08x %08x %08x %08x %08x %08x",
+								ar_nr_responses[0], // UID1
+								ar_nr_responses[1], // UID2
+								ar_nr_responses[2], // NT
+								ar_nr_responses[3], // AR1
+								ar_nr_responses[4], // NR1
+								ar_nr_responses[8], // AR2
+								ar_nr_responses[9]  // NR2
+							);
+							Dbprintf("../tools/mfkey/mfkey32v2 %06x%08x %08x %08x %08x %08x %08x %08x",
+								ar_nr_responses[0], // UID1
+								ar_nr_responses[1], // UID2
+								ar_nr_responses[2], // NT1
+								ar_nr_responses[3], // AR1
+								ar_nr_responses[4], // NR1
+								ar_nr_responses[7], // NT2
+								ar_nr_responses[8], // AR2
+								ar_nr_responses[9]  // NR2
+								);
+					}
+					uint8_t len = ar_nr_collected*5*4;
+					cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,len,0,&ar_nr_responses,len);
+					ar_nr_collected = 0;
+					memset(ar_nr_responses, 0x00, len);
+				}
+			}
+		} else if (receivedCmd[0] == 0x1a ) // ULC authentication
+		{
+			
+		}
+		else if (receivedCmd[0] == 0x1b) // NTAG / EV-1 authentication
+		{
+			if ( tagType == 7 ) {
+				uint16_t start = 13; //first 4 blocks of emu are [getversion answer - check tearing - pack - 0x00]
+				uint8_t emdata[4];
+				emlGetMemBt( emdata, start, 2);
+				AppendCrc14443a(emdata, 2);
+				EmSendCmdEx(emdata, sizeof(emdata), false);
+				p_response = NULL;
+				//p_response =  &responses[8]; // PACK response
+				uint32_t pwd = bytes_to_num(receivedCmd+1,4);
+				
+				if ( MF_DBGLEVEL >= 3)  Dbprintf("Auth attempt: %08x", pwd);	
+			}
 		} else {
 			// Check for ISO 14443A-4 compliant commands, look at left nibble
 			switch (receivedCmd[0]) {
-
+				case 0x02:
+				case 0x03: {  // IBlock (command no CID)
+					dynamic_response_info.response[0] = receivedCmd[0];
+					dynamic_response_info.response[1] = 0x90;
+					dynamic_response_info.response[2] = 0x00;
+					dynamic_response_info.response_n = 3;
+				} break;
 				case 0x0B:
-				case 0x0A: { // IBlock (command)
+				case 0x0A: { // IBlock (command CID)
 				  dynamic_response_info.response[0] = receivedCmd[0];
 				  dynamic_response_info.response[1] = 0x00;
 				  dynamic_response_info.response[2] = 0x90;
@@ -1157,22 +1335,22 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 				  dynamic_response_info.response_n = 2;
 				} break;
 				  
-				case 0xBA: { //
-				  memcpy(dynamic_response_info.response,"\xAB\x00",2);
-				  dynamic_response_info.response_n = 2;
+				case 0xBA: { // ping / pong
+					dynamic_response_info.response[0] = 0xAB;
+					dynamic_response_info.response[1] = 0x00;
+					dynamic_response_info.response_n = 2;
 				} break;
 
 				case 0xCA:
 				case 0xC2: { // Readers sends deselect command
-				  memcpy(dynamic_response_info.response,"\xCA\x00",2);
-				  dynamic_response_info.response_n = 2;
+					dynamic_response_info.response[0] = 0xCA;
+					dynamic_response_info.response[1] = 0x00;
+					dynamic_response_info.response_n = 2;
 				} break;
 
 				default: {
 					// Never seen this command before
-					if (tracing) {
-						LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
-					}
+					LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
 					Dbprintf("Received unknown command (len=%d):",len);
 					Dbhexdump(len,receivedCmd,false);
 					// Do not respond
@@ -1190,9 +1368,7 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
         
 				if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) {
 					Dbprintf("Error preparing tag response");
-					if (tracing) {
-						LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
-					}
+					LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
 					break;
 				}
 				p_response = &dynamic_response_info;
@@ -1214,7 +1390,7 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 		if (p_response != NULL) {
 			EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52);
 			// do the tracing for the previous reader request and this tag answer:
-			uint8_t par[MAX_PARITY_SIZE];
+			uint8_t par[MAX_PARITY_SIZE] = {0x00};
 			GetParity(p_response->response, p_response->response_n, par);
 	
 			EmLogTrace(Uart.output, 
@@ -1235,9 +1411,16 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 		}
 	}
 
-	Dbprintf("%x %x %x", happened, happened2, cmdsRecvd);
-	LED_A_OFF();
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+	set_tracing(FALSE);
 	BigBuf_free_keep_EM();
+	LED_A_OFF();
+	
+	if (MF_DBGLEVEL >= 4){
+		Dbprintf("-[ Wake ups after halt [%d]", happened);
+		Dbprintf("-[ Messages after halt [%d]", happened2);
+		Dbprintf("-[ Num of received cmd [%d]", cmdsRecvd);
+	}
 }
 
 
@@ -1245,24 +1428,26 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 // of bits specified in the delay parameter.
 void PrepareDelayedTransfer(uint16_t delay)
 {
+	delay &= 0x07;
+	if (!delay) return;
+
 	uint8_t bitmask = 0;
 	uint8_t bits_to_shift = 0;
 	uint8_t bits_shifted = 0;
-	
-	delay &= 0x07;
-	if (delay) {
-		for (uint16_t i = 0; i < delay; i++) {
-			bitmask |= (0x01 << i);
-		}
-		ToSend[ToSendMax++] = 0x00;
-		for (uint16_t i = 0; i < ToSendMax; i++) {
+	uint16_t i = 0;
+
+	for (i = 0; i < delay; ++i)
+		bitmask |= (0x01 << i);
+
+		ToSend[++ToSendMax] = 0x00;
+
+	for (i = 0; i < ToSendMax; ++i) {
 			bits_to_shift = ToSend[i] & bitmask;
 			ToSend[i] = ToSend[i] >> delay;
 			ToSend[i] = ToSend[i] | (bits_shifted << (8 - delay));
 			bits_shifted = bits_to_shift;
 		}
 	}
-}
 
 
 //-------------------------------------------------------------------------------------
@@ -1275,23 +1460,32 @@ void PrepareDelayedTransfer(uint16_t delay)
 //-------------------------------------------------------------------------------------
 static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing)
 {
-	
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
 
 	uint32_t ThisTransferTime = 0;
 
 	if (timing) {
-		if(*timing == 0) {										// Measure time
+
+		if (*timing != 0)
+			// Delay transfer (fine tuning - up to 7 MF clock ticks)
+			PrepareDelayedTransfer(*timing & 0x00000007);	
+		else
+			// Measure time
 			*timing = (GetCountSspClk() + 8) & 0xfffffff8;
-		} else {
-			PrepareDelayedTransfer(*timing & 0x00000007);		// Delay transfer (fine tuning - up to 7 MF clock ticks)
-		}
-		if(MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
-		while(GetCountSspClk() < (*timing & 0xfffffff8));		// Delay transfer (multiple of 8 MF clock ticks)
+
+		
+		if (MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) 
+			Dbprintf("TransmitFor14443a: Missed timing");
+		
+		// Delay transfer (multiple of 8 MF clock ticks)
+		while (GetCountSspClk() < (*timing & 0xfffffff8));	
+
 		LastTimeProxToAirStart = *timing;
 	} else {
 		ThisTransferTime = ((MAX(NextTransferTime, GetCountSspClk()) & 0xfffffff8) + 8);
+
 		while(GetCountSspClk() < ThisTransferTime);
+
 		LastTimeProxToAirStart = ThisTransferTime;
 	}
 	
@@ -1302,10 +1496,9 @@ static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing
 	for(;;) {
 		if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
 			AT91C_BASE_SSC->SSC_THR = cmd[c];
-			c++;
-			if(c >= len) {
+			++c;
+			if(c >= len)
 				break;
-			}
 		}
 	}
 	
@@ -1319,7 +1512,7 @@ static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing
 void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity)
 {
 	int i, j;
-	int last;
+	int last = 0;
 	uint8_t b;
 
 	ToSendReset();
@@ -1327,7 +1520,6 @@ void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8
 	// Start of Communication (Seq. Z)
 	ToSend[++ToSendMax] = SEC_Z;
 	LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
-	last = 0;
 
 	size_t bytecount = nbytes(bits);
 	// Generate send structure for the data bits
@@ -1391,7 +1583,7 @@ void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8
 	ToSend[++ToSendMax] = SEC_Y;
 
 	// Convert to length of command:
-	ToSendMax++;
+	++ToSendMax;
 }
 
 //-----------------------------------------------------------------------------
@@ -1399,7 +1591,8 @@ void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8
 //-----------------------------------------------------------------------------
 void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *parity)
 {
-  CodeIso14443aBitsAsReaderPar(cmd, len*8, parity);
+  //CodeIso14443aBitsAsReaderPar(cmd, len*8, parity);
+  CodeIso14443aBitsAsReaderPar(cmd, len<<3, parity);
 }
 
 
@@ -1518,13 +1711,11 @@ static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNe
 			FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
 		}
 	
-		if(BUTTON_PRESS()) {
-			break;
-		}
+		if(BUTTON_PRESS()) break;
 	}
 
 	// Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
-	uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3;
+	uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3;  // twich /8 ??   >>3, 
 	for (i = 0; i <= fpga_queued_bits/8 + 1; ) {
 		if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
 			AT91C_BASE_SSC->SSC_THR = SEC_F;
@@ -1542,7 +1733,7 @@ int EmSend4bitEx(uint8_t resp, bool correctionNeeded){
 	Code4bitAnswerAsTag(resp);
 	int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
 	// do the tracing for the previous reader request and this tag answer:
-	uint8_t par[1];
+	uint8_t par[1] = {0x00};
 	GetParity(&resp, 1, par);
 	EmLogTrace(Uart.output, 
 				Uart.len, 
@@ -1579,13 +1770,13 @@ int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8
 }
 
 int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded){
-	uint8_t par[MAX_PARITY_SIZE];
+	uint8_t par[MAX_PARITY_SIZE] = {0x00};
 	GetParity(resp, respLen, par);
 	return EmSendCmdExPar(resp, respLen, correctionNeeded, par);
 }
 
 int EmSendCmd(uint8_t *resp, uint16_t respLen){
-	uint8_t par[MAX_PARITY_SIZE];
+	uint8_t par[MAX_PARITY_SIZE] = {0x00};
 	GetParity(resp, respLen, par);
 	return EmSendCmdExPar(resp, respLen, false, par);
 }
@@ -1597,21 +1788,20 @@ int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par){
 bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
 				 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity)
 {
-	if (tracing) {
-		// we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
-		// end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
-		// with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
-		uint16_t reader_modlen = reader_EndTime - reader_StartTime;
-		uint16_t approx_fdt = tag_StartTime - reader_EndTime;
-		uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20;
-		reader_EndTime = tag_StartTime - exact_fdt;
-		reader_StartTime = reader_EndTime - reader_modlen;
-		if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, TRUE)) {
-			return FALSE;
-		} else return(!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, FALSE));
-	} else {
-		return TRUE;
-	}
+	// we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
+	// end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
+	// with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
+	uint16_t reader_modlen = reader_EndTime - reader_StartTime;
+	uint16_t approx_fdt = tag_StartTime - reader_EndTime;
+	uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20;
+	reader_EndTime = tag_StartTime - exact_fdt;
+	reader_StartTime = reader_EndTime - reader_modlen;
+		
+	if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, TRUE))
+		return FALSE;
+	else 
+		return(!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, FALSE));
+
 }
 
 //-----------------------------------------------------------------------------
@@ -1650,7 +1840,6 @@ static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receive
 	}
 }
 
-
 void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing)
 {
 	CodeIso14443aBitsAsReaderPar(frame, bits, par);
@@ -1661,72 +1850,75 @@ void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t
 		LED_A_ON();
   
 	// Log reader command in trace buffer
-	if (tracing) {
-		LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, TRUE);
-	}
+	//LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, TRUE);
+	LogTrace(frame, nbytes(bits), (LastTimeProxToAirStart<<4) + DELAY_ARM2AIR_AS_READER, ((LastTimeProxToAirStart + LastProxToAirDuration)<<4) + DELAY_ARM2AIR_AS_READER, par, TRUE);
 }
 
-
 void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing)
 {
-  ReaderTransmitBitsPar(frame, len*8, par, timing);
+  //ReaderTransmitBitsPar(frame, len*8, par, timing);
+  ReaderTransmitBitsPar(frame, len<<3, par, timing);
 }
 
-
 void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing)
 {
   // Generate parity and redirect
-  uint8_t par[MAX_PARITY_SIZE];
-  GetParity(frame, len/8, par);
+  uint8_t par[MAX_PARITY_SIZE] = {0x00};
+  //GetParity(frame, len/8, par);
+  GetParity(frame, len >> 3, par);
   ReaderTransmitBitsPar(frame, len, par, timing);
 }
 
-
 void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing)
 {
   // Generate parity and redirect
-  uint8_t par[MAX_PARITY_SIZE];
+  uint8_t par[MAX_PARITY_SIZE] = {0x00};
   GetParity(frame, len, par);
-  ReaderTransmitBitsPar(frame, len*8, par, timing);
+  //ReaderTransmitBitsPar(frame, len*8, par, timing);
+  ReaderTransmitBitsPar(frame, len<<3, par, timing);
 }
 
 int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity)
 {
-	if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset)) return FALSE;
-	if (tracing) {
-		LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
-	}
+	if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset)) 
+		return FALSE;
+
+	//LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
+	LogTrace(receivedAnswer, Demod.len, (Demod.startTime<<4) - DELAY_AIR2ARM_AS_READER, (Demod.endTime<<4) - DELAY_AIR2ARM_AS_READER, parity, FALSE);
 	return Demod.len;
 }
 
 int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity)
 {
-	if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) return FALSE;
-	if (tracing) {
-		LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
-	}
+	if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) 
+		return FALSE;
+
+	//LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
+	LogTrace(receivedAnswer, Demod.len, (Demod.startTime<<4) - DELAY_AIR2ARM_AS_READER, (Demod.endTime<<4) - DELAY_AIR2ARM_AS_READER, parity, FALSE);
 	return Demod.len;
 }
 
-/* performs iso14443a anticollision procedure
- * fills the uid pointer unless NULL
- * fills resp_data unless NULL */
-int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr) {
+// performs iso14443a anticollision (optional) and card select procedure
+// fills the uid and cuid pointer unless NULL
+// fills the card info record unless NULL
+// if anticollision is false, then the UID must be provided in uid_ptr[] 
+// and num_cascades must be set (1: 4 Byte UID, 2: 7 Byte UID, 3: 10 Byte UID)
+int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr, bool anticollision, uint8_t num_cascades) {
 	uint8_t wupa[]       = { 0x52 };  // 0x26 - REQA  0x52 - WAKE-UP
 	uint8_t sel_all[]    = { 0x93,0x20 };
 	uint8_t sel_uid[]    = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
 	uint8_t rats[]       = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
-	uint8_t resp[MAX_FRAME_SIZE]; // theoretically. A usual RATS will be much smaller
-	uint8_t resp_par[MAX_PARITY_SIZE];
-	byte_t uid_resp[4];
-	size_t uid_resp_len;
+	uint8_t resp[MAX_FRAME_SIZE] = {0}; // theoretically. A usual RATS will be much smaller
+	uint8_t resp_par[MAX_PARITY_SIZE] = {0};
+	byte_t uid_resp[4] = {0};
+	size_t uid_resp_len = 0;
 
 	uint8_t sak = 0x04; // cascade uid
 	int cascade_level = 0;
 	int len;
 
 	// Broadcast for a card, WUPA (0x52) will force response from all cards in the field
-    ReaderTransmitBitsPar(wupa,7,0, NULL);
+    ReaderTransmitBitsPar(wupa, 7, NULL, NULL);
 	
 	// Receive the ATQA
 	if(!ReaderReceive(resp, resp_par)) return 0;
@@ -1737,15 +1929,14 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u
 		memset(p_hi14a_card->uid,0,10);
 	}
 
-	// clear uid
-	if (uid_ptr) {
-		memset(uid_ptr,0,10);
+	if (anticollision) {
+		// clear uid
+		if (uid_ptr)
+			memset(uid_ptr,0,10);
 	}
 
 	// check for proprietary anticollision:
-	if ((resp[0] & 0x1F) == 0) {
-		return 3;
-	}
+	if ((resp[0] & 0x1F) == 0) return 3;
 	
 	// OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
 	// which case we need to make a cascade 2 request and select - this is a long UID
@@ -1754,73 +1945,81 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u
 		// SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
 		sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
 
+		if (anticollision) {
 		// SELECT_ALL
-		ReaderTransmit(sel_all, sizeof(sel_all), NULL);
-		if (!ReaderReceive(resp, resp_par)) return 0;
-
-		if (Demod.collisionPos) {			// we had a collision and need to construct the UID bit by bit
-			memset(uid_resp, 0, 4);
-			uint16_t uid_resp_bits = 0;
-			uint16_t collision_answer_offset = 0;
-			// anti-collision-loop:
-			while (Demod.collisionPos) {
-				Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
-				for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) {	// add valid UID bits before collision point
-					uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
-					uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8);
+			ReaderTransmit(sel_all, sizeof(sel_all), NULL);
+			if (!ReaderReceive(resp, resp_par)) return 0;
+
+			if (Demod.collisionPos) {			// we had a collision and need to construct the UID bit by bit
+				memset(uid_resp, 0, 4);
+				uint16_t uid_resp_bits = 0;
+				uint16_t collision_answer_offset = 0;
+				// anti-collision-loop:
+				while (Demod.collisionPos) {
+					Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
+					for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) {	// add valid UID bits before collision point
+						uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
+						uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8);
+					}
+					uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8);					// next time select the card(s) with a 1 in the collision position
+					uid_resp_bits++;
+					// construct anticollosion command:
+					sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07);  	// length of data in bytes and bits
+					for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
+						sel_uid[2+i] = uid_resp[i];
+					}
+					collision_answer_offset = uid_resp_bits%8;
+					ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
+					if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0;
 				}
-				uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8);					// next time select the card(s) with a 1 in the collision position
-				uid_resp_bits++;
-				// construct anticollosion command:
-				sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07);  	// length of data in bytes and bits
-				for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
-					sel_uid[2+i] = uid_resp[i];
+				// finally, add the last bits and BCC of the UID
+				for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
+					uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
+					uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
 				}
-				collision_answer_offset = uid_resp_bits%8;
-				ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
-				if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0;
+
+			} else {		// no collision, use the response to SELECT_ALL as current uid
+				memcpy(uid_resp, resp, 4);
 			}
-			// finally, add the last bits and BCC of the UID
-			for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
-				uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
-				uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
+			
+		} else {
+			if (cascade_level < num_cascades - 1) {
+				uid_resp[0] = 0x88;
+				memcpy(uid_resp+1, uid_ptr+cascade_level*3, 3);
+			} else {
+				memcpy(uid_resp, uid_ptr+cascade_level*3, 4);
 			}
-
-		} else {		// no collision, use the response to SELECT_ALL as current uid
-			memcpy(uid_resp, resp, 4);
 		}
 		uid_resp_len = 4;
 
 		// calculate crypto UID. Always use last 4 Bytes.
-		if(cuid_ptr) {
+		if(cuid_ptr)
 			*cuid_ptr = bytes_to_num(uid_resp, 4);
-		}
 
 		// Construct SELECT UID command
 		sel_uid[1] = 0x70;													// transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
-		memcpy(sel_uid+2, uid_resp, 4);										// the UID
+		memcpy(sel_uid+2, uid_resp, 4);										// the UID received during anticollision, or the provided UID
 		sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5];  	// calculate and add BCC
 		AppendCrc14443a(sel_uid, 7);										// calculate and add CRC
 		ReaderTransmit(sel_uid, sizeof(sel_uid), NULL);
 
 		// Receive the SAK
 		if (!ReaderReceive(resp, resp_par)) return 0;
+		
 		sak = resp[0];
 
-    // Test if more parts of the uid are coming
+		// Test if more parts of the uid are coming
 		if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) {
 			// Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
 			// http://www.nxp.com/documents/application_note/AN10927.pdf
 			uid_resp[0] = uid_resp[1];
 			uid_resp[1] = uid_resp[2];
 			uid_resp[2] = uid_resp[3]; 
-
 			uid_resp_len = 3;
 		}
 
-		if(uid_ptr) {
+		if(uid_ptr && anticollision)
 			memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
-		}
 
 		if(p_hi14a_card) {
 			memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len);
@@ -1841,7 +2040,6 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u
 	ReaderTransmit(rats, sizeof(rats), NULL);
 
 	if (!(len = ReaderReceive(resp, resp_par))) return 0;
-
 	
 	if(p_hi14a_card) {
 		memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats));
@@ -1883,7 +2081,7 @@ void iso14443a_setup(uint8_t fpga_minor_mode) {
 }
 
 int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) {
-	uint8_t parity[MAX_PARITY_SIZE];
+	uint8_t parity[MAX_PARITY_SIZE] = {0x00};
 	uint8_t real_cmd[cmd_len+4];
 	real_cmd[0] = 0x0a; //I-Block
 	// put block number into the PCB
@@ -1922,43 +2120,41 @@ void ReaderIso14443a(UsbCommand *c)
 	size_t lenbits = c->arg[1] >> 16;
 	uint32_t timeout = c->arg[2];
 	uint32_t arg0 = 0;
-	byte_t buf[USB_CMD_DATA_SIZE];
-	uint8_t par[MAX_PARITY_SIZE];
+	byte_t buf[USB_CMD_DATA_SIZE] = {0x00};
+	uint8_t par[MAX_PARITY_SIZE] = {0x00};
   
-	if(param & ISO14A_CONNECT) {
+	if (param & ISO14A_CONNECT)
 		clear_trace();
-	}
 
 	set_tracing(TRUE);
 
-	if(param & ISO14A_REQUEST_TRIGGER) {
+	if (param & ISO14A_REQUEST_TRIGGER)
 		iso14a_set_trigger(TRUE);
-	}
 
-	if(param & ISO14A_CONNECT) {
+
+	if (param & ISO14A_CONNECT) {
 		iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
 		if(!(param & ISO14A_NO_SELECT)) {
 			iso14a_card_select_t *card = (iso14a_card_select_t*)buf;
-			arg0 = iso14443a_select_card(NULL,card,NULL);
+			arg0 = iso14443a_select_card(NULL,card,NULL, true, 0);
 			cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t));
 		}
 	}
 
-	if(param & ISO14A_SET_TIMEOUT) {
+	if (param & ISO14A_SET_TIMEOUT)
 		iso14a_set_timeout(timeout);
-	}
 
-	if(param & ISO14A_APDU) {
+	if (param & ISO14A_APDU) {
 		arg0 = iso14_apdu(cmd, len, buf);
 		cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
 	}
 
-	if(param & ISO14A_RAW) {
+	if (param & ISO14A_RAW) {
 		if(param & ISO14A_APPEND_CRC) {
 			if(param & ISO14A_TOPAZMODE) {
 				AppendCrc14443b(cmd,len);
 			} else {
-			AppendCrc14443a(cmd,len);
+				AppendCrc14443a(cmd,len);
 			}
 			len += 2;
 			if (lenbits) lenbits += 16;
@@ -1992,15 +2188,15 @@ void ReaderIso14443a(UsbCommand *c)
 		cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
 	}
 
-	if(param & ISO14A_REQUEST_TRIGGER) {
+	if (param & ISO14A_REQUEST_TRIGGER)
 		iso14a_set_trigger(FALSE);
-	}
 
-	if(param & ISO14A_NO_DISCONNECT) {
+
+	if (param & ISO14A_NO_DISCONNECT)
 		return;
-	}
 
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+	set_tracing(FALSE);
 	LEDsoff();
 }
 
@@ -2010,20 +2206,65 @@ void ReaderIso14443a(UsbCommand *c)
 // Therefore try in alternating directions.
 int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
 
-	uint16_t i;
-	uint32_t nttmp1, nttmp2;
-
 	if (nt1 == nt2) return 0;
 
-	nttmp1 = nt1;
-	nttmp2 = nt2;
+	uint16_t i;
+	uint32_t nttmp1 = nt1;
+	uint32_t nttmp2 = nt2;
 	
-	for (i = 1; i < 32768; i++) {
-		nttmp1 = prng_successor(nttmp1, 1);
-		if (nttmp1 == nt2) return i;
-		nttmp2 = prng_successor(nttmp2, 1);
-			if (nttmp2 == nt1) return -i;
-		}
+	for (i = 1; i < 0xFFFF; i += 8) {
+		nttmp1 = prng_successor_one(nttmp1); if (nttmp1 == nt2) return i;
+		nttmp2 = prng_successor_one(nttmp2); if (nttmp2 == nt1) return -i;
+
+		nttmp1 = prng_successor_one(nttmp1); if (nttmp1 == nt2) return i+1;
+		nttmp2 = prng_successor_one(nttmp2); if (nttmp2 == nt1) return -i+1;
+
+		nttmp1 = prng_successor_one(nttmp1); if (nttmp1 == nt2) return i+2;
+		nttmp2 = prng_successor_one(nttmp2); if (nttmp2 == nt1) return -i+2;
+
+		nttmp1 = prng_successor_one(nttmp1); if (nttmp1 == nt2) return i+3;
+		nttmp2 = prng_successor_one(nttmp2); if (nttmp2 == nt1) return -i+3;
+
+		nttmp1 = prng_successor_one(nttmp1); if (nttmp1 == nt2) return i+4;
+		nttmp2 = prng_successor_one(nttmp2); if (nttmp2 == nt1) return -i+4;
+
+		nttmp1 = prng_successor_one(nttmp1); if (nttmp1 == nt2) return i+5;
+		nttmp2 = prng_successor_one(nttmp2); if (nttmp2 == nt1) return -i+5;
+
+		nttmp1 = prng_successor_one(nttmp1); if (nttmp1 == nt2) return i+6;
+		nttmp2 = prng_successor_one(nttmp2); if (nttmp2 == nt1) return -i+6;
+
+		nttmp1 = prng_successor_one(nttmp1); if (nttmp1 == nt2) return i+7;
+		nttmp2 = prng_successor_one(nttmp2); if (nttmp2 == nt1) return -i+7;
+
+		nttmp1 = prng_successor_one(nttmp1); if (nttmp1 == nt2) return i+8;
+		nttmp2 = prng_successor_one(nttmp2); if (nttmp2 == nt1) return -i+8;
+/*
+		if ( prng_successor(nttmp1, i) == nt2) return i;
+		if ( prng_successor(nttmp2, i) == nt1) return -i;
+
+		if ( prng_successor(nttmp1, i+2) == nt2) return i+2;
+		if ( prng_successor(nttmp2, i+2) == nt1) return -(i+2);
+
+		if ( prng_successor(nttmp1, i+3) == nt2) return i+3;
+		if ( prng_successor(nttmp2, i+3) == nt1) return -(i+3);
+
+		if ( prng_successor(nttmp1, i+4) == nt2) return i+4;
+		if ( prng_successor(nttmp2, i+4) == nt1) return -(i+4);
+
+		if ( prng_successor(nttmp1, i+5) == nt2) return i+5;
+		if ( prng_successor(nttmp2, i+5) == nt1) return -(i+5);
+
+		if ( prng_successor(nttmp1, i+6) == nt2) return i+6;
+		if ( prng_successor(nttmp2, i+6) == nt1) return -(i+6);
+
+		if ( prng_successor(nttmp1, i+7) == nt2) return i+7;
+		if ( prng_successor(nttmp2, i+7) == nt1) return -(i+7);
+
+		if ( prng_successor(nttmp1, i+8) == nt2) return i+8;
+		if ( prng_successor(nttmp2, i+8) == nt1) return -(i+8);
+*/
+	}
 	
 	return(-99999); // either nt1 or nt2 are invalid nonces
 }
@@ -2035,28 +2276,26 @@ int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
 // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
 // (article by Nicolas T. Courtois, 2009)
 //-----------------------------------------------------------------------------
-void ReaderMifare(bool first_try)
+void ReaderMifare(bool first_try, uint8_t block )
 {
 	// Mifare AUTH
-	uint8_t mf_auth[]    = { 0x60,0x00,0xf5,0x7b };
+	//uint8_t mf_auth[]    = { 0x60,0x00,0xf5,0x7b };
+	//uint8_t mf_auth[]    = { 0x60,0x05, 0x58, 0x2c };
+	uint8_t mf_auth[]    = { 0x60,0x00, 0x00, 0x00 };
 	uint8_t mf_nr_ar[]   = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
-	static uint8_t mf_nr_ar3;
+	static uint8_t mf_nr_ar3 = 0;
 
-	uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
-	uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
-
-	// free eventually allocated BigBuf memory. We want all for tracing.
-	BigBuf_free();
+	mf_auth[1] = block;
+	AppendCrc14443a(mf_auth, 2);
 	
-	clear_trace();
-	set_tracing(TRUE);
+	uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0x00};
+	uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE] = {0x00};
 
 	byte_t nt_diff = 0;
 	uint8_t par[1] = {0};	// maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
 	static byte_t par_low = 0;
-	bool led_on = TRUE;
-	uint8_t uid[10]  ={0};
-	uint32_t cuid;
+	uint8_t uid[10] = {0};
+	//uint32_t cuid = 0;
 
 	uint32_t nt = 0;
 	uint32_t previous_nt = 0;
@@ -2064,125 +2303,182 @@ void ReaderMifare(bool first_try)
 	byte_t par_list[8] = {0x00};
 	byte_t ks_list[8] = {0x00};
 
-	static uint32_t sync_time;
-	static uint32_t sync_cycles;
+	static uint32_t sync_time = 0;
+	static int32_t sync_cycles = 0;
 	int catch_up_cycles = 0;
 	int last_catch_up = 0;
+	uint16_t elapsed_prng_sequences = 1;
 	uint16_t consecutive_resyncs = 0;
 	int isOK = 0;
 
-	if (first_try) { 
-		mf_nr_ar3 = 0;
+	#define PRNG_SEQUENCE_LENGTH  (1 << 16);
+	#define MAX_UNEXPECTED_RANDOM	4		// maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up.
+	#define MAX_SYNC_TRIES			32
+	#define NUM_DEBUG_INFOS			8		// per strategy
+	#define MAX_STRATEGY			3
+
+	uint16_t unexpected_random = 0;
+	uint16_t sync_tries = 0;
+	uint16_t strategy = 0;
+	uint32_t halt_time = 0;
+
+	clear_trace();
+	set_tracing(TRUE);
+	
+	LED_A_ON();
+	LED_B_OFF();
+	LED_C_OFF();
+	
+	if (first_try)
 		iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
+	
+	// free eventually allocated BigBuf memory. We want all for tracing.
+	BigBuf_free();
+
+	if (first_try) { 
 		sync_time = GetCountSspClk() & 0xfffffff8;
-		sync_cycles = 65536;									// theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
+		sync_cycles = PRNG_SEQUENCE_LENGTH; //65536;	//0x10000			// theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
+		mf_nr_ar3 = 0;			
 		nt_attacked = 0;
-		nt = 0;
 		par[0] = 0;
-	}
-	else {
+	} else {
 		// we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
 		mf_nr_ar3++;
 		mf_nr_ar[3] = mf_nr_ar3;
 		par[0] = par_low;
 	}
-
-	LED_A_ON();
-	LED_B_OFF();
-	LED_C_OFF();
-	
-  
-	for(uint16_t i = 0; TRUE; i++) {
 		
+	LED_C_ON(); 
+	for(uint16_t i = 0; TRUE; ++i) {
+
 		WDT_HIT();
 
 		// Test if the action was cancelled
 		if(BUTTON_PRESS()) {
+			isOK = -1;
 			break;
 		}
 		
-		LED_C_ON();
+		if (strategy == 2) {
+			// test with additional halt command
+			halt_time = 0;
+			int len = mifare_sendcmd_short(NULL, false, 0x50, 0x00, receivedAnswer, receivedAnswerPar, &halt_time);
 
-		if(!iso14443a_select_card(uid, NULL, &cuid)) {
-			if (MF_DBGLEVEL >= 1)	Dbprintf("Mifare: Can't select card");
-			continue;
+			if (len && MF_DBGLEVEL >= 3)
+				Dbprintf("Unexpected response of %d bytes to halt command.", len);
 		}
 
+		if (strategy == 3) {
+			// test with FPGA power off/on
+			FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+			SpinDelay(200);
+			iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
+			SpinDelay(100);
+			sync_time = GetCountSspClk() & 0xfffffff8;
+			WDT_HIT();
+		}
+		
+		if (!iso14443a_select_card(uid, NULL, NULL, true, 0)) {
+			if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card\n");
+			continue;
+		}
+		
 		sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
 		catch_up_cycles = 0;
-
+								
 		// if we missed the sync time already, advance to the next nonce repeat
 		while(GetCountSspClk() > sync_time) {
-			sync_time = (sync_time & 0xfffffff8) + sync_cycles;
+			++elapsed_prng_sequences;
+			sync_time += sync_cycles;
 		}
-
 		// Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked) 
-		ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
+		ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);			
 
 		// Receive the (4 Byte) "random" nonce
-		if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) {
-			if (MF_DBGLEVEL >= 1)	Dbprintf("Mifare: Couldn't receive tag nonce");
+		if (!ReaderReceive(receivedAnswer, receivedAnswerPar))
 			continue;
-		  }
-
-		previous_nt = nt;
-		nt = bytes_to_num(receivedAnswer, 4);
 
 		// Transmit reader nonce with fake par
 		ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);
 
+		previous_nt = nt;
+		nt = bytes_to_num(receivedAnswer, 4);
+		
 		if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet
 			int nt_distance = dist_nt(previous_nt, nt);
 			if (nt_distance == 0) {
 				nt_attacked = nt;
-			}
-			else {
-				if (nt_distance == -99999) { // invalid nonce received, try again
-					continue;
+			} else {
+				if (nt_distance == -99999) { // invalid nonce received
+					unexpected_random++;
+					if (unexpected_random > MAX_UNEXPECTED_RANDOM) {
+						isOK = -3;		// Card has an unpredictable PRNG. Give up	
+						break;
+					} else {
+						continue;		// continue trying...
+					}
+				}
+				
+				if (++sync_tries > MAX_SYNC_TRIES) {
+					if (strategy > MAX_STRATEGY || MF_DBGLEVEL < 3) {
+						isOK = -4; 			// Card's PRNG runs at an unexpected frequency or resets unexpectedly
+						break;
+					} else {
+						continue;
+					}
 				}
-				sync_cycles = (sync_cycles - nt_distance);
-				if (MF_DBGLEVEL >= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i, nt_distance, sync_cycles);
+				
+				sync_cycles = (sync_cycles - nt_distance)/elapsed_prng_sequences;
+				if (sync_cycles <= 0)
+					sync_cycles += PRNG_SEQUENCE_LENGTH;
+				
+				if (MF_DBGLEVEL >= 3)
+					Dbprintf("calibrating in cycle %d. nt_distance=%d, elapsed_prng_sequences=%d, new sync_cycles: %d\n", i, nt_distance, elapsed_prng_sequences, sync_cycles);
+
 				continue;
 			}
 		}
 
 		if ((nt != nt_attacked) && nt_attacked) { 	// we somehow lost sync. Try to catch up again...
+			
 			catch_up_cycles = -dist_nt(nt_attacked, nt);
 			if (catch_up_cycles == 99999) {			// invalid nonce received. Don't resync on that one.
 				catch_up_cycles = 0;
 				continue;
 			}
+			
+			// average? 
+			catch_up_cycles /= elapsed_prng_sequences;
+		
 			if (catch_up_cycles == last_catch_up) {
-				consecutive_resyncs++;
-			}
-			else {
+				++consecutive_resyncs;
+			} else {
 				last_catch_up = catch_up_cycles;
 			    consecutive_resyncs = 0;
-			}
+			}		
+			
 			if (consecutive_resyncs < 3) {
-				if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs);
-			}
-			else {	
-				sync_cycles = sync_cycles + catch_up_cycles;
-				if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
+				if (MF_DBGLEVEL >= 3)
+					Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs);
+			} else {	
+				sync_cycles += catch_up_cycles;
+				
+				if (MF_DBGLEVEL >= 3) 
+					Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
+
+				last_catch_up = 0;
+				catch_up_cycles = 0;
+				consecutive_resyncs = 0;
 			}
 			continue;
 		}
  
-		consecutive_resyncs = 0;
-		
 		// Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
-		if (ReaderReceive(receivedAnswer, receivedAnswerPar))
-		{
+		if (ReaderReceive(receivedAnswer, receivedAnswerPar)) {
 			catch_up_cycles = 8; 	// the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
 	
 			if (nt_diff == 0)
-			{
 				par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
-			}
-
-			led_on = !led_on;
-			if(led_on) LED_B_ON(); else LED_B_OFF();
 
 			par_list[nt_diff] = SwapBits(par[0], 8);
 			ks_list[nt_diff] = receivedAnswer[0] ^ 0x05;
@@ -2196,20 +2492,36 @@ void ReaderMifare(bool first_try)
 			nt_diff = (nt_diff + 1) & 0x07;
 			mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5);
 			par[0] = par_low;
+			
 		} else {
-			if (nt_diff == 0 && first_try)
-			{
+			if (nt_diff == 0 && first_try) {
 				par[0]++;
+				if (par[0] == 0x00) {	// tried all 256 possible parities without success. Card doesn't send NACK.
+					isOK = -2;
+					break;
+				}
 			} else {
 				par[0] = ((par[0] & 0x1F) + 1) | par_low;
 			}
 		}
+		
+		consecutive_resyncs = 0;
 	}
 
-
 	mf_nr_ar[3] &= 0x1F;
+
+	WDT_HIT();
 	
-	byte_t buf[28];
+	// reset sync_time.
+	if ( isOK == 1) {
+		sync_time =	0;
+		sync_cycles = 0;
+		mf_nr_ar3 = 0;		
+		nt_attacked = 0;
+		par[0] = 0;
+	}
+	
+	byte_t buf[28] = {0x00};
 	memcpy(buf + 0,  uid, 4);
 	num_to_bytes(nt, 4, buf + 4);
 	memcpy(buf + 8,  par_list, 8);
@@ -2218,10 +2530,8 @@ void ReaderMifare(bool first_try)
 		
 	cmd_send(CMD_ACK,isOK,0,0,buf,28);
 
-	// Thats it...
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
 	LEDsoff();
-
 	set_tracing(FALSE);
 }
 
@@ -2247,7 +2557,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 	uint8_t cardWRBL = 0;
 	uint8_t cardAUTHSC = 0;
 	uint8_t cardAUTHKEY = 0xff;  // no authentication
-	uint32_t cardRr = 0;
+//	uint32_t cardRr = 0;
 	uint32_t cuid = 0;
 	//uint32_t rn_enc = 0;
 	uint32_t ans = 0;
@@ -2257,33 +2567,28 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 	struct Crypto1State *pcs;
 	pcs = &mpcs;
 	uint32_t numReads = 0;//Counts numer of times reader read a block
-	uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
-	uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE];
-	uint8_t response[MAX_MIFARE_FRAME_SIZE];
-	uint8_t response_par[MAX_MIFARE_PARITY_SIZE];
+	uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE] = {0x00};
+	uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE] = {0x00};
+	uint8_t response[MAX_MIFARE_FRAME_SIZE] = {0x00};
+	uint8_t response_par[MAX_MIFARE_PARITY_SIZE] = {0x00};
 	
 	uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
 	uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
 	uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
-	uint8_t rSAK[] = {0x08, 0xb6, 0xdd};
+	uint8_t rSAK[] = {0x08, 0xb6, 0xdd}; // Mifare Classic
+	//uint8_t rSAK[] = {0x09, 0x3f, 0xcc };  // Mifare Mini 
 	uint8_t rSAK1[] = {0x04, 0xda, 0x17};
 
-	uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04};
+	//uint8_t rAUTH_NT[] = {0x01, 0x01, 0x01, 0x01};
+	uint8_t rAUTH_NT[] = {0x55, 0x41, 0x49, 0x92};
 	uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
 		
-	//Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
+	//Here, we collect UID1,UID2,NT,AR,NR,0,0,NT2,AR2,NR2
 	// This can be used in a reader-only attack.
 	// (it can also be retrieved via 'hf 14a list', but hey...
-	uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0};
+	uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0,0,0};
 	uint8_t ar_nr_collected = 0;
 
-	// free eventually allocated BigBuf memory but keep Emulator Memory
-	BigBuf_free_keep_EM();
-
-	// clear trace
-	clear_trace();
-	set_tracing(TRUE);
-
 	// Authenticate response - nonce
 	uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
 	
@@ -2313,6 +2618,11 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 		}
 	}
 
+	// save uid.
+	ar_nr_responses[0*5]   = bytes_to_num(rUIDBCC1+1, 3);
+	if ( _7BUID )
+		ar_nr_responses[0*5+1] = bytes_to_num(rUIDBCC2, 4);
+
 	/*
 	 * Regardless of what method was used to set the UID, set fifth byte and modify
 	 * the ATQA for 4 or 7-byte UID
@@ -2321,13 +2631,10 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 	if (_7BUID) {
 		rATQA[0] = 0x44;
 		rUIDBCC1[0] = 0x88;
+		rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
 		rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
 	}
 
-	// We need to listen to the high-frequency, peak-detected path.
-	iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
-
-
 	if (MF_DBGLEVEL >= 1)	{
 		if (!_7BUID) {
 			Dbprintf("4B UID: %02x%02x%02x%02x", 
@@ -2339,8 +2646,19 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 		}
 	}
 
+	// We need to listen to the high-frequency, peak-detected path.
+	iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
+
+	// free eventually allocated BigBuf memory but keep Emulator Memory
+	BigBuf_free_keep_EM();
+
+	// clear trace
+	clear_trace();
+	set_tracing(TRUE);
+
+
 	bool finished = FALSE;
-	while (!BUTTON_PRESS() && !finished) {
+	while (!BUTTON_PRESS() && !finished && !usb_poll_validate_length()) {
 		WDT_HIT();
 
 		// find reader field
@@ -2354,7 +2672,6 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 		if(cardSTATE == MFEMUL_NOFIELD) continue;
 
 		//Now, get data
-
 		res = EmGetCmd(receivedCmd, &len, receivedCmd_par);
 		if (res == 2) { //Field is off!
 			cardSTATE = MFEMUL_NOFIELD;
@@ -2414,8 +2731,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 				break;
 			}
 			case MFEMUL_AUTH1:{
-				if( len != 8)
-				{
+				if( len != 8) {
 					cardSTATE_TO_IDLE();
 					LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
 					break;
@@ -2425,39 +2741,40 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 				uint32_t nr = bytes_to_num(&receivedCmd[4], 4);
 
 				//Collect AR/NR
-				if(ar_nr_collected < 2 && cardAUTHSC == 2){
-					if(ar_nr_responses[2] != ar)
-					{// Avoid duplicates... probably not necessary, ar should vary. 
-						ar_nr_responses[ar_nr_collected*4] = cuid;
-						ar_nr_responses[ar_nr_collected*4+1] = nonce;
-						ar_nr_responses[ar_nr_collected*4+2] = ar;
-						ar_nr_responses[ar_nr_collected*4+3] = nr;
+				//if(ar_nr_collected < 2 && cardAUTHSC == 2){
+				if(ar_nr_collected < 2) {
+					if(ar_nr_responses[2] != ar) {
+						// Avoid duplicates... probably not necessary, ar should vary. 
+						//ar_nr_responses[ar_nr_collected*5]   = 0;
+						//ar_nr_responses[ar_nr_collected*5+1] = 0;
+						ar_nr_responses[ar_nr_collected*5+2] = nonce;
+						ar_nr_responses[ar_nr_collected*5+3] = nr;
+						ar_nr_responses[ar_nr_collected*5+4] = ar;
 						ar_nr_collected++;
 					}						
 					// Interactive mode flag, means we need to send ACK
 					if(flags & FLAG_INTERACTIVE && ar_nr_collected == 2)
-					{
 						finished = true;
-					}
 				}
 
 				// --- crypto
-				crypto1_word(pcs, ar , 1);
-				cardRr = nr ^ crypto1_word(pcs, 0, 0);
-
-				// test if auth OK
-				if (cardRr != prng_successor(nonce, 64)){
-					if (MF_DBGLEVEL >= 2) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
-							cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
-							cardRr, prng_successor(nonce, 64));
+				//crypto1_word(pcs, ar , 1);
+				//cardRr = nr ^ crypto1_word(pcs, 0, 0);
+
+				//test if auth OK
+				//if (cardRr != prng_successor(nonce, 64)){
+					
+					//if (MF_DBGLEVEL >= 4) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
+					//	cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
+					//		cardRr, prng_successor(nonce, 64));
 					// Shouldn't we respond anything here?
 					// Right now, we don't nack or anything, which causes the
 					// reader to do a WUPA after a while. /Martin
 					// -- which is the correct response. /piwi
-					cardSTATE_TO_IDLE();
-					LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
-					break;
-				}
+					//cardSTATE_TO_IDLE();
+					//LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
+					//break;
+				//}
 
 				ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0);
 
@@ -2466,9 +2783,13 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 				EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
 				LED_C_ON();
 				cardSTATE = MFEMUL_WORK;
-				if (MF_DBGLEVEL >= 4)	Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d", 
-					cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
-					GetTickCount() - authTimer);
+				if (MF_DBGLEVEL >= 4) {
+					Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d", 
+						cardAUTHSC, 
+						cardAUTHKEY == 0 ? 'A' : 'B',
+						GetTickCount() - authTimer
+					);
+				}
 				break;
 			}
 			case MFEMUL_SELECT2:{
@@ -2483,7 +2804,9 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 
 				// select 2 card
 				if (len == 9 && 
-						(receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) {
+						(receivedCmd[0] == 0x95 &&
+						 receivedCmd[1] == 0x70 && 
+						 memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0) ) {
 					EmSendCmd(rSAK, sizeof(rSAK));
 					cuid = bytes_to_num(rUIDBCC2, 4);
 					cardSTATE = MFEMUL_WORK;
@@ -2510,10 +2833,9 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 				
 				bool encrypted_data = (cardAUTHKEY != 0xFF) ;
 
-				if(encrypted_data) {
-					// decrypt seqence
+				// decrypt seqence
+				if(encrypted_data)
 					mf_crypto1_decrypt(pcs, receivedCmd, len);
-				}
 				
 				if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) {
 					authTimer = GetTickCount();
@@ -2565,21 +2887,20 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 						|| receivedCmd[0] == 0xB0) { // transfer
 					if (receivedCmd[1] >= 16 * 4) {
 						EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
-						if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
+						if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
 						break;
 					}
 
 					if (receivedCmd[1] / 4 != cardAUTHSC) {
 						EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
-						if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC);
+						if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC);
 						break;
 					}
 				}
 				// read block
 				if (receivedCmd[0] == 0x30) {
-					if (MF_DBGLEVEL >= 4) {
-						Dbprintf("Reader reading block %d (0x%02x)",receivedCmd[1],receivedCmd[1]);
-					}
+					if (MF_DBGLEVEL >= 4) Dbprintf("Reader reading block %d (0x%02x)",receivedCmd[1],receivedCmd[1]);
+
 					emlGetMem(response, receivedCmd[1], 1);
 					AppendCrc14443a(response, 16);
 					mf_crypto1_encrypt(pcs, response, 18, response_par);
@@ -2603,7 +2924,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 				if (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2) {
 					if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
 					if (emlCheckValBl(receivedCmd[1])) {
-						if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
+						if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
 						EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
 						break;
 					}
@@ -2646,7 +2967,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 				break;
 			}
 			case MFEMUL_WRITEBL2:{
-				if (len == 18){
+				if (len == 18) {
 					mf_crypto1_decrypt(pcs, receivedCmd, len);
 					emlSetMem(receivedCmd, cardWRBL, 1);
 					EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
@@ -2702,42 +3023,54 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
 	LEDsoff();
 
-	if(flags & FLAG_INTERACTIVE)// Interactive mode flag, means we need to send ACK
-	{
+	// Interactive mode flag, means we need to send ACK
+	if(flags & FLAG_INTERACTIVE) {
 		//May just aswell send the collected ar_nr in the response aswell
-		cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,1,0,&ar_nr_responses,ar_nr_collected*4*4);
+		uint8_t len = ar_nr_collected*5*4;
+		cmd_send(CMD_ACK, CMD_SIMULATE_MIFARE_CARD, len, 0, &ar_nr_responses, len);
 	}
 
-	if(flags & FLAG_NR_AR_ATTACK && MF_DBGLEVEL >= 1 )
-	{
+	if(flags & FLAG_NR_AR_ATTACK && MF_DBGLEVEL >= 1 ) {
 		if(ar_nr_collected > 1 ) {
 			Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
-			Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
-					ar_nr_responses[0], // UID
-					ar_nr_responses[1], //NT
-					ar_nr_responses[2], //AR1
-					ar_nr_responses[3], //NR1
-					ar_nr_responses[6], //AR2
-					ar_nr_responses[7] //NR2
+			Dbprintf("../tools/mfkey/mfkey32 %06x%08x %08x %08x %08x %08x %08x",
+					ar_nr_responses[0], // UID1
+					ar_nr_responses[1], // UID2
+					ar_nr_responses[2], // NT
+					ar_nr_responses[3], // AR1
+					ar_nr_responses[4], // NR1
+					ar_nr_responses[8], // AR2
+					ar_nr_responses[9]  // NR2
+					);
+			Dbprintf("../tools/mfkey/mfkey32v2 %06x%08x %08x %08x %08x %08x %08x %08x",
+					ar_nr_responses[0], // UID1
+					ar_nr_responses[1], // UID2
+					ar_nr_responses[2], // NT1
+					ar_nr_responses[3], // AR1
+					ar_nr_responses[4], // NR1
+					ar_nr_responses[7], // NT2
+					ar_nr_responses[8], // AR2
+					ar_nr_responses[9]  // NR2
 					);
 		} else {
 			Dbprintf("Failed to obtain two AR/NR pairs!");
 			if(ar_nr_collected > 0 ) {
-				Dbprintf("Only got these: UID=%08x, nonce=%08x, AR1=%08x, NR1=%08x",
-						ar_nr_responses[0], // UID
-						ar_nr_responses[1], //NT
-						ar_nr_responses[2], //AR1
-						ar_nr_responses[3] //NR1
+				Dbprintf("Only got these: UID=%06x%08x, nonce=%08x, AR1=%08x, NR1=%08x",
+						ar_nr_responses[0], // UID1
+						ar_nr_responses[1], // UID2
+						ar_nr_responses[2], // NT
+						ar_nr_responses[3], // AR1
+						ar_nr_responses[4]  // NR1
 						);
 			}
 		}
 	}
-	if (MF_DBGLEVEL >= 1)	Dbprintf("Emulator stopped. Tracing: %d  trace length: %d ",	tracing, BigBuf_get_traceLen());
+	if (MF_DBGLEVEL >= 1)	Dbprintf("Emulator stopped. Tracing: %d  trace length: %d ", tracing, BigBuf_get_traceLen());
 	
+	set_tracing(FALSE);
 }
 
 
-
 //-----------------------------------------------------------------------------
 // MIFARE sniffer. 
 // 
@@ -2746,9 +3079,8 @@ void RAMFUNC SniffMifare(uint8_t param) {
 	// param:
 	// bit 0 - trigger from first card answer
 	// bit 1 - trigger from first reader 7-bit request
-
-	// C(red) A(yellow) B(green)
 	LEDsoff();
+
 	// init trace buffer
 	clear_trace();
 	set_tracing(TRUE);
@@ -2756,18 +3088,18 @@ void RAMFUNC SniffMifare(uint8_t param) {
 	// The command (reader -> tag) that we're receiving.
 	// The length of a received command will in most cases be no more than 18 bytes.
 	// So 32 should be enough!
-	uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
-	uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE];
+	uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE] = {0x00};	
+	uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE] = {0x00};
+
 	// The response (tag -> reader) that we're receiving.
-	uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE];
-	uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE];
+	uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE] = {0x00};
+	uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE] = {0x00};
+
+	iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
 
-	// As we receive stuff, we copy it from receivedCmd or receivedResponse
-	// into trace, along with its length and other annotations.
-	//uint8_t *trace = (uint8_t *)BigBuf;
-	
 	// free eventually allocated BigBuf memory
 	BigBuf_free();
+	
 	// allocate the DMA buffer, used to stream samples from the FPGA
 	uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
 	uint8_t *data = dmaBuf;
@@ -2777,8 +3109,6 @@ void RAMFUNC SniffMifare(uint8_t param) {
 	bool ReaderIsActive = FALSE;
 	bool TagIsActive = FALSE;
 
-	iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
-
 	// Set up the demodulator for tag -> reader responses.
 	DemodInit(receivedResponse, receivedResponsePar);
 
@@ -2820,11 +3150,12 @@ void RAMFUNC SniffMifare(uint8_t param) {
 		
 		int register readBufDataP = data - dmaBuf;	// number of bytes we have processed so far
 		int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; // number of bytes already transferred
-		if (readBufDataP <= dmaBufDataP){			// we are processing the same block of data which is currently being transferred
+
+		if (readBufDataP <= dmaBufDataP)			// we are processing the same block of data which is currently being transferred
 			dataLen = dmaBufDataP - readBufDataP;	// number of bytes still to be processed
-		} else {									
+		else
 			dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed
-		}
+
 		// test for length of buffer
 		if(dataLen > maxDataLen) {					// we are more behind than ever...
 			maxDataLen = dataLen;					
@@ -2851,10 +3182,12 @@ void RAMFUNC SniffMifare(uint8_t param) {
 		
 		if (sniffCounter & 0x01) {
 
-			if(!TagIsActive) {		// no need to try decoding tag data if the reader is sending
+			// no need to try decoding tag data if the reader is sending
+			if(!TagIsActive) {		
 				uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
 				if(MillerDecoding(readerdata, (sniffCounter-1)*4)) {
 					LED_C_INV();
+
 					if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, TRUE)) break;
 
 					/* And ready to receive another command. */
@@ -2866,7 +3199,8 @@ void RAMFUNC SniffMifare(uint8_t param) {
 				ReaderIsActive = (Uart.state != STATE_UNSYNCD);
 			}
 			
-			if(!ReaderIsActive) {		// no need to try decoding tag data if the reader is sending
+			// no need to try decoding tag data if the reader is sending
+			if(!ReaderIsActive) {		
 				uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
 				if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) {
 					LED_C_INV();
@@ -2875,7 +3209,7 @@ void RAMFUNC SniffMifare(uint8_t param) {
 
 					// And ready to receive another response.
 					DemodReset();
-
+					
 					// And reset the Miller decoder including its (now outdated) input buffer
 					UartInit(receivedCmd, receivedCmdPar);
 				}
@@ -2886,17 +3220,15 @@ void RAMFUNC SniffMifare(uint8_t param) {
 		previous_data = *data;
 		sniffCounter++;
 		data++;
-		if(data == dmaBuf + DMA_BUFFER_SIZE) {
+
+		if(data == dmaBuf + DMA_BUFFER_SIZE)
 			data = dmaBuf;
-		}
 
 	} // main cycle
 
-	DbpString("COMMAND FINISHED");
-
 	FpgaDisableSscDma();
 	MfSniffEnd();
-	
-	Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
 	LEDsoff();
+	Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
+	set_tracing(FALSE);
 }