X-Git-Url: http://cvs.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/03e6bb4aed0ffd8e19897062071e18945c703d9d..refs/pull/89/head:/common/lfdemod.c diff --git a/common/lfdemod.c b/common/lfdemod.c index 34194394..fae61206 100644 --- a/common/lfdemod.c +++ b/common/lfdemod.c @@ -12,8 +12,20 @@ #include #include "lfdemod.h" + +uint8_t justNoise(uint8_t *BitStream, size_t size) +{ + static const uint8_t THRESHOLD = 123; + //test samples are not just noise + uint8_t justNoise1 = 1; + for(size_t idx=0; idx < size && justNoise1 ;idx++){ + justNoise1 = BitStream[idx] < THRESHOLD; + } + return justNoise1; +} + //by marshmellow -//get high and low with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise +//get high and low values of a wave with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise int getHiLo(uint8_t *BitStream, size_t size, int *high, int *low, uint8_t fuzzHi, uint8_t fuzzLo) { *high=0; @@ -29,74 +41,98 @@ int getHiLo(uint8_t *BitStream, size_t size, int *high, int *low, uint8_t fuzzHi return 1; } +// by marshmellow +// pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType +// returns 1 if passed +uint8_t parityTest(uint32_t bits, uint8_t bitLen, uint8_t pType) +{ + uint8_t ans = 0; + for (uint8_t i = 0; i < bitLen; i++){ + ans ^= ((bits >> i) & 1); + } + //PrintAndLog("DEBUG: ans: %d, ptype: %d",ans,pType); + return (ans == pType); +} + +//by marshmellow +//search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length +uint8_t preambleSearch(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t *size, size_t *startIdx) +{ + uint8_t foundCnt=0; + for (int idx=0; idx < *size - pLen; idx++){ + if (memcmp(BitStream+idx, preamble, pLen) == 0){ + //first index found + foundCnt++; + if (foundCnt == 1){ + *startIdx = idx; + } + if (foundCnt == 2){ + *size = idx - *startIdx; + return 1; + } + } + } + return 0; +} + //by marshmellow //takes 1s and 0s and searches for EM410x format - output EM ID -uint64_t Em410xDecode(uint8_t *BitStream, size_t *size, size_t *startIdx) +uint8_t Em410xDecode(uint8_t *BitStream, size_t *size, size_t *startIdx, uint32_t *hi, uint64_t *lo) { //no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future // otherwise could be a void with no arguments //set defaults - uint64_t lo=0; uint32_t i = 0; - if (BitStream[10]>1){ //allow only 1s and 0s + if (BitStream[1]>1){ //allow only 1s and 0s // PrintAndLog("no data found"); return 0; } - uint8_t parityTest=0; // 111111111 bit pattern represent start of frame - uint8_t frame_marker_mask[] = {1,1,1,1,1,1,1,1,1}; + // include 0 in front to help get start pos + uint8_t preamble[] = {0,1,1,1,1,1,1,1,1,1}; uint32_t idx = 0; - uint32_t ii=0; - uint8_t resetCnt = 0; - while( (idx + 64) < *size) { - restart: - // search for a start of frame marker - if ( memcmp(BitStream+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0) - { // frame marker found - *startIdx=idx; - idx+=9; - for (i=0; i<10;i++){ - for(ii=0; ii<5; ++ii){ - parityTest ^= BitStream[(i*5)+ii+idx]; - } - if (!parityTest){ //even parity - parityTest=0; - for (ii=0; ii<4;++ii){ - lo=(lo<<1LL)|(BitStream[(i*5)+ii+idx]); - } - //PrintAndLog("DEBUG: EM parity passed parity val: %d, i:%d, ii:%d,idx:%d, Buffer: %d%d%d%d%d,lo: %d",parityTest,i,ii,idx,BitStream[idx+ii+(i*5)-5],BitStream[idx+ii+(i*5)-4],BitStream[idx+ii+(i*5)-3],BitStream[idx+ii+(i*5)-2],BitStream[idx+ii+(i*5)-1],lo); - }else {//parity failed - //PrintAndLog("DEBUG: EM parity failed parity val: %d, i:%d, ii:%d,idx:%d, Buffer: %d%d%d%d%d",parityTest,i,ii,idx,BitStream[idx+ii+(i*5)-5],BitStream[idx+ii+(i*5)-4],BitStream[idx+ii+(i*5)-3],BitStream[idx+ii+(i*5)-2],BitStream[idx+ii+(i*5)-1]); - parityTest=0; - idx-=8; - if (resetCnt>5)return 0; //try 5 times - resetCnt++; - goto restart;//continue; - } - } - //skip last 5 bit parity test for simplicity. - *size = 64; - return lo; - }else{ - idx++; + uint32_t parityBits = 0; + uint8_t errChk = 0; + uint8_t FmtLen = 10; + *startIdx = 0; + errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, startIdx); + if (errChk == 0 || *size < 64) return 0; + if (*size > 64) FmtLen = 22; + *startIdx += 1; //get rid of 0 from preamble + idx = *startIdx + 9; + for (i=0; i> 63); + *lo = (*lo << 1) | (BitStream[(i*5)+ii+idx]); } } + if (errChk != 0) return 1; + //skip last 5 bit parity test for simplicity. + // *size = 64 | 128; return 0; } //by marshmellow -//takes 2 arguments - clock and invert both as integers +//takes 3 arguments - clock, invert, maxErr as integers //attempts to demodulate ask while decoding manchester //prints binary found and saves in graphbuffer for further commands -int askmandemod(uint8_t *BinStream, size_t *size, int *clk, int *invert) +int askmandemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr) { int i; - int clk2=*clk; - *clk=DetectASKClock(BinStream, *size, *clk); //clock default - + //int clk2=*clk; + int start = DetectASKClock(BinStream, *size, clk, 20); //clock default + if (*clk==0) return -3; + if (start < 0) return -3; // if autodetected too low then adjust //MAY NEED ADJUSTMENT - if (clk2==0 && *clk<8) *clk =64; - if (clk2==0 && *clk<32) *clk=32; + //if (clk2==0 && *clk<8) *clk =64; + //if (clk2==0 && *clk<32) *clk=32; if (*invert != 0 && *invert != 1) *invert=0; uint32_t initLoopMax = 200; if (initLoopMax > *size) initLoopMax=*size; @@ -110,14 +146,16 @@ int askmandemod(uint8_t *BinStream, size_t *size, int *clk, int *invert) int lastBit = 0; //set first clock check uint32_t bitnum = 0; //output counter int tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave - if (*clk<=32)tol=1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely + if (*clk<=32) tol=1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely int iii = 0; uint32_t gLen = *size; if (gLen > 3000) gLen=3000; + //if 0 errors allowed then only try first 2 clock cycles as we want a low tolerance + if (!maxErr) gLen=*clk*2; uint8_t errCnt =0; + uint16_t MaxBits = 500; uint32_t bestStart = *size; - uint32_t bestErrCnt = (*size/1000); - uint32_t maxErr = (*size/1000); + int bestErrCnt = maxErr+1; // PrintAndLog("DEBUG - lastbit - %d",lastBit); // loop to find first wave that works for (iii=0; iii < gLen; ++iii){ @@ -144,10 +182,10 @@ int askmandemod(uint8_t *BinStream, size_t *size, int *clk, int *invert) if (errCnt>(maxErr)) break; //allow 1 error for every 1000 samples else start over } } - if ((i-iii) >(400 * *clk)) break; //got plenty of bits + if ((i-iii) >(MaxBits * *clk)) break; //got plenty of bits } //we got more than 64 good bits and not all errors - if ((((i-iii)/ *clk) > (64+errCnt)) && (errCnt (64)) && (errCnt<=maxErr)) { //possible good read if (errCnt==0){ bestStart=iii; @@ -161,7 +199,7 @@ int askmandemod(uint8_t *BinStream, size_t *size, int *clk, int *invert) } } } - if (bestErrCnt=400) break; + if (bitnum >=MaxBits) break; } *size=bitnum; } else{ @@ -208,14 +246,14 @@ int ManchesterEncode(uint8_t *BitStream, size_t size) { size_t modIdx=20000, i=0; if (size>modIdx) return -1; - for (size_t idx=0; idx < size; idx++){ - BitStream[idx+modIdx++] = BitStream[idx]; - BitStream[idx+modIdx++] = BitStream[idx]^1; - } - for (; i<(size*2); i++){ - BitStream[i] = BitStream[i+20000]; - } - return i; + for (size_t idx=0; idx < size; idx++){ + BitStream[idx+modIdx++] = BitStream[idx]; + BitStream[idx+modIdx++] = BitStream[idx]^1; + } + for (; i<(size*2); i++){ + BitStream[i] = BitStream[i+20000]; + } + return i; } //by marshmellow @@ -223,21 +261,19 @@ int ManchesterEncode(uint8_t *BitStream, size_t size) //run through 2 times and take least errCnt int manrawdecode(uint8_t * BitStream, size_t *size) { - int bitnum=0; - int errCnt =0; - int i=1; - int bestErr = 1000; - int bestRun = 0; - int ii=1; - for (ii=1;ii<3;++ii){ - i=1; + uint16_t bitnum=0, MaxBits = 512, errCnt = 0; + size_t i, ii; + uint16_t bestErr = 1000, bestRun = 0; + if (size == 0) return -1; + for (ii=0;ii<2;++ii){ + i=0; for (i=i+ii;i<*size-2;i+=2){ if(BitStream[i]==1 && (BitStream[i+1]==0)){ } else if((BitStream[i]==0)&& BitStream[i+1]==1){ } else { errCnt++; } - if(bitnum>300) break; + if(bitnum>MaxBits) break; } if (bestErr>errCnt){ bestErr=errCnt; @@ -248,8 +284,8 @@ int manrawdecode(uint8_t * BitStream, size_t *size) errCnt=bestErr; if (errCnt<20){ ii=bestRun; - i=1; - for (i=i+ii;i < *size-2;i+=2){ + i=0; + for (i=i+ii; i < *size-2; i+=2){ if(BitStream[i] == 1 && (BitStream[i+1] == 0)){ BitStream[bitnum++]=0; } else if((BitStream[i] == 0) && BitStream[i+1] == 1){ @@ -258,7 +294,7 @@ int manrawdecode(uint8_t * BitStream, size_t *size) BitStream[bitnum++]=77; //errCnt++; } - if(bitnum>300) break; + if(bitnum>MaxBits) break; } *size=bitnum; } @@ -266,14 +302,30 @@ int manrawdecode(uint8_t * BitStream, size_t *size) } //by marshmellow -//take 01 or 10 = 0 and 11 or 00 = 1 +//take 01 or 10 = 1 and 11 or 00 = 0 +//check for phase errors - should never have 111 or 000 should be 01001011 or 10110100 for 1010 +//decodes biphase or if inverted it is AKA conditional dephase encoding AKA differential manchester encoding int BiphaseRawDecode(uint8_t *BitStream, size_t *size, int offset, int invert) { - uint8_t bitnum=0; + uint16_t bitnum=0; uint32_t errCnt =0; - uint32_t i; - i=offset; - for (;i<*size-2; i+=2){ + size_t i=offset; + uint16_t MaxBits=512; + //if not enough samples - error + if (*size < 51) return -1; + //check for phase change faults - skip one sample if faulty + uint8_t offsetA = 1, offsetB = 1; + for (; i<48; i+=2){ + if (BitStream[i+1]==BitStream[i+2]) offsetA=0; + if (BitStream[i+2]==BitStream[i+3]) offsetB=0; + } + if (!offsetA && offsetB) offset++; + for (i=offset; i<*size-3; i+=2){ + //check for phase error + if (BitStream[i+1]==BitStream[i+2]) { + BitStream[bitnum++]=77; + errCnt++; + } if((BitStream[i]==1 && BitStream[i+1]==0) || (BitStream[i]==0 && BitStream[i+1]==1)){ BitStream[bitnum++]=1^invert; } else if((BitStream[i]==0 && BitStream[i+1]==0) || (BitStream[i]==1 && BitStream[i+1]==1)){ @@ -282,84 +334,153 @@ int BiphaseRawDecode(uint8_t *BitStream, size_t *size, int offset, int invert) BitStream[bitnum++]=77; errCnt++; } - if(bitnum>250) break; + if(bitnum>MaxBits) break; } *size=bitnum; return errCnt; } //by marshmellow -//takes 2 arguments - clock and invert both as integers +void askAmp(uint8_t *BitStream, size_t size) +{ + int shift = 127; + int shiftedVal=0; + for(int i = 1; i=30) //large jump up + shift=127; + else if(BitStream[i]-BitStream[i-1]<=-20) //large jump down + shift=-127; + + shiftedVal=BitStream[i]+shift; + + if (shiftedVal>255) + shiftedVal=255; + else if (shiftedVal<0) + shiftedVal=0; + BitStream[i-1] = shiftedVal; + } + return; +} + +int cleanAskRawDemod(uint8_t *BinStream, size_t *size, int clk, int invert, int high, int low) +{ + size_t bitCnt=0, smplCnt=0, errCnt=0; + uint8_t waveHigh = 0; + //PrintAndLog("clk: %d", clk); + for (size_t i=0; i < *size; i++){ + if (BinStream[i] >= high && waveHigh){ + smplCnt++; + } else if (BinStream[i] <= low && !waveHigh){ + smplCnt++; + } else { //transition + if ((BinStream[i] >= high && !waveHigh) || (BinStream[i] <= low && waveHigh)){ + if (smplCnt > clk-(clk/4)-1) { //full clock + if (smplCnt > clk + (clk/4)+1) { //too many samples + errCnt++; + BinStream[bitCnt++]=77; + } else if (waveHigh) { + BinStream[bitCnt++] = invert; + BinStream[bitCnt++] = invert; + } else if (!waveHigh) { + BinStream[bitCnt++] = invert ^ 1; + BinStream[bitCnt++] = invert ^ 1; + } + waveHigh ^= 1; + smplCnt = 0; + } else if (smplCnt > (clk/2) - (clk/4)-1) { + if (waveHigh) { + BinStream[bitCnt++] = invert; + } else if (!waveHigh) { + BinStream[bitCnt++] = invert ^ 1; + } + waveHigh ^= 1; + smplCnt = 0; + } else if (!bitCnt) { + //first bit + waveHigh = (BinStream[i] >= high); + smplCnt = 1; + } else { + smplCnt++; + //transition bit oops + } + } else { //haven't hit new high or new low yet + smplCnt++; + } + } + } + *size = bitCnt; + return errCnt; +} + +//by marshmellow +//takes 3 arguments - clock, invert and maxErr as integers //attempts to demodulate ask only -//prints binary found and saves in graphbuffer for further commands -int askrawdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert) +int askrawdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr, uint8_t amp) { uint32_t i; - // int invert=0; //invert default - int clk2 = *clk; - *clk=DetectASKClock(BinStream, *size, *clk); //clock default - //uint8_t BitStream[502] = {0}; - - //HACK: if clock not detected correctly - default - if (clk2==0 && *clk<8) *clk =64; - if (clk2==0 && *clk<32 && clk2==0) *clk=32; + if (*size==0) return -1; + int start = DetectASKClock(BinStream, *size, clk, 20); //clock default + if (*clk==0) return -1; + if (start<0) return -1; if (*invert != 0 && *invert != 1) *invert =0; + if (amp==1) askAmp(BinStream, *size); + uint32_t initLoopMax = 200; if (initLoopMax > *size) initLoopMax=*size; // Detect high and lows - //25% fuzz in case highs and lows aren't clipped [marshmellow] + //25% clip in case highs and lows aren't clipped [marshmellow] + uint8_t clip = 75; int high, low, ans; - ans = getHiLo(BinStream, initLoopMax, &high, &low, 75, 75); - if (ans<1) return -2; //just noise + ans = getHiLo(BinStream, initLoopMax, &high, &low, clip, clip); + if (ans<1) return -1; //just noise + + if (DetectCleanAskWave(BinStream, *size, high, low)) { + //PrintAndLog("Clean"); + return cleanAskRawDemod(BinStream, size, *clk, *invert, high, low); + } //PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low); int lastBit = 0; //set first clock check uint32_t bitnum = 0; //output counter uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock - // if they fall + or - this value + clock from last valid wave - if (*clk == 32) tol=1; //clock tolerance may not be needed anymore currently set to - // + or - 1 but could be increased for poor waves or removed entirely + // if they fall + or - this value + clock from last valid wave + if (*clk == 32) tol=0; //clock tolerance may not be needed anymore currently set to + // + or - 1 but could be increased for poor waves or removed entirely uint32_t iii = 0; uint32_t gLen = *size; if (gLen > 500) gLen=500; + //if 0 errors allowed then only try first 2 clock cycles as we want a low tolerance + if (!maxErr) gLen = *clk * 2; uint8_t errCnt =0; uint32_t bestStart = *size; - uint32_t bestErrCnt = (*size/1000); - uint32_t maxErr = bestErrCnt; + uint32_t bestErrCnt = maxErr; //(*size/1000); uint8_t midBit=0; + uint16_t MaxBits=1000; + //PrintAndLog("DEBUG - lastbit - %d",lastBit); //loop to find first wave that works - for (iii=0; iii < gLen; ++iii){ + for (iii=start; iii < gLen; ++iii){ if ((BinStream[iii]>=high) || (BinStream[iii]<=low)){ lastBit=iii-*clk; + errCnt=0; //loop through to see if this start location works for (i = iii; i < *size; ++i) { if ((BinStream[i] >= high) && ((i-lastBit)>(*clk-tol))){ lastBit+=*clk; - //BitStream[bitnum] = *invert; - //bitnum++; midBit=0; } else if ((BinStream[i] <= low) && ((i-lastBit)>(*clk-tol))){ //low found and we are expecting a bar lastBit+=*clk; - //BitStream[bitnum] = 1- *invert; - //bitnum++; midBit=0; } else if ((BinStream[i]<=low) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){ //mid bar? midBit=1; - //BitStream[bitnum]= 1- *invert; - //bitnum++; } else if ((BinStream[i]>=high) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){ //mid bar? midBit=1; - //BitStream[bitnum]= *invert; - //bitnum++; } else if ((i-lastBit)>((*clk/2)+tol) && (midBit==0)){ //no mid bar found midBit=1; - //BitStream[bitnum]= BitStream[bitnum-1]; - //bitnum++; } else { //mid value found or no bar supposed to be here @@ -367,24 +488,19 @@ int askrawdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert) //should have hit a high or low based on clock!! //debug //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit); - //if (bitnum > 0){ - // BitStream[bitnum]=77; - // bitnum++; - //} errCnt++; lastBit+=*clk;//skip over until hit too many errors - if (errCnt > ((*size/1000))){ //allow 1 error for every 1000 samples else start over - errCnt=0; - // bitnum=0;//start over + if (errCnt > maxErr){ + //errCnt=0; break; } } } - if ((i-iii)>(500 * *clk)) break; //got enough bits + if ((i-iii)>(MaxBits * *clk)) break; //got enough bits } //we got more than 64 good bits and not all errors - if ((((i-iii)/ *clk) > (64+errCnt)) && (errCnt<(*size/1000))) { + if ((((i-iii)/ *clk) > (64)) && (errCnt<=maxErr)) { //possible good read if (errCnt==0){ bestStart=iii; @@ -398,9 +514,9 @@ int askrawdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert) } } } - if (bestErrCnt (*clk-tol))){ //low found and we are expecting a bar lastBit+=*clk; - BinStream[bitnum] = 1-*invert; + BinStream[bitnum] = 1 - *invert; bitnum++; midBit=0; } else if ((BinStream[i]<=low) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){ @@ -442,11 +558,10 @@ int askrawdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert) BinStream[bitnum]=77; bitnum++; } - lastBit+=*clk;//skip over error } } - if (bitnum >=400) break; + if (bitnum >= MaxBits) break; } *size=bitnum; } else{ @@ -456,6 +571,28 @@ int askrawdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert) } return bestErrCnt; } + +// demod gProxIIDemod +// error returns as -x +// success returns start position in BitStream +// BitStream must contain previously askrawdemod and biphasedemoded data +int gProxII_Demod(uint8_t BitStream[], size_t *size) +{ + size_t startIdx=0; + uint8_t preamble[] = {1,1,1,1,1,0}; + + uint8_t errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, &startIdx); + if (errChk == 0) return -3; //preamble not found + if (*size != 96) return -2; //should have found 96 bits + //check first 6 spacer bits to verify format + if (!BitStream[startIdx+5] && !BitStream[startIdx+10] && !BitStream[startIdx+15] && !BitStream[startIdx+20] && !BitStream[startIdx+25] && !BitStream[startIdx+30]){ + //confirmed proper separator bits found + //return start position + return (int) startIdx; + } + return -5; +} + //translate wave to 11111100000 (1 for each short wave 0 for each long wave) size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow) { @@ -490,7 +627,9 @@ size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow //do nothing with extra garbage } else if ((idx-last_transition) < (fchigh-1)) { //6-8 = 8 waves dest[numBits]=1; - } else { //9+ = 10 waves + } else if ((idx-last_transition) > (fchigh+1) && !numBits) { //12 + and first bit = garbage + //do nothing with beginning garbage + } else { //9+ = 10 waves dest[numBits]=0; } last_transition = idx; @@ -508,24 +647,37 @@ uint32_t myround2(float f) //translate 11111100000 to 10 size_t aggregate_bits(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t maxConsequtiveBits, - uint8_t invert, uint8_t fchigh, uint8_t fclow) + uint8_t invert, uint8_t fchigh, uint8_t fclow) { uint8_t lastval=dest[0]; uint32_t idx=0; size_t numBits=0; uint32_t n=1; - + float lowWaves = (((float)(rfLen))/((float)fclow)); + float highWaves = (((float)(rfLen))/((float)fchigh)); for( idx=1; idx < size; idx++) { if (dest[idx]==lastval) { n++; continue; } + n++; //if lastval was 1, we have a 1->0 crossing - if ( dest[idx-1]==1 ) { - n=myround2((float)(n+1)/((float)(rfLen)/(float)fclow)); - } else {// 0->1 crossing - n=myround2((float)(n+1)/((float)(rfLen-1)/(float)fchigh)); //-1 for fudge factor + if (dest[idx-1]==1) { + if (!numBits && n < (uint8_t)lowWaves) { + n=0; + lastval = dest[idx]; + continue; + } + n=myround2(((float)n)/lowWaves); + } else {// 0->1 crossing + //test first bitsample too small + if (!numBits && n < (uint8_t)highWaves) { + n=0; + lastval = dest[idx]; + continue; + } + n = myround2(((float)n)/highWaves); //-1 for fudge factor } if (n == 0) n = 1; @@ -541,6 +693,17 @@ size_t aggregate_bits(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t maxCons n=0; lastval=dest[idx]; }//end for + + // if valid extra bits at the end were all the same frequency - add them in + if (n > lowWaves && n > highWaves) { + if (dest[idx-2]==1) { + n=myround2((float)(n+1)/((float)(rfLen)/(float)fclow)); + } else { + n=myround2((float)(n+1)/((float)(rfLen-1)/(float)fchigh)); //-1 for fudge factor + } + memset(dest, dest[idx-1]^invert , n); + numBits += n; + } return numBits; } //by marshmellow (from holiman's base) @@ -552,114 +715,69 @@ int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t size = aggregate_bits(dest, size, rfLen, 192, invert, fchigh, fclow); return size; } + // loop to get raw HID waveform then FSK demodulate the TAG ID from it int HIDdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo) { + if (justNoise(dest, *size)) return -1; - size_t idx=0, size2=*size, startIdx=0; + size_t numStart=0, size2=*size, startIdx=0; // FSK demodulator - - *size = fskdemod(dest, size2,50,0,10,8); - - // final loop, go over previously decoded manchester data and decode into usable tag ID - // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0 - uint8_t frame_marker_mask[] = {1,1,1,0,0,0}; - int numshifts = 0; - idx = 0; - //one scan - while( idx + sizeof(frame_marker_mask) < *size) { - // search for a start of frame marker - if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0) - { // frame marker found - startIdx=idx; - idx+=sizeof(frame_marker_mask); - while(dest[idx] != dest[idx+1] && idx < *size-2) - { - // Keep going until next frame marker (or error) - // Shift in a bit. Start by shifting high registers - *hi2 = (*hi2<<1)|(*hi>>31); - *hi = (*hi<<1)|(*lo>>31); - //Then, shift in a 0 or one into low - if (dest[idx] && !dest[idx+1]) // 1 0 - *lo=(*lo<<1)|0; - else // 0 1 - *lo=(*lo<<1)|1; - numshifts++; - idx += 2; - } - // Hopefully, we read a tag and hit upon the next frame marker - if(idx + sizeof(frame_marker_mask) < *size) - { - if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0) - { - //good return - *size=idx-startIdx; - return startIdx; - } - } - // reset - *hi2 = *hi = *lo = 0; - numshifts = 0; - }else { - idx++; + *size = fskdemod(dest, size2,50,1,10,8); //fsk2a + if (*size < 96) return -2; + // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1 + uint8_t preamble[] = {0,0,0,1,1,1,0,1}; + // find bitstring in array + uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); + if (errChk == 0) return -3; //preamble not found + + numStart = startIdx + sizeof(preamble); + // final loop, go over previously decoded FSK data and manchester decode into usable tag ID + for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){ + if (dest[idx] == dest[idx+1]){ + return -4; //not manchester data } + *hi2 = (*hi2<<1)|(*hi>>31); + *hi = (*hi<<1)|(*lo>>31); + //Then, shift in a 0 or one into low + if (dest[idx] && !dest[idx+1]) // 1 0 + *lo=(*lo<<1)|1; + else // 0 1 + *lo=(*lo<<1)|0; } - return -1; + return (int)startIdx; } // loop to get raw paradox waveform then FSK demodulate the TAG ID from it -size_t ParadoxdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo) +int ParadoxdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo) { - - size_t idx=0, size2=*size; + if (justNoise(dest, *size)) return -1; + + size_t numStart=0, size2=*size, startIdx=0; // FSK demodulator - - *size = fskdemod(dest, size2,50,1,10,8); - - // final loop, go over previously decoded manchester data and decode into usable tag ID - // 00001111 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0 - uint8_t frame_marker_mask[] = {0,0,0,0,1,1,1,1}; - uint16_t numshifts = 0; - idx = 0; - //one scan - while( idx + sizeof(frame_marker_mask) < *size) { - // search for a start of frame marker - if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0) - { // frame marker found - size2=idx; - idx+=sizeof(frame_marker_mask); - while(dest[idx] != dest[idx+1] && idx < *size-2) - { - // Keep going until next frame marker (or error) - // Shift in a bit. Start by shifting high registers - *hi2 = (*hi2<<1)|(*hi>>31); - *hi = (*hi<<1)|(*lo>>31); - //Then, shift in a 0 or one into low - if (dest[idx] && !dest[idx+1]) // 1 0 - *lo=(*lo<<1)|1; - else // 0 1 - *lo=(*lo<<1)|0; - numshifts++; - idx += 2; - } - // Hopefully, we read a tag and hit upon the next frame marker and got enough bits - if(idx + sizeof(frame_marker_mask) < *size && numshifts > 40) - { - if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0) - { - //good return - return start grid position and bits found - *size = ((numshifts*2)+8); - return size2; - } - } - // reset - *hi2 = *hi = *lo = 0; - numshifts = 0; - }else { - idx++; - } + *size = fskdemod(dest, size2,50,1,10,8); //fsk2a + if (*size < 96) return -2; + + // 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1 + uint8_t preamble[] = {0,0,0,0,1,1,1,1}; + + uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); + if (errChk == 0) return -3; //preamble not found + + numStart = startIdx + sizeof(preamble); + // final loop, go over previously decoded FSK data and manchester decode into usable tag ID + for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){ + if (dest[idx] == dest[idx+1]) + return -4; //not manchester data + *hi2 = (*hi2<<1)|(*hi>>31); + *hi = (*hi<<1)|(*lo>>31); + //Then, shift in a 0 or one into low + if (dest[idx] && !dest[idx+1]) // 1 0 + *lo=(*lo<<1)|1; + else // 0 1 + *lo=(*lo<<1)|0; } - return 0; + return (int)startIdx; } uint32_t bytebits_to_byte(uint8_t* src, size_t numbits) @@ -675,20 +793,12 @@ uint32_t bytebits_to_byte(uint8_t* src, size_t numbits) int IOdemodFSK(uint8_t *dest, size_t size) { - static const uint8_t THRESHOLD = 129; - uint32_t idx=0; + if (justNoise(dest, size)) return -1; //make sure buffer has data - if (size < 66) return -1; - //test samples are not just noise - uint8_t justNoise = 1; - for(idx=0;idx< size && justNoise ;idx++){ - justNoise = dest[idx] < THRESHOLD; - } - if(justNoise) return 0; - + if (size < 66*64) return -2; // FSK demodulator - size = fskdemod(dest, size, 64, 1, 10, 8); // RF/64 and invert - if (size < 65) return -1; //did we get a good demod? + size = fskdemod(dest, size, 64, 1, 10, 8); // FSK2a RF/64 + if (size < 65) return -3; //did we get a good demod? //Index map //0 10 20 30 40 50 60 //| | | | | | | @@ -698,31 +808,17 @@ int IOdemodFSK(uint8_t *dest, size_t size) // //XSF(version)facility:codeone+codetwo //Handle the data - uint8_t mask[] = {0,0,0,0,0,0,0,0,0,1}; - for( idx=0; idx < (size - 65); idx++) { - if ( memcmp(dest + idx, mask, sizeof(mask))==0) { - //frame marker found - if (!dest[idx+8] && dest[idx+17]==1 && dest[idx+26]==1 && dest[idx+35]==1 && dest[idx+44]==1 && dest[idx+53]==1){ - //confirmed proper separator bits found - //return start position - return (int) idx; - } - } + size_t startIdx = 0; + uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,1}; + uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), &size, &startIdx); + if (errChk == 0) return -4; //preamble not found + + if (!dest[startIdx+8] && dest[startIdx+17]==1 && dest[startIdx+26]==1 && dest[startIdx+35]==1 && dest[startIdx+44]==1 && dest[startIdx+53]==1){ + //confirmed proper separator bits found + //return start position + return (int) startIdx; } - return 0; -} - -// by marshmellow -// pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType -// returns 1 if passed -uint8_t parityTest(uint32_t bits, uint8_t bitLen, uint8_t pType) -{ - uint8_t ans = 0; - for (uint8_t i = 0; i < bitLen; i++){ - ans ^= ((bits >> i) & 1); - } - //PrintAndLog("DEBUG: ans: %d, ptype: %d",ans,pType); - return (ans == pType); + return -5; } // by marshmellow @@ -735,7 +831,7 @@ size_t removeParity(uint8_t *BitStream, size_t startIdx, uint8_t pLen, uint8_t p for (int word = 0; word < (bLen); word+=pLen){ for (int bit=0; bit < pLen; bit++){ parityWd = (parityWd << 1) | BitStream[startIdx+word+bit]; - BitStream[j++] = (BitStream[startIdx+word+bit]); + BitStream[j++] = (BitStream[startIdx+word+bit]); } j--; // if parity fails then return 0 @@ -750,153 +846,312 @@ size_t removeParity(uint8_t *BitStream, size_t startIdx, uint8_t pLen, uint8_t p // by marshmellow // FSK Demod then try to locate an AWID ID -int AWIDdemodFSK(uint8_t *dest, size_t size) +int AWIDdemodFSK(uint8_t *dest, size_t *size) { - static const uint8_t THRESHOLD = 123; - uint32_t idx=0, idx2=0; - //make sure buffer has data - if (size < 96*50) return -1; - //test samples are not just noise - uint8_t justNoise = 1; - for(idx=0; idx < size && justNoise ;idx++){ - justNoise = dest[idx] < THRESHOLD; - } - if(justNoise) return -2; + //make sure buffer has enough data + if (*size < 96*50) return -1; + + if (justNoise(dest, *size)) return -2; // FSK demodulator - size = fskdemod(dest, size, 50, 1, 10, 8); // RF/64 and invert - if (size < 96) return -3; //did we get a good demod? - - uint8_t mask[] = {0,0,0,0,0,0,0,1}; - for( idx=0; idx < (size - 96); idx++) { - if ( memcmp(dest + idx, mask, sizeof(mask))==0) { - // frame marker found - //return ID start index - if (idx2 == 0) idx2=idx; - else if(idx-idx2==96) return idx2; - else return -5; - - // should always get 96 bits if it is awid - } - } - //never found mask - return -4; + *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50 + if (*size < 96) return -3; //did we get a good demod? + + uint8_t preamble[] = {0,0,0,0,0,0,0,1}; + size_t startIdx = 0; + uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); + if (errChk == 0) return -4; //preamble not found + if (*size != 96) return -5; + return (int)startIdx; } // by marshmellow // FSK Demod then try to locate an Farpointe Data (pyramid) ID -int PyramiddemodFSK(uint8_t *dest, size_t size) +int PyramiddemodFSK(uint8_t *dest, size_t *size) { - static const uint8_t THRESHOLD = 123; - uint32_t idx=0, idx2=0; - // size_t size2 = size; - //make sure buffer has data - if (size < 128*50) return -5; - //test samples are not just noise - uint8_t justNoise = 1; - for(idx=0; idx < size && justNoise ;idx++){ - justNoise = dest[idx] < THRESHOLD; - } - if(justNoise) return -1; - - // FSK demodulator - size = fskdemod(dest, size, 50, 1, 10, 8); // RF/64 and invert - if (size < 128) return -2; //did we get a good demod? - - uint8_t mask[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}; - for( idx=0; idx < (size - 128); idx++) { - if ( memcmp(dest + idx, mask, sizeof(mask))==0) { - // frame marker found - if (idx2==0) idx2=idx; - else if (idx-idx2==128) return idx2; - else return -3; - } - } - //never found mask - return -4; + //make sure buffer has data + if (*size < 128*50) return -5; + + //test samples are not just noise + if (justNoise(dest, *size)) return -1; + + // FSK demodulator + *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50 + if (*size < 128) return -2; //did we get a good demod? + + uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}; + size_t startIdx = 0; + uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); + if (errChk == 0) return -4; //preamble not found + if (*size != 128) return -3; + return (int)startIdx; } +uint8_t DetectCleanAskWave(uint8_t dest[], size_t size, int high, int low) +{ + uint16_t allPeaks=1; + uint16_t cntPeaks=0; + size_t loopEnd = 572; + if (loopEnd > size) loopEnd = size; + for (size_t i=60; ilow && dest[i] 300) return 1; + } + return allPeaks; +} + +int DetectStrongAskClock(uint8_t dest[], size_t size) +{ + int clk[]={0,8,16,32,40,50,64,100,128,256}; + size_t idx = 40; + uint8_t high=0; + size_t cnt = 0; + size_t highCnt = 0; + size_t highCnt2 = 0; + for (;idx < size; idx++){ + if (dest[idx]>128) { + if (!high){ + high=1; + if (cnt > highCnt){ + if (highCnt != 0) highCnt2 = highCnt; + highCnt = cnt; + } else if (cnt > highCnt2) { + highCnt2 = cnt; + } + cnt=1; + } else { + cnt++; + } + } else if (dest[idx] <= 128){ + if (high) { + high=0; + if (cnt > highCnt) { + if (highCnt != 0) highCnt2 = highCnt; + highCnt = cnt; + } else if (cnt > highCnt2) { + highCnt2 = cnt; + } + cnt=1; + } else { + cnt++; + } + } + } + uint8_t tol; + for (idx=8; idx>0; idx--){ + tol = clk[idx]/8; + if (clk[idx] >= highCnt - tol && clk[idx] <= highCnt + tol) + return clk[idx]; + if (clk[idx] >= highCnt2 - tol && clk[idx] <= highCnt2 + tol) + return clk[idx]; + } + return -1; +} + // by marshmellow // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping) // maybe somehow adjust peak trimming value based on samples to fix? -int DetectASKClock(uint8_t dest[], size_t size, int clock) +// return start index of best starting position for that clock and return clock (by reference) +int DetectASKClock(uint8_t dest[], size_t size, int *clock, int maxErr) { - int i=0; - int clk[]={8,16,32,40,50,64,100,128,256}; - int loopCnt = 256; //don't need to loop through entire array... - if (size= peak) || (dest[ii] <= low)){ - errCnt=0; - // now that we have the first one lined up test rest of wave array - for (i=0; i<((int)((size-ii-tol)/clk[clkCnt])-1); ++i){ - if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){ - }else if(dest[ii+(i*clk[clkCnt])-tol]>=peak || dest[ii+(i*clk[clkCnt])-tol]<=low){ - }else if(dest[ii+(i*clk[clkCnt])+tol]>=peak || dest[ii+(i*clk[clkCnt])+tol]<=low){ - }else{ //error no peak detected - errCnt++; - } - } - //if we found no errors then we can stop here - // this is correct one - return this clock - //PrintAndLog("DEBUG: clk %d, err %d, ii %d, i %d",clk[clkCnt],errCnt,ii,i); - if(errCnt==0 && clkCnt<6) return clk[clkCnt]; - //if we found errors see if it is lowest so far and save it as best run - if(errCnt0; i--){ + if (clk[i] == ans) { + *clock=ans; + return 0; + } + } + } + int ii; + int clkCnt; + int tol = 0; + int bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000}; + int bestStart[]={0,0,0,0,0,0,0,0,0}; + int errCnt=0; + //test each valid clock from smallest to greatest to see which lines up + for(clkCnt=0; clkCnt < 8; clkCnt++){ + if (clk[clkCnt] == 32){ + tol=1; + }else{ + tol=0; + } + if (!maxErr) loopCnt=clk[clkCnt]*2; + bestErr[clkCnt]=1000; + //try lining up the peaks by moving starting point (try first 256) + for (ii=0; ii < loopCnt; ii++){ + if ((dest[ii] >= peak) || (dest[ii] <= low)){ + errCnt=0; + // now that we have the first one lined up test rest of wave array + for (i=0; i<((int)((size-ii-tol)/clk[clkCnt])-1); ++i){ + if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){ + }else if(dest[ii+(i*clk[clkCnt])-tol]>=peak || dest[ii+(i*clk[clkCnt])-tol]<=low){ + }else if(dest[ii+(i*clk[clkCnt])+tol]>=peak || dest[ii+(i*clk[clkCnt])+tol]<=low){ + }else{ //error no peak detected + errCnt++; + } + } + //if we found no errors then we can stop here + // this is correct one - return this clock + //PrintAndLog("DEBUG: clk %d, err %d, ii %d, i %d",clk[clkCnt],errCnt,ii,i); + if(errCnt==0 && clkCnt<6) { + *clock = clk[clkCnt]; + return ii; + } + //if we found errors see if it is lowest so far and save it as best run + if(errCntmaxErr) return -1; + *clock=clk[best]; + return bestStart[best]; } +//by marshmellow +//detect psk clock by reading each phase shift +// a phase shift is determined by measuring the sample length of each wave +int DetectPSKClock(uint8_t dest[], size_t size, int clock) +{ + uint8_t clk[]={255,16,32,40,50,64,100,128,255}; //255 is not a valid clock + uint16_t loopCnt = 4096; //don't need to loop through entire array... + if (size == 0) return 0; + if (size= dest[i+2]){ + if (waveStart == 0) { + waveStart = i+1; + //PrintAndLog("DEBUG: waveStart: %d",waveStart); + } else { + waveEnd = i+1; + //PrintAndLog("DEBUG: waveEnd: %d",waveEnd); + waveLenCnt = waveEnd-waveStart; + if (waveLenCnt > fc){ + firstFullWave = waveStart; + fullWaveLen=waveLenCnt; + break; + } + waveStart=0; + } + } + } + //PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen); + + //test each valid clock from greatest to smallest to see which lines up + for(clkCnt=7; clkCnt >= 1 ; clkCnt--){ + lastClkBit = firstFullWave; //set end of wave as clock align + waveStart = 0; + errCnt=0; + peakcnt=0; + //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d",clk[clkCnt],lastClkBit); + + for (i = firstFullWave+fullWaveLen-1; i < loopCnt-2; i++){ + //top edge of wave = start of new wave + if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){ + if (waveStart == 0) { + waveStart = i+1; + waveLenCnt=0; + } else { //waveEnd + waveEnd = i+1; + waveLenCnt = waveEnd-waveStart; + if (waveLenCnt > fc){ + //if this wave is a phase shift + //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, ii: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,ii+1,fc); + if (i+1 >= lastClkBit + clk[clkCnt] - tol){ //should be a clock bit + peakcnt++; + lastClkBit+=clk[clkCnt]; + } else if (i lastClkBit + clk[clkCnt] + tol + fc){ + lastClkBit+=clk[clkCnt]; //no phase shift but clock bit + } + waveStart=i+1; + } + } + } + if (errCnt == 0){ + return clk[clkCnt]; + } + if (errCnt <= bestErr[clkCnt]) bestErr[clkCnt]=errCnt; + if (peakcnt > peaksdet[clkCnt]) peaksdet[clkCnt]=peakcnt; + } + //all tested with errors + //return the highest clk with the most peaks found + uint8_t best=7; + for (i=7; i>=1; i--){ + if (peaksdet[i] > peaksdet[best]) { + best = i; + } + //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best]); + } + return clk[best]; +} //by marshmellow -//detect psk clock by reading #peaks vs no peaks(or errors) -int DetectpskNRZClock(uint8_t dest[], size_t size, int clock) +//detect nrz clock by reading #peaks vs no peaks(or errors) +int DetectNRZClock(uint8_t dest[], size_t size, int clock) { int i=0; - int clk[]={16,32,40,50,64,100,128,256}; - int loopCnt = 2048; //don't need to loop through entire array... + int clk[]={8,16,32,40,50,64,100,128,256}; + int loopCnt = 4096; //don't need to loop through entire array... + if (size == 0) return 0; if (size= peak || dest[i] <= low){ + peakcnt++; + } else { + if (peakcnt>0 && maxPeak < peakcnt){ + maxPeak = peakcnt; + } + peakcnt=0; } + } + peakcnt=0; + //test each valid clock from smallest to greatest to see which lines up + for(clkCnt=0; clkCnt < 8; ++clkCnt){ + //ignore clocks smaller than largest peak + if (clk[clkCnt]= peak) || (dest[ii] <= low)){ - errCnt=0; peakcnt=0; // now that we have the first one lined up test rest of wave array for (i=0; i < ((int)((size-ii-tol)/clk[clkCnt])-1); ++i){ if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){ peakcnt++; - }else if(dest[ii+(i*clk[clkCnt])-tol]>=peak || dest[ii+(i*clk[clkCnt])-tol]<=low){ - peakcnt++; - }else if(dest[ii+(i*clk[clkCnt])+tol]>=peak || dest[ii+(i*clk[clkCnt])+tol]<=low){ - peakcnt++; - }else{ //error no peak detected - errCnt++; } } if(peakcnt>peaksdet[clkCnt]) { peaksdet[clkCnt]=peakcnt; - bestErr[clkCnt]=errCnt; } } } } - int iii=0; + int iii=7; int best=0; - //int ratio2; //debug - int ratio; - //int bits; - for (iii=0; iii < 7; ++iii){ - ratio=1000; - //ratio2=1000; //debug - //bits=size/clk[iii]; //debug - if (peaksdet[iii] > 0){ - ratio=bestErr[iii]/peaksdet[iii]; - if (((bestErr[best]/peaksdet[best]) > (ratio)+1)){ - best = iii; - } - //ratio2=bits/peaksdet[iii]; //debug + for (iii=7; iii > 0; iii--){ + if (peaksdet[iii] > peaksdet[best]){ + best = iii; } - //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d, ratio: %d, bits: %d, peakbitr: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best],ratio, bits,ratio2); + //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best]); } return clk[best]; } -//by marshmellow (attempt to get rid of high immediately after a low) -void pskCleanWave(uint8_t *BitStream, size_t size) +// by marshmellow +// convert psk1 demod to psk2 demod +// only transition waves are 1s +void psk1TOpsk2(uint8_t *BitStream, size_t size) { - int i; - int gap = 4; - int newLow=0; - int newHigh=0; - int high, low; - getHiLo(BitStream, size, &high, &low, 80, 90); - - for (i=0; i < size; ++i){ - if (newLow == 1){ - if (BitStream[i]>low){ - BitStream[i]=low+8; - gap--; - } - if (gap == 0){ - newLow=0; - gap=4; - } - }else if (newHigh == 1){ - if (BitStream[i]= high) newHigh=1; } return; } +// by marshmellow +// convert psk2 demod to psk1 demod +// from only transition waves are 1s to phase shifts change bit +void psk2TOpsk1(uint8_t *BitStream, size_t size) +{ + uint8_t phase=0; + for (size_t i=0; i*size) gLen = *size; + int high, low; + if (getHiLo(dest, gLen, &high, &low, 75, 75) < 1) return -3; //25% fuzz on high 25% fuzz on low int lastBit = 0; //set first clock check uint32_t bitnum = 0; //output counter uint8_t tol = 1; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave - if (*clk==32) tol = 2; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely uint32_t iii = 0; - uint8_t errCnt =0; - uint32_t bestStart = *size; - uint32_t maxErr = (*size/1000); - uint32_t bestErrCnt = maxErr; - //uint8_t midBit=0; + uint16_t errCnt =0; + uint16_t MaxBits = 1000; + uint32_t bestErrCnt = maxErr+1; + uint32_t bestPeakCnt = 0; + uint32_t bestPeakStart=0; + uint8_t bestFirstPeakHigh=0; + uint8_t firstPeakHigh=0; uint8_t curBit=0; uint8_t bitHigh=0; - uint8_t ignorewin=*clk/8; - //PrintAndLog("DEBUG - lastbit - %d",lastBit); + uint8_t errBitHigh=0; + uint16_t peakCnt=0; + uint8_t ignoreWindow=4; + uint8_t ignoreCnt=ignoreWindow; //in case of noice near peak //loop to find first wave that works - align to clock for (iii=0; iii < gLen; ++iii){ if ((dest[iii]>=high) || (dest[iii]<=low)){ + if (dest[iii]>=high) firstPeakHigh=1; + else firstPeakHigh=0; lastBit=iii-*clk; + peakCnt=0; + errCnt=0; + bitnum=0; //loop through to see if this start location works for (i = iii; i < *size; ++i) { //if we found a high bar and we are at a clock bit if ((dest[i]>=high ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){ bitHigh=1; lastBit+=*clk; - ignorewin=*clk/8; bitnum++; + peakCnt++; + errBitHigh=0; + ignoreCnt=ignoreWindow; //else if low bar found and we are at a clock point }else if ((dest[i]<=low ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){ bitHigh=1; lastBit+=*clk; - ignorewin=*clk/8; bitnum++; + peakCnt++; + errBitHigh=0; + ignoreCnt=ignoreWindow; //else if no bars found }else if(dest[i] < high && dest[i] > low) { - if (ignorewin==0){ + if (ignoreCnt==0){ bitHigh=0; - }else ignorewin--; - //if we are past a clock point + if (errBitHigh==1){ + errCnt++; + } + errBitHigh=0; + } else { + ignoreCnt--; + } + //if we are past a clock point if (i >= lastBit+*clk+tol){ //clock val lastBit+=*clk; bitnum++; @@ -1123,30 +1384,41 @@ int pskNRZrawDemod(uint8_t *dest, size_t *size, int *clk, int *invert) //else if bar found but we are not at a clock bit and we did not just have a clock bit }else if ((dest[i]>=high || dest[i]<=low) && (ilastBit+*clk+tol) && (bitHigh==0)){ //error bar found no clock... - errCnt++; + errBitHigh=1; } - if (bitnum>=1000) break; + if (bitnum>=MaxBits) break; } //we got more than 64 good bits and not all errors - if ((bitnum > (64+errCnt)) && (errCnt < (maxErr))) { + if (bitnum > (64) && (errCnt <= (maxErr))) { //possible good read if (errCnt == 0){ - bestStart = iii; + //bestStart = iii; + bestFirstPeakHigh=firstPeakHigh; bestErrCnt = errCnt; + bestPeakCnt = peakCnt; + bestPeakStart = iii; break; //great read - finish } if (errCnt < bestErrCnt){ //set this as new best run bestErrCnt = errCnt; - bestStart = iii; + //bestStart = iii; } + if (peakCnt > bestPeakCnt){ + bestFirstPeakHigh=firstPeakHigh; + bestPeakCnt=peakCnt; + bestPeakStart=iii; + } } } } - if (bestErrCnt < maxErr){ + //PrintAndLog("DEBUG: bestErrCnt: %d, maxErr: %d, bestStart: %d, bestPeakCnt: %d, bestPeakStart: %d",bestErrCnt,maxErr,bestStart,bestPeakCnt,bestPeakStart); + if (bestErrCnt <= maxErr){ //best run is good enough set to best run and set overwrite BinStream - iii=bestStart; - lastBit=bestStart-*clk; + iii=bestPeakStart; + lastBit=bestPeakStart-*clk; bitnum=0; + memset(dest, bestFirstPeakHigh^1, bestPeakStart / *clk); + bitnum += (bestPeakStart / *clk); for (i = iii; i < *size; ++i) { //if we found a high bar and we are at a clock bit if ((dest[i] >= high ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){ @@ -1154,21 +1426,32 @@ int pskNRZrawDemod(uint8_t *dest, size_t *size, int *clk, int *invert) lastBit+=*clk; curBit=1-*invert; dest[bitnum]=curBit; - ignorewin=*clk/8; bitnum++; + errBitHigh=0; + ignoreCnt=ignoreWindow; //else if low bar found and we are at a clock point }else if ((dest[i]<=low ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){ bitHigh=1; lastBit+=*clk; curBit=*invert; dest[bitnum]=curBit; - ignorewin=*clk/8; bitnum++; + errBitHigh=0; + ignoreCnt=ignoreWindow; //else if no bars found }else if(dest[i]low) { - if (ignorewin==0){ + if (ignoreCnt==0){ bitHigh=0; - }else ignorewin--; + //if peak is done was it an error peak? + if (errBitHigh==1){ + dest[bitnum]=77; + bitnum++; + errCnt++; + } + errBitHigh=0; + } else { + ignoreCnt--; + } //if we are past a clock point if (i>=lastBit+*clk+tol){ //clock val lastBit+=*clk; @@ -1178,212 +1461,354 @@ int pskNRZrawDemod(uint8_t *dest, size_t *size, int *clk, int *invert) //else if bar found but we are not at a clock bit and we did not just have a clock bit }else if ((dest[i]>=high || dest[i]<=low) && ((ilastBit+*clk+tol)) && (bitHigh==0)){ //error bar found no clock... - bitHigh=1; - dest[bitnum]=77; - bitnum++; - errCnt++; + errBitHigh=1; } - if (bitnum >=1000) break; + if (bitnum >= MaxBits) break; } *size=bitnum; } else{ *size=bitnum; - *clk=bestStart; - return -1; + return bestErrCnt; } if (bitnum>16){ *size=bitnum; - } else return -1; + } else return -5; return errCnt; } - //by marshmellow //detects the bit clock for FSK given the high and low Field Clocks uint8_t detectFSKClk(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fcLow) { - uint8_t clk[] = {8,16,32,40,50,64,100,128,0}; - uint16_t rfLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; - uint8_t rfCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; - uint8_t rfLensFnd = 0; - uint8_t lastFCcnt=0; - uint32_t fcCounter = 0; - uint16_t rfCounter = 0; - uint8_t firstBitFnd = 0; - size_t i; - - uint8_t fcTol = (uint8_t)(0.5+(float)(fcHigh-fcLow)/2); - rfLensFnd=0; - fcCounter=0; - rfCounter=0; - firstBitFnd=0; - //PrintAndLog("DEBUG: fcTol: %d",fcTol); - // prime i to first up transition - for (i = 1; i < size-1; i++) - if (BitStream[i] > BitStream[i-1] && BitStream[i]>=BitStream[i+1]) - break; - - for (; i < size-1; i++){ - if (BitStream[i] > BitStream[i-1] && BitStream[i]>=BitStream[i+1]){ - // new peak - fcCounter++; - rfCounter++; - // if we got less than the small fc + tolerance then set it to the small fc - if (fcCounter < fcLow+fcTol) - fcCounter = fcLow; - else //set it to the large fc - fcCounter = fcHigh; - - //look for bit clock (rf/xx) - if ((fcCounterlastFCcnt)){ - //not the same size as the last wave - start of new bit sequence - - if (firstBitFnd>1){ //skip first wave change - probably not a complete bit - for (int ii=0; ii<15; ii++){ - if (rfLens[ii]==rfCounter){ - rfCnts[ii]++; - rfCounter=0; - break; - } - } - if (rfCounter>0 && rfLensFnd<15){ - //PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter); - rfCnts[rfLensFnd]++; - rfLens[rfLensFnd++]=rfCounter; - } - } else { - firstBitFnd++; - } - rfCounter=0; - lastFCcnt=fcCounter; - } - fcCounter=0; - } else { - // count sample - fcCounter++; - rfCounter++; - } - } - uint8_t rfHighest=15, rfHighest2=15, rfHighest3=15; - - for (i=0; i<15; i++){ - //PrintAndLog("DEBUG: RF %d, cnts %d",rfLens[i], rfCnts[i]); - //get highest 2 RF values (might need to get more values to compare or compare all?) - if (rfCnts[i]>rfCnts[rfHighest]){ - rfHighest3=rfHighest2; - rfHighest2=rfHighest; - rfHighest=i; - } else if(rfCnts[i]>rfCnts[rfHighest2]){ - rfHighest3=rfHighest2; - rfHighest2=i; - } else if(rfCnts[i]>rfCnts[rfHighest3]){ - rfHighest3=i; - } - } - // set allowed clock remainder tolerance to be 1 large field clock length+1 - // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off - uint8_t tol1 = fcHigh+1; - - //PrintAndLog("DEBUG: hightest: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]); - - // loop to find the highest clock that has a remainder less than the tolerance - // compare samples counted divided by - int ii=7; - for (; ii>=0; ii--){ - if (rfLens[rfHighest] % clk[ii] < tol1 || rfLens[rfHighest] % clk[ii] > clk[ii]-tol1){ - if (rfLens[rfHighest2] % clk[ii] < tol1 || rfLens[rfHighest2] % clk[ii] > clk[ii]-tol1){ - if (rfLens[rfHighest3] % clk[ii] < tol1 || rfLens[rfHighest3] % clk[ii] > clk[ii]-tol1){ - break; - } - } - } - } - - if (ii<0) return 0; // oops we went too far - - return clk[ii]; + uint8_t clk[] = {8,16,32,40,50,64,100,128,0}; + uint16_t rfLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; + uint8_t rfCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; + uint8_t rfLensFnd = 0; + uint8_t lastFCcnt=0; + uint32_t fcCounter = 0; + uint16_t rfCounter = 0; + uint8_t firstBitFnd = 0; + size_t i; + if (size == 0) return 0; + + uint8_t fcTol = (uint8_t)(0.5+(float)(fcHigh-fcLow)/2); + rfLensFnd=0; + fcCounter=0; + rfCounter=0; + firstBitFnd=0; + //PrintAndLog("DEBUG: fcTol: %d",fcTol); + // prime i to first up transition + for (i = 1; i < size-1; i++) + if (BitStream[i] > BitStream[i-1] && BitStream[i]>=BitStream[i+1]) + break; + + for (; i < size-1; i++){ + if (BitStream[i] > BitStream[i-1] && BitStream[i]>=BitStream[i+1]){ + // new peak + fcCounter++; + rfCounter++; + // if we got less than the small fc + tolerance then set it to the small fc + if (fcCounter < fcLow+fcTol) + fcCounter = fcLow; + else //set it to the large fc + fcCounter = fcHigh; + + //look for bit clock (rf/xx) + if ((fcCounterlastFCcnt)){ + //not the same size as the last wave - start of new bit sequence + + if (firstBitFnd>1){ //skip first wave change - probably not a complete bit + for (int ii=0; ii<15; ii++){ + if (rfLens[ii]==rfCounter){ + rfCnts[ii]++; + rfCounter=0; + break; + } + } + if (rfCounter>0 && rfLensFnd<15){ + //PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter); + rfCnts[rfLensFnd]++; + rfLens[rfLensFnd++]=rfCounter; + } + } else { + firstBitFnd++; + } + rfCounter=0; + lastFCcnt=fcCounter; + } + fcCounter=0; + } else { + // count sample + fcCounter++; + rfCounter++; + } + } + uint8_t rfHighest=15, rfHighest2=15, rfHighest3=15; + + for (i=0; i<15; i++){ + //PrintAndLog("DEBUG: RF %d, cnts %d",rfLens[i], rfCnts[i]); + //get highest 2 RF values (might need to get more values to compare or compare all?) + if (rfCnts[i]>rfCnts[rfHighest]){ + rfHighest3=rfHighest2; + rfHighest2=rfHighest; + rfHighest=i; + } else if(rfCnts[i]>rfCnts[rfHighest2]){ + rfHighest3=rfHighest2; + rfHighest2=i; + } else if(rfCnts[i]>rfCnts[rfHighest3]){ + rfHighest3=i; + } + } + // set allowed clock remainder tolerance to be 1 large field clock length+1 + // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off + uint8_t tol1 = fcHigh+1; + + //PrintAndLog("DEBUG: hightest: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]); + + // loop to find the highest clock that has a remainder less than the tolerance + // compare samples counted divided by + int ii=7; + for (; ii>=0; ii--){ + if (rfLens[rfHighest] % clk[ii] < tol1 || rfLens[rfHighest] % clk[ii] > clk[ii]-tol1){ + if (rfLens[rfHighest2] % clk[ii] < tol1 || rfLens[rfHighest2] % clk[ii] > clk[ii]-tol1){ + if (rfLens[rfHighest3] % clk[ii] < tol1 || rfLens[rfHighest3] % clk[ii] > clk[ii]-tol1){ + break; + } + } + } + } + + if (ii<0) return 0; // oops we went too far + + return clk[ii]; } //by marshmellow //countFC is to detect the field clock lengths. //counts and returns the 2 most common wave lengths -uint16_t countFC(uint8_t *BitStream, size_t size) +//mainly used for FSK field clock detection +uint16_t countFC(uint8_t *BitStream, size_t size, uint8_t *mostFC) +{ + uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0}; + uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0}; + uint8_t fcLensFnd = 0; + uint8_t lastFCcnt=0; + uint32_t fcCounter = 0; + size_t i; + if (size == 0) return 0; + + // prime i to first up transition + for (i = 1; i < size-1; i++) + if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]) + break; + + for (; i < size-1; i++){ + if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]){ + // new up transition + fcCounter++; + + //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8) + if (lastFCcnt==5 && fcCounter==9) fcCounter--; + //if odd and not rc/5 add one (for when we get a fc 9 instead of 10) + if ((fcCounter==9 && fcCounter & 1) || fcCounter==4) fcCounter++; + + // save last field clock count (fc/xx) + // find which fcLens to save it to: + for (int ii=0; ii<10; ii++){ + if (fcLens[ii]==fcCounter){ + fcCnts[ii]++; + fcCounter=0; + break; + } + } + if (fcCounter>0 && fcLensFnd<10){ + //add new fc length + fcCnts[fcLensFnd]++; + fcLens[fcLensFnd++]=fcCounter; + } + fcCounter=0; + } else { + // count sample + fcCounter++; + } + } + + uint8_t best1=9, best2=9, best3=9; + uint16_t maxCnt1=0; + // go through fclens and find which ones are bigest 2 + for (i=0; i<10; i++){ + // PrintAndLog("DEBUG: FC %d, Cnt %d, Errs %d",fcLens[i],fcCnts[i],errCnt); + // get the 3 best FC values + if (fcCnts[i]>maxCnt1) { + best3=best2; + best2=best1; + maxCnt1=fcCnts[i]; + best1=i; + } else if(fcCnts[i]>fcCnts[best2]){ + best3=best2; + best2=i; + } else if(fcCnts[i]>fcCnts[best3]){ + best3=i; + } + } + uint8_t fcH=0, fcL=0; + if (fcLens[best1]>fcLens[best2]){ + fcH=fcLens[best1]; + fcL=fcLens[best2]; + } else{ + fcH=fcLens[best2]; + fcL=fcLens[best1]; + } + + *mostFC=fcLens[best1]; + // TODO: take top 3 answers and compare to known Field clocks to get top 2 + + uint16_t fcs = (((uint16_t)fcH)<<8) | fcL; + // PrintAndLog("DEBUG: Best %d best2 %d best3 %d",fcLens[best1],fcLens[best2],fcLens[best3]); + + return fcs; +} + +//by marshmellow +//countPSK_FC is to detect the psk carrier clock length. +//counts and returns the 1 most common wave length +uint8_t countPSK_FC(uint8_t *BitStream, size_t size) { - uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0}; - uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0}; - uint8_t fcLensFnd = 0; - uint8_t lastFCcnt=0; - uint32_t fcCounter = 0; - size_t i; - - // prime i to first up transition - for (i = 1; i < size-1; i++) - if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]) - break; - - for (; i < size-1; i++){ - if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]){ - // new up transition - fcCounter++; - - //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8) - if (lastFCcnt==5 && fcCounter==9) fcCounter--; - //if odd and not rc/5 add one (for when we get a fc 9 instead of 10) - if ((fcCounter==9 && fcCounter & 1) || fcCounter==4) fcCounter++; - - // save last field clock count (fc/xx) - // find which fcLens to save it to: - for (int ii=0; ii<10; ii++){ - if (fcLens[ii]==fcCounter){ - fcCnts[ii]++; - fcCounter=0; - break; - } - } - if (fcCounter>0 && fcLensFnd<10){ - //add new fc length - fcCnts[fcLensFnd]++; - fcLens[fcLensFnd++]=fcCounter; - } - fcCounter=0; - } else { - // count sample - fcCounter++; - } - } - - uint8_t best1=9, best2=9, best3=9; - uint16_t maxCnt1=0; - // go through fclens and find which ones are bigest 2 - for (i=0; i<10; i++){ - // PrintAndLog("DEBUG: FC %d, Cnt %d, Errs %d",fcLens[i],fcCnts[i],errCnt); - // get the 3 best FC values - if (fcCnts[i]>maxCnt1) { - best3=best2; - best2=best1; - maxCnt1=fcCnts[i]; - best1=i; - } else if(fcCnts[i]>fcCnts[best2]){ - best3=best2; - best2=i; - } else if(fcCnts[i]>fcCnts[best3]){ - best3=i; - } - } - uint8_t fcH=0, fcL=0; - if (fcLens[best1]>fcLens[best2]){ - fcH=fcLens[best1]; - fcL=fcLens[best2]; - } else{ - fcH=fcLens[best2]; - fcL=fcLens[best1]; - } - - // TODO: take top 3 answers and compare to known Field clocks to get top 2 - - uint16_t fcs = (((uint16_t)fcH)<<8) | fcL; - // PrintAndLog("DEBUG: Best %d best2 %d best3 %d",fcLens[best1],fcLens[best2],fcLens[best3]); - - return fcs; + uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0}; + uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0}; + uint8_t fcLensFnd = 0; + uint32_t fcCounter = 0; + size_t i; + if (size == 0) return 0; + + // prime i to first up transition + for (i = 1; i < size-1; i++) + if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]) + break; + + for (; i < size-1; i++){ + if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]){ + // new up transition + fcCounter++; + + // save last field clock count (fc/xx) + // find which fcLens to save it to: + for (int ii=0; ii<10; ii++){ + if (fcLens[ii]==fcCounter){ + fcCnts[ii]++; + fcCounter=0; + break; + } + } + if (fcCounter>0 && fcLensFnd<10){ + //add new fc length + fcCnts[fcLensFnd]++; + fcLens[fcLensFnd++]=fcCounter; + } + fcCounter=0; + } else { + // count sample + fcCounter++; + } + } + + uint8_t best1=9; + uint16_t maxCnt1=0; + // go through fclens and find which ones are bigest + for (i=0; i<10; i++){ + //PrintAndLog("DEBUG: FC %d, Cnt %d",fcLens[i],fcCnts[i]); + // get the best FC value + if (fcCnts[i]>maxCnt1) { + maxCnt1=fcCnts[i]; + best1=i; + } + } + return fcLens[best1]; +} + +//by marshmellow - demodulate PSK1 wave +//uses wave lengths (# Samples) +int pskRawDemod(uint8_t dest[], size_t *size, int *clock, int *invert) +{ + uint16_t loopCnt = 4096; //don't need to loop through entire array... + if (size == 0) return -1; + if (*size= dest[i+2]){ + waveEnd = i+1; + //PrintAndLog("DEBUG: waveEnd: %d",waveEnd); + waveLenCnt = waveEnd-waveStart; + if (waveLenCnt > fc && waveStart > fc){ //not first peak and is a large wave + lastAvgWaveVal = avgWaveVal/(waveLenCnt); + firstFullWave = waveStart; + fullWaveLen=waveLenCnt; + //if average wave value is > graph 0 then it is an up wave or a 1 + if (lastAvgWaveVal > 123) curPhase^=1; //fudge graph 0 a little 123 vs 128 + break; + } + waveStart = i+1; + avgWaveVal = 0; + } + avgWaveVal+=dest[i+2]; + } + //PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen); + lastClkBit = firstFullWave; //set start of wave as clock align + //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d", *clock, lastClkBit); + waveStart = 0; + errCnt=0; + size_t numBits=0; + //set skipped bits + memset(dest,curPhase^1,firstFullWave / *clock); + numBits += (firstFullWave / *clock); + dest[numBits++] = curPhase; //set first read bit + for (i = firstFullWave+fullWaveLen-1; i < *size-3; i++){ + //top edge of wave = start of new wave + if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){ + if (waveStart == 0) { + waveStart = i+1; + waveLenCnt=0; + avgWaveVal = dest[i+1]; + } else { //waveEnd + waveEnd = i+1; + waveLenCnt = waveEnd-waveStart; + lastAvgWaveVal = avgWaveVal/waveLenCnt; + if (waveLenCnt > fc){ + //PrintAndLog("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal); + //if this wave is a phase shift + //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc); + if (i+1 >= lastClkBit + *clock - tol){ //should be a clock bit + curPhase^=1; + dest[numBits++] = curPhase; + lastClkBit += *clock; + } else if (i lastClkBit + *clock + tol + fc){ + lastClkBit += *clock; //no phase shift but clock bit + dest[numBits++] = curPhase; + } + avgWaveVal=0; + waveStart=i+1; + } + } + avgWaveVal+=dest[i+1]; + } + *size = numBits; + return errCnt; }