X-Git-Url: http://cvs.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/06b58a94f0be3256853a97387fc7e5782ce335c7..8ddfbc34dca5e3780862d97fd7ea91f309bd75a1:/client/ui.c

diff --git a/client/ui.c b/client/ui.c
index 5111e295..cfaec6a5 100644
--- a/client/ui.c
+++ b/client/ui.c
@@ -9,24 +9,11 @@
 // UI utilities
 //-----------------------------------------------------------------------------
 
-#include <stdarg.h>
-#include <stdlib.h>
-#include <stdio.h>
-#include <stdbool.h>
-#include <time.h>
-#include <readline/readline.h>
-#include <pthread.h>
-#include "loclass/cipherutils.h"
 #include "ui.h"
-#include "cmdmain.h"
-#include "cmddata.h"
-//#include <liquid/liquid.h>
-#define M_PI 3.14159265358979323846264338327
-
 double CursorScaleFactor;
 int PlotGridX, PlotGridY, PlotGridXdefault= 64, PlotGridYdefault= 64;
 int offline;
-int flushAfterWrite = 0;  //buzzy
+int flushAfterWrite = 0;
 extern pthread_mutex_t print_lock;
 
 static char *logfilename = "proxmark3.log";
@@ -37,13 +24,13 @@ void PrintAndLog(char *fmt, ...)
 	int saved_point;
 	va_list argptr, argptr2;
 	static FILE *logfile = NULL;
-	static int logging=1;
+	static int logging = 1;
 
 	// lock this section to avoid interlacing prints from different threats
 	pthread_mutex_lock(&print_lock);
   
 	if (logging && !logfile) {
-		logfile=fopen(logfilename, "a");
+		logfile = fopen(logfilename, "a");
 		if (!logfile) {
 			fprintf(stderr, "Can't open logfile, logging disabled!\n");
 			logging=0;
@@ -82,353 +69,42 @@ void PrintAndLog(char *fmt, ...)
 	}
 	va_end(argptr2);
 
-	if (flushAfterWrite == 1)  //buzzy
-	{
+	if (flushAfterWrite == 1) {
 		fflush(NULL);
 	}
 	//release lock
 	pthread_mutex_unlock(&print_lock);  
 }
 
-void SetLogFilename(char *fn)
-{
+void SetLogFilename(char *fn) {
   logfilename = fn;
 }
-
-int manchester_decode( int * data, const size_t len, uint8_t * dataout,  size_t dataoutlen){
-	
-	int bitlength = 0;
-	int i, clock, high, low, startindex;
-	low = startindex = 0;
-	high = 1;
-	uint8_t * bitStream =  (uint8_t* ) malloc(sizeof(uint8_t) * dataoutlen);	
-	memset(bitStream, 0x00, dataoutlen);	
-	
-	/* Detect high and lows */
-	for (i = 0; i < len; i++) {
-		if (data[i] > high)
-			high = data[i];
-		else if (data[i] < low)
-			low = data[i];
-	}
-	
-	/* get clock */
-	clock = GetT55x7Clock( data, len, high );	
-	startindex = DetectFirstTransition(data, len, high);
-  
-	//PrintAndLog(" Clock       : %d", clock);
-
-	if (high != 1)
-		bitlength = ManchesterConvertFrom255(data, len, bitStream, dataoutlen, high, low, clock, startindex);
-	else
-		bitlength= ManchesterConvertFrom1(data, len, bitStream, dataoutlen, clock, startindex);
-
-	memcpy(dataout, bitStream, bitlength);
-	free(bitStream);
-	return bitlength;
-}
-
- int GetT55x7Clock( const int * data, const size_t len, int peak ){ 
  
- 	int i,lastpeak,clock;
-	clock = 0xFFFF;
-	lastpeak = 0;
-	
-	/* Detect peak if we don't have one */
-	if (!peak) {
-		for (i = 0; i < len; ++i) {
-			if (data[i] > peak) {
-				peak = data[i];
-			}
-		}
-	}
-	
-	for (i = 1; i < len; ++i) {
-		/* if this is the beginning of a peak */
-		if ( data[i-1] != data[i] &&  data[i] == peak) {
-		  /* find lowest difference between peaks */
-			if (lastpeak && i - lastpeak < clock)
-				clock = i - lastpeak;
-			lastpeak = i;
-		}
-	}
-	
-	// When detected clock is 31 or 33 then then return 
-	int clockmod = clock%8;
-	if ( clockmod == 0) return clock;
-	
-	if ( clockmod == 7 ) clock += 1;
-	else if ( clockmod == 1 ) clock -= 1;
-	
-	return clock;
- }
- 
- int DetectFirstTransition(const int * data, const size_t len, int threshold){
-
-	int i =0;
-	/* now look for the first threshold */
-	for (; i < len; ++i) {
-		if (data[i] == threshold) {
-			break;
-		}
-	}
-	return i;
- }
-
- int ManchesterConvertFrom255(const int * data, const size_t len, uint8_t * dataout, int dataoutlen, int high, int low, int clock, int startIndex){
-
-	int i, j, z, hithigh, hitlow, bitIndex, startType;
-	i = 0;
-	bitIndex = 0;
-	
-	int isDamp = 0;
-	int damplimit = (int)((high / 2) * 0.3);
-	int dampHi =  (high/2)+damplimit;
-	int dampLow = (high/2)-damplimit;
-	int firstST = 0;
-
-	// i = clock frame of data
-	for (; i < (int)(len/clock); i++)
-	{
-		hithigh = 0;
-		hitlow = 0;
-		startType = -1;
-		z = startIndex + (i*clock);
-		isDamp = 0;
-			
-		/* Find out if we hit both high and low peaks */
-		for (j = 0; j < clock; j++)
-		{		
-			if (data[z+j] == high){
-				hithigh = 1;
-				if ( startType == -1)
-					startType = 1;
-			}
-			
-			if (data[z+j] == low ){
-				hitlow = 1;
-				if ( startType == -1)
-					startType = 0;
-			} 
-		
-			if (hithigh && hitlow)
-			  break;
-		}
-		
-		// No high value found, are we in a dampening field?
-		if ( !hithigh ) {
-			//PrintAndLog(" # Entering damp test at index : %d (%d)", z+j, j);
-			for (j = 0; j < clock; j++) {
-				if ( 
-				     (data[z+j] <= dampHi && data[z+j] >= dampLow)
-				   ){
-				   isDamp++;
-				}
-			}
-		}
-
-		/*  Manchester Switching..
-			0: High -> Low   
-			1: Low -> High  
-		*/
-		if (startType == 0)
-			dataout[bitIndex++] = 1;
-		else if (startType == 1) 
-			dataout[bitIndex++] = 0;
-		else
-			dataout[bitIndex++] = 2;
-			
-		if ( isDamp > clock/2 ) {
-			firstST++;
-		}
-		
-		if ( firstST == 4)
-			break;
-		if ( bitIndex >= dataoutlen-1 )
-			break;
-	}
-	return bitIndex;
- }
- 
- int ManchesterConvertFrom1(const int * data, const size_t len, uint8_t * dataout,int dataoutlen, int clock, int startIndex){
-
-	PrintAndLog(" Path B");
- 
-	int i,j, bitindex, lc, tolerance, warnings;
-	warnings = 0;
-	int upperlimit = len*2/clock+8;
-	i = startIndex;
-	j = 0;
-	tolerance = clock/4;
-	uint8_t decodedArr[len];
-	
-	/* Detect duration between 2 successive transitions */
-	for (bitindex = 1; i < len; i++) {
-	
-		if (data[i-1] != data[i]) {
-			lc = i - startIndex;
-			startIndex = i;
-
-			// Error check: if bitindex becomes too large, we do not
-			// have a Manchester encoded bitstream or the clock is really wrong!
-			if (bitindex > upperlimit ) {
-				PrintAndLog("Error: the clock you gave is probably wrong, aborting.");
-				return 0;
-			}
-			// Then switch depending on lc length:
-			// Tolerance is 1/4 of clock rate (arbitrary)
-			if (abs((lc-clock)/2) < tolerance) {
-				// Short pulse : either "1" or "0"
-				decodedArr[bitindex++] = data[i-1];
-			} else if (abs(lc-clock) < tolerance) {
-				// Long pulse: either "11" or "00"
-				decodedArr[bitindex++] = data[i-1];
-				decodedArr[bitindex++] = data[i-1];
-			} else {
-				++warnings;
-				PrintAndLog("Warning: Manchester decode error for pulse width detection.");
-				if (warnings > 10) {
-					PrintAndLog("Error: too many detection errors, aborting.");
-					return 0; 
-				}
-			}
-		}
-	}
-	
-	/* 
-	* We have a decodedArr of "01" ("1") or "10" ("0")
-	* parse it into final decoded dataout
-    */ 
-    for (i = 0; i < bitindex; i += 2) {
-
-	    if ((decodedArr[i] == 0) && (decodedArr[i+1] == 1)) {
-			dataout[j++] = 1;
-		} else if ((decodedArr[i] == 1) && (decodedArr[i+1] == 0)) {
-			dataout[j++] = 0;
-		} else {
-			i++;
-			warnings++;
-			PrintAndLog("Unsynchronized, resync...");
-			PrintAndLog("(too many of those messages mean the stream is not Manchester encoded)");
-
-			if (warnings > 10) {	
-				PrintAndLog("Error: too many decode errors, aborting.");
-				return 0;
-			}
-		}
-    }
-	
-	PrintAndLog("%s", sprint_hex(dataout, j));
-	return j;
- }
- 
- void ManchesterDiffDecodedString(const uint8_t* bitstream, size_t len, uint8_t invert){
-	/* 
-	* We have a bitstream of "01" ("1") or "10" ("0")
-	* parse it into final decoded bitstream
-    */ 
-	int i, j, warnings; 
-	uint8_t decodedArr[(len/2)+1];
-
-	j = warnings = 0;
-	
-	uint8_t lastbit = 0;
-	
-    for (i = 0; i < len; i += 2) {
-	
-		uint8_t first = bitstream[i];
-		uint8_t second = bitstream[i+1];
-
-		if ( first == second ) {
-			++i;
-			++warnings;
-			if (warnings > 10) {
-				PrintAndLog("Error: too many decode errors, aborting.");
-				return;
-			}
-		} 
-		else if ( lastbit != first ) {
-			decodedArr[j++] = 0 ^ invert;
-		}
-		else {
-			decodedArr[j++] = 1 ^ invert;
-		}
-		lastbit = second;
-    }
-	
-	PrintAndLog("%s", sprint_hex(decodedArr, j));
-}
- 
-void PrintPaddedManchester( uint8_t* bitStream, size_t len, size_t blocksize){
-
-	PrintAndLog(" Manchester decoded  : %d bits", len);
-	  
-	uint8_t mod = len % blocksize;
-	uint8_t div = len / blocksize;
-	int i;
-  
-	// Now output the bitstream to the scrollback by line of 16 bits
-	for (i = 0; i < div*blocksize; i+=blocksize) {
-		PrintAndLog(" %s", sprint_bin(bitStream+i,blocksize) );
-	}
-	
-	if ( mod > 0 )
-		PrintAndLog(" %s", sprint_bin(bitStream+i, mod) );	
-}
-
-/* Sliding DFT
-   Smooths out 
-*/ 
-void iceFsk2(int * data, const size_t len){
-
-	int i, j;
-	int * output =  (int* ) malloc(sizeof(int) * len);	
-	memset(output, 0x00, len);
-
-	// for (i=0; i<len-5; ++i){
-		// for ( j=1; j <=5; ++j) {
-			// output[i] += data[i*j];
-		// }
-		// output[i] /= 5;
-	// }
-	int rest = 127;
-	int tmp =0;
-	for (i=0; i<len; ++i){
-		if ( data[i] < 127)
-			output[i] = 0;
-		else {
-			tmp =  (100 * (data[i]-rest)) / rest;
-			output[i] = (tmp > 60)? 100:0;
-		}
-	}
-	
-	for (j=0; j<len; ++j)
-		data[j] = output[j];
-		
-	free(output);
-}
-
-void iceFsk3(int * data, const size_t len){
+void iceIIR_Butterworth(int *data, const size_t len){
 
 	int i,j;
 	
 	int * output =  (int* ) malloc(sizeof(int) * len);	
+	if ( !output ) return;
+	
+	// clear mem
 	memset(output, 0x00, len);
-	float fc           = 0.1125f;          // center frequency
-	size_t adjustedLen = len;
 	
+	size_t adjustedLen = len;
+	float fc = 0.1125f;          // center frequency
+		
     // create very simple low-pass filter to remove images (2nd-order Butterworth)
     float complex iir_buf[3] = {0,0,0};
     float b[3] = {0.003621681514929,  0.007243363029857, 0.003621681514929};
     float a[3] = {1.000000000000000, -1.822694925196308, 0.837181651256023};
     
-    float sample           = 0;      // input sample read from file
+    float sample           = 0;      // input sample read from array
     float complex x_prime  = 1.0f;   // save sample for estimating frequency
     float complex x;
 		
-	for (i=0; i<adjustedLen; ++i) {
+	for (i = 0; i < adjustedLen; ++i) {
 
-		sample = data[i]+128;
+		sample = data[i];
 		
         // remove DC offset and mix to complex baseband
         x = (sample - 127.5f) * cexpf( _Complex_I * 2 * M_PI * fc * i );
@@ -446,70 +122,36 @@ void iceFsk3(int * data, const size_t len){
         float freq = cargf(x*conjf(x_prime));
         x_prime = x;    // retain this sample for next iteration
 
-		output[i] =(freq > 0)? 10 : -10;
+		output[i] =(freq > 0) ? 127 : -127;
     } 
 
 	// show data
+	//memcpy(data, output, adjustedLen);
 	for (j=0; j<adjustedLen; ++j)
 		data[j] = output[j];
-		
-	CmdLtrim("30");
-	adjustedLen -= 30;
-	
-	// zero crossings.
-	for (j=0; j<adjustedLen; ++j){
-		if ( data[j] == 10) break;
-	}
-	int startOne =j;
-	
-	for (;j<adjustedLen; ++j){
-		if ( data[j] == -10 ) break;
-	}
-	int stopOne = j-1;
-	
-	int fieldlen = stopOne-startOne;
-	
-	fieldlen = (fieldlen == 39 || fieldlen == 41)? 40 : fieldlen;
-	fieldlen = (fieldlen == 59 || fieldlen == 51)? 50 : fieldlen;
-	if ( fieldlen != 40 && fieldlen != 50){
-		printf("Detected field Length: %d \n", fieldlen);
-		printf("Can only handle 40 or 50.  Aborting...\n");
-		return;
-	}
-	
-	// FSK sequence start == 000111
-	int startPos = 0;
-	for (i =0; i<adjustedLen; ++i){
-		int dec = 0;
-		for ( j = 0; j < 6*fieldlen; ++j){
-			dec += data[i + j];
-		}
-		if (dec == 0) {
-			startPos = i;
-			break;
-		}
-	}
 	
-	printf("000111 position: %d \n", startPos);
+	free(output);
+}
 
-	startPos += 6*fieldlen+5;
-	
-	int bit =0;
-	printf("BINARY\n");
-	printf("R/40 :  ");
-	for (i =startPos ; i < adjustedLen; i += 40){
-		bit = data[i]>0 ? 1:0;
-		printf("%d", bit );
+void iceSimple_Filter(int *data, const size_t len, uint8_t k){
+// ref: http://www.edn.com/design/systems-design/4320010/A-simple-software-lowpass-filter-suits-embedded-system-applications
+// parameter K
+#define FILTER_SHIFT 4 
+
+	int32_t filter_reg = 0;
+	int16_t input, output;
+	int8_t shift = (k <=8 ) ? k : FILTER_SHIFT;
+
+	for (int i = 0; i < len; ++i){
+
+		input = data[i];
+		// Update filter with current sample
+		filter_reg = filter_reg - (filter_reg >> shift) + input;
+
+		// Scale output for unity gain
+		output = filter_reg >> shift;
+		data[i] = output;
 	}
-	printf("\n");	
-	
-	printf("R/50 :  ");
-	for (i =startPos ; i < adjustedLen; i += 50){
-		bit = data[i]>0 ? 1:0;
-		printf("%d", bit );	}
-	printf("\n");	
-	
-	free(output);
 }
 
 float complex cexpf (float complex Z)