X-Git-Url: http://cvs.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/06da1c3f4b29a30dd9c9b344b4b289f716d72f6e..4a6bc37e70240643fce872d406c83f566c6291c5:/common/lfdemod.c diff --git a/common/lfdemod.c b/common/lfdemod.c index c56301c0..6beef130 100644 --- a/common/lfdemod.c +++ b/common/lfdemod.c @@ -33,6 +33,7 @@ //----------------------------------------------------------------------------- #include // for memset, memcmp and size_t +#include "lfdemod.h" #include // for uint_32+ #include // for bool #include "parity.h" // for parity test @@ -277,6 +278,33 @@ bool loadWaveCounters(uint8_t samples[], size_t size, int lowToLowWaveLen[], int return true; } +size_t pskFindFirstPhaseShift(uint8_t samples[], size_t size, uint8_t *curPhase, size_t waveStart, uint16_t fc, uint16_t *fullWaveLen) { + uint16_t loopCnt = (size+3 < 4096) ? size : 4096; //don't need to loop through entire array... + + uint16_t avgWaveVal=0, lastAvgWaveVal=0; + size_t i = waveStart, waveEnd, waveLenCnt, firstFullWave; + for (; i= samples[i+2]){ + waveEnd = i+1; + if (g_debugMode == 2) prnt("DEBUG PSK: waveEnd: %u, waveStart: %u", waveEnd, waveStart); + waveLenCnt = waveEnd-waveStart; + if (waveLenCnt > fc && waveStart > fc && !(waveLenCnt > fc+8)){ //not first peak and is a large wave but not out of whack + lastAvgWaveVal = avgWaveVal/(waveLenCnt); + firstFullWave = waveStart; + *fullWaveLen = waveLenCnt; + //if average wave value is > graph 0 then it is an up wave or a 1 (could cause inverting) + if (lastAvgWaveVal > FSK_PSK_THRESHOLD) *curPhase ^= 1; + return firstFullWave; + } + waveStart = i+1; + avgWaveVal = 0; + } + avgWaveVal += samples[i+2]; + } + return 0; +} + //by marshmellow //amplify based on ask edge detection - not accurate enough to use all the time void askAmp(uint8_t *BitStream, size_t size) { @@ -520,7 +548,7 @@ int DetectNRZClock(uint8_t dest[], size_t size, int clock, size_t *clockStartIdx //get high and low peak int peak, low; - if (getHiLo(dest, loopCnt, &peak, &low, 75, 75) < 1) return 0; + if (getHiLo(dest, loopCnt, &peak, &low, 90, 90) < 1) return 0; int lowestTransition = DetectStrongNRZClk(dest, size-20, peak, low); size_t ii; @@ -529,26 +557,24 @@ int DetectNRZClock(uint8_t dest[], size_t size, int clock, size_t *clockStartIdx uint16_t smplCnt = 0; int16_t peakcnt = 0; int16_t peaksdet[] = {0,0,0,0,0,0,0,0}; - uint16_t maxPeak = 255; - bool firstpeak = false; - //test for large clipped waves - for (i=0; i= peak || dest[i] <= low){ - if (!firstpeak) continue; + uint16_t minPeak = 255; + bool firstpeak = true; + //test for large clipped waves - ignore first peak + for (i=0; i= peak || dest[i] <= low) { + if (firstpeak) continue; smplCnt++; } else { - firstpeak=true; - if (smplCnt > 6 ){ - if (maxPeak > smplCnt){ - maxPeak = smplCnt; - //prnt("maxPk: %d",maxPeak); - } + firstpeak = false; + if (smplCnt > 0) { + if (minPeak > smplCnt && smplCnt > 7) minPeak = smplCnt; peakcnt++; - //prnt("maxPk: %d, smplCnt: %d, peakcnt: %d",maxPeak,smplCnt,peakcnt); - smplCnt=0; + if (g_debugMode == 2) prnt("DEBUG NRZ: minPeak: %d, smplCnt: %d, peakcnt: %d",minPeak,smplCnt,peakcnt); + smplCnt = 0; } } } + if (minPeak < 8) return 0; bool errBitHigh = 0; bool bitHigh = 0; uint8_t ignoreCnt = 0; @@ -558,12 +584,12 @@ int DetectNRZClock(uint8_t dest[], size_t size, int clock, size_t *clockStartIdx size_t bestStart[]={0,0,0,0,0,0,0,0,0}; peakcnt=0; //test each valid clock from smallest to greatest to see which lines up - for(clkCnt=0; clkCnt < 8; ++clkCnt){ + for(clkCnt=0; clkCnt < 8; ++clkCnt) { //ignore clocks smaller than smallest peak - if (clk[clkCnt] < maxPeak - (clk[clkCnt]/4)) continue; + if (clk[clkCnt] < minPeak - (clk[clkCnt]/4)) continue; //try lining up the peaks by moving starting point (try first 256) - for (ii=20; ii < loopCnt; ++ii){ - if ((dest[ii] >= peak) || (dest[ii] <= low)){ + for (ii=20; ii < loopCnt; ++ii) { + if ((dest[ii] >= peak) || (dest[ii] <= low)) { peakcnt = 0; bitHigh = false; ignoreCnt = 0; @@ -587,8 +613,8 @@ int DetectNRZClock(uint8_t dest[], size_t size, int clock, size_t *clockStartIdx lastBit += clk[clkCnt]; } //else if not a clock bit and no peaks - } else if (dest[i] < peak && dest[i] > low){ - if (ignoreCnt==0){ + } else if (dest[i] < peak && dest[i] > low) { + if (ignoreCnt==0) { bitHigh=false; if (errBitHigh==true) peakcnt--; errBitHigh=false; @@ -610,15 +636,15 @@ int DetectNRZClock(uint8_t dest[], size_t size, int clock, size_t *clockStartIdx } int iii=7; uint8_t best=0; - for (iii=7; iii > 0; iii--){ + for (iii=7; iii > 0; iii--) { if ((peaksdet[iii] >= (peaksdet[best]-1)) && (peaksdet[iii] <= peaksdet[best]+1) && lowestTransition) { if (clk[iii] > (lowestTransition - (clk[iii]/8)) && clk[iii] < (lowestTransition + (clk[iii]/8))) { best = iii; } - } else if (peaksdet[iii] > peaksdet[best]){ + } else if (peaksdet[iii] > peaksdet[best]) { best = iii; } - if (g_debugMode==2) prnt("DEBUG NRZ: Clk: %d, peaks: %d, maxPeak: %d, bestClk: %d, lowestTrs: %d",clk[iii],peaksdet[iii],maxPeak, clk[best], lowestTransition); + if (g_debugMode==2) prnt("DEBUG NRZ: Clk: %d, peaks: %d, minPeak: %d, bestClk: %d, lowestTrs: %d",clk[iii],peaksdet[iii],minPeak, clk[best], lowestTransition); } *clockStartIdx = bestStart[best]; return clk[best]; @@ -691,6 +717,7 @@ uint16_t countFC(uint8_t *BitStream, size_t size, uint8_t fskAdj) { best3=i; } if (g_debugMode==2) prnt("DEBUG countfc: FC %u, Cnt %u, best fc: %u, best2 fc: %u",fcLens[i],fcCnts[i],fcLens[best1],fcLens[best2]); + if (fcLens[i]==0) break; } if (fcLens[best1]==0) return 0; uint8_t fcH=0, fcL=0; @@ -708,18 +735,24 @@ uint16_t countFC(uint8_t *BitStream, size_t size, uint8_t fskAdj) { // TODO: take top 3 answers and compare to known Field clocks to get top 2 uint16_t fcs = (((uint16_t)fcH)<<8) | fcL; - if (fskAdj) return fcs; - return fcLens[best1]; + if (fskAdj) return fcs; + return (uint16_t)fcLens[best2] << 8 | fcLens[best1]; } //by marshmellow //detect psk clock by reading each phase shift // a phase shift is determined by measuring the sample length of each wave -int DetectPSKClock_ext(uint8_t dest[], size_t size, int clock, int *firstPhaseShift) { +int DetectPSKClock(uint8_t dest[], size_t size, int clock, size_t *firstPhaseShift, uint8_t *curPhase, uint8_t *fc) { uint8_t clk[]={255,16,32,40,50,64,100,128,255}; //255 is not a valid clock uint16_t loopCnt = 4096; //don't need to loop through entire array... if (size == 0) return 0; - if (size>8); + if ((fcs>>8) == 10 && *fc == 8) return -1; + if (*fc!=2 && *fc!=4 && *fc!=8) return -1; //if we already have a valid clock quit size_t i=1; @@ -727,37 +760,28 @@ int DetectPSKClock_ext(uint8_t dest[], size_t size, int clock, int *firstPhaseSh if (clk[i] == clock) return clock; size_t waveStart=0, waveEnd=0, firstFullWave=0, lastClkBit=0; - uint8_t clkCnt, fc=0, fullWaveLen=0, tol=1; - uint16_t peakcnt=0, errCnt=0, waveLenCnt=0; + + uint8_t clkCnt, tol=1; + uint16_t peakcnt=0, errCnt=0, waveLenCnt=0, fullWaveLen=0; uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000}; uint16_t peaksdet[]={0,0,0,0,0,0,0,0,0}; - fc = countFC(dest, size, 0); - if (fc!=2 && fc!=4 && fc!=8) return -1; - if (g_debugMode==2) prnt("DEBUG PSK: FC: %d",fc); - //find first full wave - for (i=160; i= dest[i+2]){ - if (waveStart == 0) { - waveStart = i+1; - //prnt("DEBUG: waveStart: %d",waveStart); - } else { - waveEnd = i+1; - //prnt("DEBUG: waveEnd: %d",waveEnd); - waveLenCnt = waveEnd-waveStart; - if (waveLenCnt > fc){ - firstFullWave = waveStart; - fullWaveLen=waveLenCnt; - break; - } - waveStart=0; - } - } + //find start of modulating data in trace + i = findModStart(dest, size, *fc); + + firstFullWave = pskFindFirstPhaseShift(dest, size, curPhase, i, *fc, &fullWaveLen); + if (firstFullWave == 0) { + // no phase shift detected - could be all 1's or 0's - doesn't matter where we start + // so skip a little to ensure we are past any Start Signal + firstFullWave = 160; + fullWaveLen = 0; } + *firstPhaseShift = firstFullWave; if (g_debugMode ==2) prnt("DEBUG PSK: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen); //test each valid clock from greatest to smallest to see which lines up - for(clkCnt=7; clkCnt >= 1 ; clkCnt--){ + for(clkCnt=7; clkCnt >= 1 ; clkCnt--) { + tol = *fc/2; lastClkBit = firstFullWave; //set end of wave as clock align waveStart = 0; errCnt=0; @@ -773,9 +797,9 @@ int DetectPSKClock_ext(uint8_t dest[], size_t size, int clock, int *firstPhaseSh } else { //waveEnd waveEnd = i+1; waveLenCnt = waveEnd-waveStart; - if (waveLenCnt > fc){ + if (waveLenCnt > *fc){ //if this wave is a phase shift - if (g_debugMode == 2) prnt("DEBUG PSK: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,i+1,fc); + if (g_debugMode == 2) prnt("DEBUG PSK: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,i+1,*fc); if (i+1 >= lastClkBit + clk[clkCnt] - tol){ //should be a clock bit peakcnt++; lastClkBit+=clk[clkCnt]; @@ -784,7 +808,7 @@ int DetectPSKClock_ext(uint8_t dest[], size_t size, int clock, int *firstPhaseSh } else { //phase shift before supposed to based on clock errCnt++; } - } else if (i+1 > lastClkBit + clk[clkCnt] + tol + fc){ + } else if (i+1 > lastClkBit + clk[clkCnt] + tol + *fc){ lastClkBit+=clk[clkCnt]; //no phase shift but clock bit } waveStart=i+1; @@ -809,10 +833,11 @@ int DetectPSKClock_ext(uint8_t dest[], size_t size, int clock, int *firstPhaseSh return clk[best]; } -int DetectPSKClock(uint8_t dest[], size_t size, int clock) { - int firstPhaseShift = 0; - return DetectPSKClock_ext(dest, size, clock, &firstPhaseShift); -} +//int DetectPSKClock(uint8_t dest[], size_t size, int clock) { +// size_t firstPhaseShift = 0; +// uint8_t curPhase = 0; +// return DetectPSKClock_ext(dest, size, clock, &firstPhaseShift, &curPhase); +//} //by marshmellow //detects the bit clock for FSK given the high and low Field Clocks @@ -933,6 +958,8 @@ uint8_t detectFSKClk(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fc // look for Sequence Terminator - should be pulses of clk*(1 or 2), clk*2, clk*(1.5 or 2), by idx we mean graph position index... bool findST(int *stStopLoc, int *stStartIdx, int lowToLowWaveLen[], int highToLowWaveLen[], int clk, int tol, int buffSize, size_t *i) { + if (buffSize < *i+4) return false; + for (; *i < buffSize - 4; *i+=1) { *stStartIdx += lowToLowWaveLen[*i]; //caution part of this wave may be data and part may be ST.... to be accounted for in main function for now... if (lowToLowWaveLen[*i] >= clk*1-tol && lowToLowWaveLen[*i] <= (clk*2)+tol && highToLowWaveLen[*i] < clk+tol) { //1 to 2 clocks depending on 2 bits prior @@ -955,7 +982,7 @@ bool DetectST_ext(uint8_t buffer[], size_t *size, int *foundclock, size_t *ststa //need to loop through all samples and identify our clock, look for the ST pattern int clk = 0; int tol = 0; - int j, high, low, skip, start, end, minClk=255; + int j=0, high, low, skip=0, start=0, end=0, minClk=255; size_t i = 0; //probably should malloc... || test if memory is available ... handle device side? memory danger!!! [marshmellow] int tmpbuff[bufsize / LOWEST_DEFAULT_CLOCK]; // low to low wave count //guess rf/32 clock, if click is smaller we will only have room for a fraction of the samples captured @@ -1023,9 +1050,9 @@ bool DetectST_ext(uint8_t buffer[], size_t *size, int *foundclock, size_t *ststa return false; } size_t dataloc = start; - if (buffer[dataloc-(clk*4)-(clk/8)] <= low && buffer[dataloc] <= low && buffer[dataloc-(clk*4)] >= high) { + if (buffer[dataloc-(clk*4)-(clk/4)] <= low && buffer[dataloc] <= low && buffer[dataloc-(clk*4)] >= high) { //we have low drift (and a low just before the ST and a low just after the ST) - compensate by backing up the start - for ( i=0; i <= (clk/8); ++i ) { + for ( i=0; i <= (clk/4); ++i ) { if ( buffer[dataloc - (clk*4) - i] <= low ) { dataloc -= i; break; @@ -1040,14 +1067,15 @@ bool DetectST_ext(uint8_t buffer[], size_t *size, int *foundclock, size_t *ststa // warning - overwriting buffer given with raw wave data with ST removed... while ( dataloc < bufsize-(clk/2) ) { //compensate for long high at end of ST not being high due to signal loss... (and we cut out the start of wave high part) - if (buffer[dataloc]low && buffer[dataloc+3]low) { + if (buffer[dataloc]low && buffer[dataloc+clk/4]low) { for(i=0; i < clk/2-tol; ++i) { buffer[dataloc+i] = high+5; } - } //test for single sample outlier (high between two lows) in the case of very strong waves - if (buffer[dataloc] >= high && buffer[dataloc+2] <= low) { - buffer[dataloc] = buffer[dataloc+2]; - buffer[dataloc+1] = buffer[dataloc+2]; + } //test for small spike outlier (high between two lows) in the case of very strong waves + if (buffer[dataloc] > low && buffer[dataloc+clk/4] <= low) { + for(i=0; i < clk/4; ++i) { + buffer[dataloc+i] = buffer[dataloc+clk/4]; + } } if (firstrun) { *stend = dataloc; @@ -1521,60 +1549,34 @@ void psk2TOpsk1(uint8_t *BitStream, size_t size) { return; } -size_t pskFindFirstPhaseShift(uint8_t samples[], size_t size, uint8_t *curPhase, size_t waveStart, uint16_t fc, uint16_t *fullWaveLen) { - uint16_t loopCnt = (size+3 < 4096) ? size : 4096; //don't need to loop through entire array... - - uint16_t avgWaveVal=0, lastAvgWaveVal=0; - size_t i = waveStart, waveEnd, waveLenCnt, firstFullWave; - for (; i= samples[i+2]){ - waveEnd = i+1; - if (g_debugMode == 2) prnt("DEBUG PSK: waveEnd: %u, waveStart: %u", waveEnd, waveStart); - waveLenCnt = waveEnd-waveStart; - if (waveLenCnt > fc && waveStart > fc && !(waveLenCnt > fc+8)){ //not first peak and is a large wave but not out of whack - lastAvgWaveVal = avgWaveVal/(waveLenCnt); - firstFullWave = waveStart; - *fullWaveLen = waveLenCnt; - //if average wave value is > graph 0 then it is an up wave or a 1 (could cause inverting) - if (lastAvgWaveVal > FSK_PSK_THRESHOLD) *curPhase ^= 1; - return firstFullWave; - } - waveStart = i+1; - avgWaveVal = 0; - } - avgWaveVal += samples[i+2]; - } - return 0; -} - //by marshmellow - demodulate PSK1 wave //uses wave lengths (# Samples) int pskRawDemod_ext(uint8_t dest[], size_t *size, int *clock, int *invert, int *startIdx) { if (*size < 170) return -1; uint8_t curPhase = *invert; + uint8_t fc=0; size_t i=0, numBits=0, waveStart=1, waveEnd=0, firstFullWave=0, lastClkBit=0; - uint16_t fc=0, fullWaveLen=0, waveLenCnt=0, avgWaveVal, tol=1; + uint16_t fullWaveLen=0, waveLenCnt=0, avgWaveVal; uint16_t errCnt=0, errCnt2=0; - fc = countFC(dest, *size, 1); - if ((fc >> 8) == 10) return -1; //fsk found - quit - fc = fc & 0xFF; - if (fc!=2 && fc!=4 && fc!=8) return -1; - *clock = DetectPSKClock(dest, *size, *clock); + *clock = DetectPSKClock(dest, *size, *clock, &firstFullWave, &curPhase, &fc); if (*clock == 0) return -1; - - //find start of modulating data in trace - i = findModStart(dest, *size, fc); - - //find first phase shift - firstFullWave = pskFindFirstPhaseShift(dest, *size, &curPhase, i, fc, &fullWaveLen); + //if clock detect found firstfullwave... + uint16_t tol = fc/2; if (firstFullWave == 0) { - // no phase shift detected - could be all 1's or 0's - doesn't matter where we start - // so skip a little to ensure we are past any Start Signal - firstFullWave = 160; - memset(dest, curPhase, firstFullWave / *clock); + //find start of modulating data in trace + i = findModStart(dest, *size, fc); + //find first phase shift + firstFullWave = pskFindFirstPhaseShift(dest, *size, &curPhase, i, fc, &fullWaveLen); + if (firstFullWave == 0) { + // no phase shift detected - could be all 1's or 0's - doesn't matter where we start + // so skip a little to ensure we are past any Start Signal + firstFullWave = 160; + memset(dest, curPhase, firstFullWave / *clock); + } else { + memset(dest, curPhase^1, firstFullWave / *clock); + } } else { memset(dest, curPhase^1, firstFullWave / *clock); } @@ -1587,9 +1589,9 @@ int pskRawDemod_ext(uint8_t dest[], size_t *size, int *clock, int *invert, int * if (g_debugMode==2) prnt("DEBUG PSK: clk: %d, lastClkBit: %u, fc: %u", *clock, lastClkBit,(unsigned int) fc); waveStart = 0; dest[numBits++] = curPhase; //set first read bit - for (i = firstFullWave + fullWaveLen - 1; i < *size-3; i++){ + for (i = firstFullWave + fullWaveLen - 1; i < *size-3; i++) { //top edge of wave = start of new wave - if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){ + if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]) { if (waveStart == 0) { waveStart = i+1; waveLenCnt = 0; @@ -1597,25 +1599,27 @@ int pskRawDemod_ext(uint8_t dest[], size_t *size, int *clock, int *invert, int * } else { //waveEnd waveEnd = i+1; waveLenCnt = waveEnd-waveStart; - if (waveLenCnt > fc){ + if (waveLenCnt > fc) { //this wave is a phase shift //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc); - if (i+1 >= lastClkBit + *clock - tol){ //should be a clock bit + if (i+1 >= lastClkBit + *clock - tol) { //should be a clock bit curPhase ^= 1; dest[numBits++] = curPhase; lastClkBit += *clock; - } else if (i < lastClkBit+10+fc){ + } else if (i < lastClkBit+10+fc) { //noise after a phase shift - ignore } else { //phase shift before supposed to based on clock errCnt++; dest[numBits++] = 7; } - } else if (i+1 > lastClkBit + *clock + tol + fc){ + } else if (i+1 > lastClkBit + *clock + tol + fc) { lastClkBit += *clock; //no phase shift but clock bit dest[numBits++] = curPhase; } else if (waveLenCnt < fc - 1) { //wave is smaller than field clock (shouldn't happen often) errCnt2++; if(errCnt2 > 101) return errCnt2; + avgWaveVal += dest[i+1]; + continue; } avgWaveVal = 0; waveStart = i+1; @@ -1800,7 +1804,7 @@ int indala26decode(uint8_t *bitStream, size_t *size, uint8_t *invert) { } if (*size != 64 && *size != 224) return -2; if (*invert==1) - for (size_t i = startidx; i < *size; i++) + for (size_t i = startidx; i < *size + startidx; i++) bitStream[i] ^= 1; return (int) startidx;