X-Git-Url: http://cvs.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/09c66f1f09776989fda2d1005a2c9feb1db6b3ac..70b2fc0abdb9efe03c3eb29c8b9d661ba4c3c90e:/fpga/hi_read_rx_xcorr.v diff --git a/fpga/hi_read_rx_xcorr.v b/fpga/hi_read_rx_xcorr.v index 06142637..8233960f 100644 --- a/fpga/hi_read_rx_xcorr.v +++ b/fpga/hi_read_rx_xcorr.v @@ -25,53 +25,18 @@ module hi_read_rx_xcorr( // Carrier is steady on through this, unless we're snooping. assign pwr_hi = ck_1356megb & (~snoop); assign pwr_oe1 = 1'b0; -assign pwr_oe2 = 1'b0; assign pwr_oe3 = 1'b0; assign pwr_oe4 = 1'b0; +// Unused. +assign pwr_lo = 1'b0; +assign pwr_oe2 = 1'b0; -reg ssp_clk; -reg ssp_frame; - -reg fc_div_2; -always @(posedge ck_1356meg) - fc_div_2 = ~fc_div_2; - -reg fc_div_4; -always @(posedge fc_div_2) - fc_div_4 = ~fc_div_4; - -reg fc_div_8; -always @(posedge fc_div_4) - fc_div_8 = ~fc_div_8; - -reg adc_clk; - -always @(xcorr_is_848 or xcorr_quarter_freq or ck_1356meg) - if(~xcorr_quarter_freq) - begin - if(xcorr_is_848) - // The subcarrier frequency is fc/16; we will sample at fc, so that - // means the subcarrier is 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 ... - adc_clk <= ck_1356meg; - else - // The subcarrier frequency is fc/32; we will sample at fc/2, and - // the subcarrier will look identical. - adc_clk <= fc_div_2; - end - else - begin - if(xcorr_is_848) - // The subcarrier frequency is fc/64 - adc_clk <= fc_div_4; - else - // The subcarrier frequency is fc/128 - adc_clk <= fc_div_8; - end +assign adc_clk = ck_1356megb; // sample frequency is 13,56 MHz // When we're a reader, we just need to do the BPSK demod; but when we're an // eavesdropper, we also need to pick out the commands sent by the reader, // using AM. Do this the same way that we do it for the simulated tag. -reg after_hysteresis, after_hysteresis_prev; +reg after_hysteresis, after_hysteresis_prev, after_hysteresis_prev_prev; reg [11:0] has_been_low_for; always @(negedge adc_clk) begin @@ -94,63 +59,124 @@ begin end end -// Let us report a correlation every 4 subcarrier cycles, or 4*16 samples, -// so we need a 6-bit counter. + +// Let us report a correlation every 64 samples. I.e. +// one Q/I pair after 4 subcarrier cycles for the 848kHz subcarrier, +// one Q/I pair after 2 subcarrier cycles for the 424kHz subcarriers, +// one Q/I pair for each subcarrier cyle for the 212kHz subcarrier. +// We need a 6-bit counter for the timing. reg [5:0] corr_i_cnt; -reg [5:0] corr_q_cnt; -// And a couple of registers in which to accumulate the correlations. -// we would add at most 32 times adc_d, the result can be held in 13 bits. -// Need one additional bit because it can be negative as well +always @(negedge adc_clk) +begin + corr_i_cnt <= corr_i_cnt + 1; +end + +// And a couple of registers in which to accumulate the correlations. From the 64 samples +// we would add at most 32 times the difference between unmodulated and modulated signal. It should +// be safe to assume that a tag will not be able to modulate the carrier signal by more than 25%. +// 32 * 255 * 0,25 = 2040, which can be held in 11 bits. Add 1 bit for sign. +// Temporary we might need more bits. For the 212kHz subcarrier we could possible add 32 times the +// maximum signal value before a first subtraction would occur. 32 * 255 = 8160 can be held in 13 bits. +// Add one bit for sign -> need 14 bit registers but final result will fit into 12 bits. reg signed [13:0] corr_i_accum; reg signed [13:0] corr_q_accum; +// we will report maximum 8 significant bits reg signed [7:0] corr_i_out; reg signed [7:0] corr_q_out; +// clock and frame signal for communication to ARM +reg ssp_clk; +reg ssp_frame; + +// The subcarrier reference signals +reg subcarrier_I; +reg subcarrier_Q; + +always @(corr_i_cnt or xcorr_is_848 or xcorr_quarter_freq) +begin + if (xcorr_is_848 & ~xcorr_quarter_freq) // 848 kHz + begin + subcarrier_I = ~corr_i_cnt[3]; + subcarrier_Q = ~(corr_i_cnt[3] ^ corr_i_cnt[2]); + end + else if (xcorr_is_848 & xcorr_quarter_freq) // 212 kHz + begin + subcarrier_I = ~corr_i_cnt[5]; + subcarrier_Q = ~(corr_i_cnt[5] ^ corr_i_cnt[4]); + end + else + begin // 424 kHz + subcarrier_I = ~corr_i_cnt[4]; + subcarrier_Q = ~(corr_i_cnt[4] ^ corr_i_cnt[3]); + end +end + // ADC data appears on the rising edge, so sample it on the falling edge always @(negedge adc_clk) begin // These are the correlators: we correlate against in-phase and quadrature // versions of our reference signal, and keep the (signed) result to // send out later over the SSP. - if(corr_i_cnt == 7'd63) + if(corr_i_cnt == 6'd0) begin if(snoop) begin - // highest 7 significant bits of tag signal (signed), 1 bit reader signal: - corr_i_out <= {corr_i_accum[13:7], after_hysteresis_prev}; - corr_q_out <= {corr_q_accum[13:7], after_hysteresis}; + // Send 7 most significant bits of tag signal (signed), plus 1 bit reader signal + if (corr_i_accum[13:11] == 3'b000 || corr_i_accum[13:11] == 3'b111) + corr_i_out <= {corr_i_accum[11:5], after_hysteresis_prev_prev}; + else // truncate to maximum value + if (corr_i_accum[13] == 1'b0) + corr_i_out <= {7'b0111111, after_hysteresis_prev_prev}; + else + corr_i_out <= {7'b1000000, after_hysteresis_prev_prev}; + if (corr_q_accum[13:11] == 3'b000 || corr_q_accum[13:11] == 3'b111) + corr_q_out <= {corr_q_accum[11:5], after_hysteresis_prev}; + else // truncate to maximum value + if (corr_q_accum[13] == 1'b0) + corr_q_out <= {7'b0111111, after_hysteresis_prev}; + else + corr_q_out <= {7'b1000000, after_hysteresis_prev}; + after_hysteresis_prev_prev <= after_hysteresis; end else begin - // highest 8 significant bits of tag signal - corr_i_out <= corr_i_accum[13:6]; - corr_q_out <= corr_q_accum[13:6]; + // Send 8 bits of tag signal + if (corr_i_accum[13:11] == 3'b000 || corr_i_accum[13:11] == 3'b111) + corr_i_out <= corr_i_accum[11:4]; + else // truncate to maximum value + if (corr_i_accum[13] == 1'b0) + corr_i_out <= 8'b01111111; + else + corr_i_out <= 8'b10000000; + if (corr_q_accum[13:11] == 3'b000 || corr_q_accum[13:11] == 3'b111) + corr_q_out <= corr_q_accum[11:4]; + else // truncate to maximum value + if (corr_q_accum[13] == 1'b0) + corr_q_out <= 8'b01111111; + else + corr_q_out <= 8'b10000000; end - - corr_i_accum <= adc_d; - corr_q_accum <= adc_d; - corr_q_cnt <= 4; - corr_i_cnt <= 0; + // Initialize next correlation. + // Both I and Q reference signals are high when corr_i_nct == 0. Therefore need to accumulate. + corr_i_accum <= $signed({1'b0,adc_d}); + corr_q_accum <= $signed({1'b0,adc_d}); end else begin - if(corr_i_cnt[3]) - corr_i_accum <= corr_i_accum - adc_d; + if (subcarrier_I) + corr_i_accum <= corr_i_accum + $signed({1'b0,adc_d}); else - corr_i_accum <= corr_i_accum + adc_d; + corr_i_accum <= corr_i_accum - $signed({1'b0,adc_d}); - if(corr_q_cnt[3]) - corr_q_accum <= corr_q_accum - adc_d; + if (subcarrier_Q) + corr_q_accum <= corr_q_accum + $signed({1'b0,adc_d}); else - corr_q_accum <= corr_q_accum + adc_d; + corr_q_accum <= corr_q_accum - $signed({1'b0,adc_d}); - corr_i_cnt <= corr_i_cnt + 1; - corr_q_cnt <= corr_q_cnt + 1; end - // The logic in hi_simulate.v reports 4 samples per bit. We report two - // (I, Q) pairs per bit, so we should do 2 samples per pair. - if(corr_i_cnt == 6'd31) + // for each Q/I pair report two reader signal samples when sniffing + if(corr_i_cnt == 6'd32) after_hysteresis_prev <= after_hysteresis; // Then the result from last time is serialized and send out to the ARM. @@ -164,16 +190,16 @@ begin begin ssp_clk <= 1'b1; // Don't shift if we just loaded new data, obviously. - if(corr_i_cnt != 7'd0) + if(corr_i_cnt != 6'd0) begin corr_i_out[7:0] <= {corr_i_out[6:0], corr_q_out[7]}; corr_q_out[7:1] <= corr_q_out[6:0]; end end - // set ssp_frame signal for corr_i_cnt = 0..3 and corr_i_cnt = 32..35 - // (two frames with 8 Bits each) - if(corr_i_cnt[5:2] == 4'b0000 || corr_i_cnt[5:2] == 4'b1000) + // set ssp_frame signal for corr_i_cnt = 0..3 + // (send one frame with 16 Bits) + if(corr_i_cnt[5:2] == 4'b0000) ssp_frame = 1'b1; else ssp_frame = 1'b0; @@ -184,7 +210,4 @@ assign ssp_din = corr_i_out[7]; assign dbg = corr_i_cnt[3]; -// Unused. -assign pwr_lo = 1'b0; - endmodule