X-Git-Url: http://cvs.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/13a79da4e974239d72bb0b132c02c67fb2600ad8..d1e197e9ec44affdf3ad9ef0ea6a221d0c30aa6d:/armsrc/lfops.c

diff --git a/armsrc/lfops.c b/armsrc/lfops.c
index a6216eec..bbd848ce 100644
--- a/armsrc/lfops.c
+++ b/armsrc/lfops.c
@@ -1,971 +1,1730 @@
-//-----------------------------------------------------------------------------
-// Miscellaneous routines for low frequency tag operations.
-// Tags supported here so far are Texas Instruments (TI), HID
-// Also routines for raw mode reading/simulating of LF waveform
-//
-//-----------------------------------------------------------------------------
-#include <proxmark3.h>
-#include "apps.h"
-#include "hitag2.h"
-#include "../common/crc16.c"
-
-void AcquireRawAdcSamples125k(BOOL at134khz)
-{
-	if (at134khz)
-		FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
-	else
-		FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-
-	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
-
-	// Connect the A/D to the peak-detected low-frequency path.
-	SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
-
-	// Give it a bit of time for the resonant antenna to settle.
-	SpinDelay(50);
-
-	// Now set up the SSC to get the ADC samples that are now streaming at us.
-	FpgaSetupSsc();
-
-	// Now call the acquisition routine
-	DoAcquisition125k();
-}
-
-// split into two routines so we can avoid timing issues after sending commands //
-void DoAcquisition125k(void)
-{
-	BYTE *dest = (BYTE *)BigBuf;
-	int n = sizeof(BigBuf);
-	int i;
-	
-	memset(dest, 0, n);
-	i = 0;
-	for(;;) {
-		if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
-			AT91C_BASE_SSC->SSC_THR = 0x43;
-			LED_D_ON();
-		}
-		if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
-			dest[i] = (BYTE)AT91C_BASE_SSC->SSC_RHR;
-			i++;
-			LED_D_OFF();
-			if (i >= n) break;
-		}
-	}
-	Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
-			dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]);
-}
-
-void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, BYTE *command)
-{
-	BOOL at134khz;
-
-	/* Make sure the tag is reset */
-	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
-	SpinDelay(2500);
-	
-	// see if 'h' was specified
-	if (command[strlen((char *) command) - 1] == 'h')
-		at134khz = TRUE;
-	else
-		at134khz = FALSE;
-
-	if (at134khz)
-		FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
-	else
-		FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-
-	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
-
-	// Give it a bit of time for the resonant antenna to settle.
-	SpinDelay(50);
-	// And a little more time for the tag to fully power up
-	SpinDelay(2000);
-
-	// Now set up the SSC to get the ADC samples that are now streaming at us.
-	FpgaSetupSsc();
-
-	// now modulate the reader field
-	while(*command != '\0' && *command != ' ') {
-		FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
-		LED_D_OFF();
-		SpinDelayUs(delay_off);
-		if (at134khz)
-			FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
-		else
-			FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-
-		FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
-		LED_D_ON();
-		if(*(command++) == '0')
-			SpinDelayUs(period_0);
-		else
-			SpinDelayUs(period_1);
-	}
-	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
-	LED_D_OFF();
-	SpinDelayUs(delay_off);
-	if (at134khz)
-		FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
-	else
-		FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-
-	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
-
-	// now do the read
-	DoAcquisition125k();
-}
-
-/* blank r/w tag data stream
-...0000000000000000 01111111
-1010101010101010101010101010101010101010101010101010101010101010
-0011010010100001
-01111111
-101010101010101[0]000...
-
-[5555fe852c5555555555555555fe0000]
-*/
-void ReadTItag(void)
-{
-	// some hardcoded initial params
-	// when we read a TI tag we sample the zerocross line at 2Mhz
-	// TI tags modulate a 1 as 16 cycles of 123.2Khz
-	// TI tags modulate a 0 as 16 cycles of 134.2Khz
-	#define FSAMPLE 2000000
-	#define FREQLO 123200
-	#define FREQHI 134200
-
-	signed char *dest = (signed char *)BigBuf;
-	int n = sizeof(BigBuf);
-//	int *dest = GraphBuffer;
-//	int n = GraphTraceLen;
-
-	// 128 bit shift register [shift3:shift2:shift1:shift0]
-	DWORD shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
-
-	int i, cycles=0, samples=0;
-	// how many sample points fit in 16 cycles of each frequency
-	DWORD sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
-	// when to tell if we're close enough to one freq or another
-	DWORD threshold = (sampleslo - sampleshi + 1)>>1;
-
-	// TI tags charge at 134.2Khz
-	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
-
-	// Place FPGA in passthrough mode, in this mode the CROSS_LO line
-	// connects to SSP_DIN and the SSP_DOUT logic level controls
-	// whether we're modulating the antenna (high)
-	// or listening to the antenna (low)
-	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
-
-	// get TI tag data into the buffer
-	AcquireTiType();
-
-	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
-
-	for (i=0; i<n-1; i++) {
-		// count cycles by looking for lo to hi zero crossings
-		if ( (dest[i]<0) && (dest[i+1]>0) ) {
-			cycles++;
-			// after 16 cycles, measure the frequency
-			if (cycles>15) {
-				cycles=0;
-				samples=i-samples; // number of samples in these 16 cycles
-
-				// TI bits are coming to us lsb first so shift them
-				// right through our 128 bit right shift register
-			  shift0 = (shift0>>1) | (shift1 << 31);
-			  shift1 = (shift1>>1) | (shift2 << 31);
-			  shift2 = (shift2>>1) | (shift3 << 31);
-			  shift3 >>= 1;
-
-				// check if the cycles fall close to the number
-				// expected for either the low or high frequency
-				if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
-					// low frequency represents a 1
-					shift3 |= (1<<31);
-				} else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
-					// high frequency represents a 0
-				} else {
-					// probably detected a gay waveform or noise
-					// use this as gaydar or discard shift register and start again
-					shift3 = shift2 = shift1 = shift0 = 0;
-				}
-				samples = i;
-
-				// for each bit we receive, test if we've detected a valid tag
-
-				// if we see 17 zeroes followed by 6 ones, we might have a tag
-				// remember the bits are backwards
-				if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
-					// if start and end bytes match, we have a tag so break out of the loop
-					if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
-						cycles = 0xF0B; //use this as a flag (ugly but whatever)
-						break;
-					}
-				}
-			}
-		}
-	}
-
-	// if flag is set we have a tag
-	if (cycles!=0xF0B) {
-		DbpString("Info: No valid tag detected.");
-	} else {
-	  // put 64 bit data into shift1 and shift0
-	  shift0 = (shift0>>24) | (shift1 << 8);
-	  shift1 = (shift1>>24) | (shift2 << 8);
-
-		// align 16 bit crc into lower half of shift2
-	  shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
-
-		// if r/w tag, check ident match
-		if ( shift3&(1<<15) ) {
-			DbpString("Info: TI tag is rewriteable");
-			// only 15 bits compare, last bit of ident is not valid
-			if ( ((shift3>>16)^shift0)&0x7fff ) {
-				DbpString("Error: Ident mismatch!");
-			} else {
-				DbpString("Info: TI tag ident is valid");
-			}
-		} else {
-			DbpString("Info: TI tag is readonly");
-		}
-
-		// WARNING the order of the bytes in which we calc crc below needs checking
-		// i'm 99% sure the crc algorithm is correct, but it may need to eat the
-		// bytes in reverse or something
-		// calculate CRC
-		DWORD crc=0;
-
-	 	crc = update_crc16(crc, (shift0)&0xff);
-		crc = update_crc16(crc, (shift0>>8)&0xff);
-		crc = update_crc16(crc, (shift0>>16)&0xff);
-		crc = update_crc16(crc, (shift0>>24)&0xff);
-		crc = update_crc16(crc, (shift1)&0xff);
-		crc = update_crc16(crc, (shift1>>8)&0xff);
-		crc = update_crc16(crc, (shift1>>16)&0xff);
-		crc = update_crc16(crc, (shift1>>24)&0xff);
-
-		Dbprintf("Info: Tag data: %x%08x, crc=%x",
-			(unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
-		if (crc != (shift2&0xffff)) {
-			Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
-		} else {
-			DbpString("Info: CRC is good");
-		}
-	}
-}
-
-void WriteTIbyte(BYTE b)
-{
-	int i = 0;
-
-	// modulate 8 bits out to the antenna
-	for (i=0; i<8; i++)
-	{
-		if (b&(1<<i)) {
-			// stop modulating antenna
-			LOW(GPIO_SSC_DOUT);
-			SpinDelayUs(1000);
-			// modulate antenna
-			HIGH(GPIO_SSC_DOUT);
-			SpinDelayUs(1000);
-		} else {
-			// stop modulating antenna
-			LOW(GPIO_SSC_DOUT);
-			SpinDelayUs(300);
-			// modulate antenna
-			HIGH(GPIO_SSC_DOUT);
-			SpinDelayUs(1700);
-		}
-	}
-}
-
-void AcquireTiType(void)
-{
-	int i, j, n;
-	// tag transmission is <20ms, sampling at 2M gives us 40K samples max
-	// each sample is 1 bit stuffed into a DWORD so we need 1250 DWORDS
-	#define TIBUFLEN 1250
-
-	// clear buffer
-	memset(BigBuf,0,sizeof(BigBuf));
-
-	// Set up the synchronous serial port
-	AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
-	AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
-
-	// steal this pin from the SSP and use it to control the modulation
-	AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
-	AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
-
-	AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
-	AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
-
-	// Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
-	// 48/2 = 24 MHz clock must be divided by 12
-	AT91C_BASE_SSC->SSC_CMR = 12;
-
-	AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
-	AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
-	AT91C_BASE_SSC->SSC_TCMR = 0;
-	AT91C_BASE_SSC->SSC_TFMR = 0;
-
-	LED_D_ON();
-
-	// modulate antenna
-	HIGH(GPIO_SSC_DOUT);
-
-	// Charge TI tag for 50ms.
-	SpinDelay(50);
-
-	// stop modulating antenna and listen
-	LOW(GPIO_SSC_DOUT);
-
-	LED_D_OFF();
-
-	i = 0;
-	for(;;) {
-		if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
-			BigBuf[i] = AT91C_BASE_SSC->SSC_RHR;	// store 32 bit values in buffer
-			i++; if(i >= TIBUFLEN) break;
-		}
-		WDT_HIT();
-	}
-
-	// return stolen pin to SSP
-	AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
-	AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
-
-	char *dest = (char *)BigBuf;
-	n = TIBUFLEN*32;
-	// unpack buffer
-	for (i=TIBUFLEN-1; i>=0; i--) {
-		for (j=0; j<32; j++) {
-			if(BigBuf[i] & (1 << j)) {
-				dest[--n] = 1;
-			} else {
-				dest[--n] = -1;
-			}
-		}
-	}
-}
-
-// arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
-// if crc provided, it will be written with the data verbatim (even if bogus)
-// if not provided a valid crc will be computed from the data and written.
-void WriteTItag(DWORD idhi, DWORD idlo, WORD crc)
-{
-	if(crc == 0) {
-	 	crc = update_crc16(crc, (idlo)&0xff);
-		crc = update_crc16(crc, (idlo>>8)&0xff);
-		crc = update_crc16(crc, (idlo>>16)&0xff);
-		crc = update_crc16(crc, (idlo>>24)&0xff);
-		crc = update_crc16(crc, (idhi)&0xff);
-		crc = update_crc16(crc, (idhi>>8)&0xff);
-		crc = update_crc16(crc, (idhi>>16)&0xff);
-		crc = update_crc16(crc, (idhi>>24)&0xff);
-	}
-	Dbprintf("Writing to tag: %x%08x, crc=%x",
-		(unsigned int) idhi, (unsigned int) idlo, crc);
-
-	// TI tags charge at 134.2Khz
-	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
-	// Place FPGA in passthrough mode, in this mode the CROSS_LO line
-	// connects to SSP_DIN and the SSP_DOUT logic level controls
-	// whether we're modulating the antenna (high)
-	// or listening to the antenna (low)
-	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
-	LED_A_ON();
-
-	// steal this pin from the SSP and use it to control the modulation
-	AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
-	AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
-
-	// writing algorithm:
-	// a high bit consists of a field off for 1ms and field on for 1ms
-	// a low bit consists of a field off for 0.3ms and field on for 1.7ms
-	// initiate a charge time of 50ms (field on) then immediately start writing bits
-	// start by writing 0xBB (keyword) and 0xEB (password)
-	// then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
-	// finally end with 0x0300 (write frame)
-	// all data is sent lsb firts
-	// finish with 15ms programming time
-
-	// modulate antenna
-	HIGH(GPIO_SSC_DOUT);
-	SpinDelay(50);	// charge time
-
-	WriteTIbyte(0xbb); // keyword
-	WriteTIbyte(0xeb); // password
-	WriteTIbyte( (idlo    )&0xff );
-	WriteTIbyte( (idlo>>8 )&0xff );
-	WriteTIbyte( (idlo>>16)&0xff );
-	WriteTIbyte( (idlo>>24)&0xff );
-	WriteTIbyte( (idhi    )&0xff );
-	WriteTIbyte( (idhi>>8 )&0xff );
-	WriteTIbyte( (idhi>>16)&0xff );
-	WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
-	WriteTIbyte( (crc     )&0xff ); // crc lo
-	WriteTIbyte( (crc>>8  )&0xff ); // crc hi
-	WriteTIbyte(0x00); // write frame lo
-	WriteTIbyte(0x03); // write frame hi
-	HIGH(GPIO_SSC_DOUT);
-	SpinDelay(50);	// programming time
-
-	LED_A_OFF();
-
-	// get TI tag data into the buffer
-	AcquireTiType();
-
-	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
-	DbpString("Now use tiread to check");
-}
-
-void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
-{
-	int i;
-	BYTE *tab = (BYTE *)BigBuf;
-
-	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR);
-
-	AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
-
-	AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
-	AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
-
-#define SHORT_COIL()	LOW(GPIO_SSC_DOUT)
-#define OPEN_COIL()		HIGH(GPIO_SSC_DOUT)
-
-	i = 0;
-	for(;;) {
-		while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
-			if(BUTTON_PRESS()) {
-				DbpString("Stopped");
-				return;
-			}
-			WDT_HIT();
-		}
-
-		if (ledcontrol)
-			LED_D_ON();
-
-		if(tab[i])
-			OPEN_COIL();
-		else
-			SHORT_COIL();
-
-		if (ledcontrol)
-			LED_D_OFF();
-
-		while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
-			if(BUTTON_PRESS()) {
-				DbpString("Stopped");
-				return;
-			}
-			WDT_HIT();
-		}
-
-		i++;
-		if(i == period) {
-			i = 0;
-			if (gap) { 
-				SHORT_COIL();
-				SpinDelayUs(gap);
-			}
-		}
-	}
-}
-
-/* Provides a framework for bidirectional LF tag communication
- * Encoding is currently Hitag2, but the general idea can probably
- * be transferred to other encodings.
- * 
- * The new FPGA code will, for the LF simulator mode, give on SSC_FRAME
- * (PA15) a thresholded version of the signal from the ADC. Setting the
- * ADC path to the low frequency peak detection signal, will enable a
- * somewhat reasonable receiver for modulation on the carrier signal
- * that is generated by the reader. The signal is low when the reader
- * field is switched off, and high when the reader field is active. Due
- * to the way that the signal looks like, mostly only the rising edge is
- * useful, your mileage may vary.
- * 
- * Neat perk: PA15 can not only be used as a bit-banging GPIO, but is also
- * TIOA1, which can be used as the capture input for timer 1. This should
- * make it possible to measure the exact edge-to-edge time, without processor
- * intervention.
- * 
- * Arguments: divisor is the divisor to be sent to the FPGA (e.g. 95 for 125kHz)
- * t0 is the carrier frequency cycle duration in terms of MCK (384 for 125kHz)
- * 
- * The following defines are in carrier periods: 
- */
-#define HITAG_T_0_MIN 15 /* T[0] should be 18..22 */ 
-#define HITAG_T_1_MIN 24 /* T[1] should be 26..30 */
-#define HITAG_T_EOF   40 /* T_EOF should be > 36 */
-#define HITAG_T_WRESP 208 /* T_wresp should be 204..212 */
-
-static void hitag_handle_frame(int t0, int frame_len, char *frame);
-//#define DEBUG_RA_VALUES 1
-#define DEBUG_FRAME_CONTENTS 1
-void SimulateTagLowFrequencyBidir(int divisor, int t0)
-{
-#if DEBUG_RA_VALUES || DEBUG_FRAME_CONTENTS
-	int i = 0;
-#endif
-	char frame[10];
-	int frame_pos=0;
-	
-	DbpString("Starting Hitag2 emulator, press button to end");
-	hitag2_init();
-	
-	/* Set up simulator mode, frequency divisor which will drive the FPGA
-	 * and analog mux selection.
-	 */
-	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR);
-	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor);
-	SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
-	RELAY_OFF();
-	
-	/* Set up Timer 1:
-	 * Capture mode, timer source MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
-	 * external trigger rising edge, load RA on rising edge of TIOA, load RB on rising
-	 * edge of TIOA. Assign PA15 to TIOA1 (peripheral B)
-	 */
-	
-	AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
-	AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME;
-	AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
-	AT91C_BASE_TC1->TC_CMR =	TC_CMR_TCCLKS_TIMER_CLOCK1 |
-								AT91C_TC_ETRGEDG_RISING |
-								AT91C_TC_ABETRG |
-								AT91C_TC_LDRA_RISING |
-								AT91C_TC_LDRB_RISING;
-	AT91C_BASE_TC1->TC_CCR =	AT91C_TC_CLKEN |
-								AT91C_TC_SWTRG;
-	
-	/* calculate the new value for the carrier period in terms of TC1 values */
-	t0 = t0/2;
-	
-	int overflow = 0;
-	while(!BUTTON_PRESS()) {
-		WDT_HIT();
-		if(AT91C_BASE_TC1->TC_SR & AT91C_TC_LDRAS) {
-			int ra = AT91C_BASE_TC1->TC_RA;
-			if((ra > t0*HITAG_T_EOF) | overflow) ra = t0*HITAG_T_EOF+1;
-#if DEBUG_RA_VALUES
-			if(ra > 255 || overflow) ra = 255;
-			((char*)BigBuf)[i] = ra;
-			i = (i+1) % 8000;
-#endif
-			
-			if(overflow || (ra > t0*HITAG_T_EOF) || (ra < t0*HITAG_T_0_MIN)) {
-				/* Ignore */
-			} else if(ra >= t0*HITAG_T_1_MIN ) {
-				/* '1' bit */
-				if(frame_pos < 8*sizeof(frame)) {
-					frame[frame_pos / 8] |= 1<<( 7-(frame_pos%8) );
-					frame_pos++;
-				}
-			} else if(ra >= t0*HITAG_T_0_MIN) {
-				/* '0' bit */
-				if(frame_pos < 8*sizeof(frame)) {
-					frame[frame_pos / 8] |= 0<<( 7-(frame_pos%8) );
-					frame_pos++;
-				}
-			}
-			
-			overflow = 0;
-			LED_D_ON();
-		} else {
-			if(AT91C_BASE_TC1->TC_CV > t0*HITAG_T_EOF) {
-				/* Minor nuisance: In Capture mode, the timer can not be
-				 * stopped by a Compare C. There's no way to stop the clock
-				 * in software, so we'll just have to note the fact that an
-				 * overflow happened and the next loaded timer value might
-				 * have wrapped. Also, this marks the end of frame, and the
-				 * still running counter can be used to determine the correct
-				 * time for the start of the reply.
-				 */ 
-				overflow = 1;
-				
-				if(frame_pos > 0) {
-					/* Have a frame, do something with it */
-#if DEBUG_FRAME_CONTENTS
-					((char*)BigBuf)[i++] = frame_pos;
-					memcpy( ((char*)BigBuf)+i, frame, 7);
-					i+=7;
-					i = i % sizeof(BigBuf);
-#endif
-					hitag_handle_frame(t0, frame_pos, frame);
-					memset(frame, 0, sizeof(frame));
-				}
-				frame_pos = 0;
-
-			}
-			LED_D_OFF();
-		}
-	}
-	DbpString("All done");
-}
-
-static void hitag_send_bit(int t0, int bit) {
-	if(bit == 1) {
-		/* Manchester: Loaded, then unloaded */
-		LED_A_ON();
-		SHORT_COIL();
-		while(AT91C_BASE_TC1->TC_CV < t0*15);
-		OPEN_COIL();
-		while(AT91C_BASE_TC1->TC_CV < t0*31);
-		LED_A_OFF();
-	} else if(bit == 0) {
-		/* Manchester: Unloaded, then loaded */
-		LED_B_ON();
-		OPEN_COIL();
-		while(AT91C_BASE_TC1->TC_CV < t0*15);
-		SHORT_COIL();
-		while(AT91C_BASE_TC1->TC_CV < t0*31);
-		LED_B_OFF();
-	}
-	AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG; /* Reset clock for the next bit */
-	
-}
-static void hitag_send_frame(int t0, int frame_len, const char const * frame, int fdt)
-{
-	OPEN_COIL();
-	AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
-	
-	/* Wait for HITAG_T_WRESP carrier periods after the last reader bit,
-	 * not that since the clock counts since the rising edge, but T_wresp is
-	 * with respect to the falling edge, we need to wait actually (T_wresp - T_g)
-	 * periods. The gap time T_g varies (4..10).
-	 */
-	while(AT91C_BASE_TC1->TC_CV < t0*(fdt-8));
-
-	int saved_cmr = AT91C_BASE_TC1->TC_CMR;
-	AT91C_BASE_TC1->TC_CMR &= ~AT91C_TC_ETRGEDG; /* Disable external trigger for the clock */
-	AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG; /* Reset the clock and use it for response timing */
-	
-	int i;
-	for(i=0; i<5; i++)
-		hitag_send_bit(t0, 1); /* Start of frame */
-	
-	for(i=0; i<frame_len; i++) {
-		hitag_send_bit(t0, !!(frame[i/ 8] & (1<<( 7-(i%8) ))) );
-	}
-	
-	OPEN_COIL();
-	AT91C_BASE_TC1->TC_CMR = saved_cmr;
-}
-
-/* Callback structure to cleanly separate tag emulation code from the radio layer. */
-static int hitag_cb(const char* response_data, const int response_length, const int fdt, void *cb_cookie)
-{
-	hitag_send_frame(*(int*)cb_cookie, response_length, response_data, fdt);
-	return 0;
-}
-/* Frame length in bits, frame contents in MSBit first format */
-static void hitag_handle_frame(int t0, int frame_len, char *frame)
-{
-	hitag2_handle_command(frame, frame_len, hitag_cb, &t0);
-}
-
-// compose fc/8 fc/10 waveform
-static void fc(int c, int *n) {
-	BYTE *dest = (BYTE *)BigBuf;
-	int idx;
-
-	// for when we want an fc8 pattern every 4 logical bits
-	if(c==0) {
-		dest[((*n)++)]=1;
-		dest[((*n)++)]=1;
-		dest[((*n)++)]=0;
-		dest[((*n)++)]=0;
-		dest[((*n)++)]=0;
-		dest[((*n)++)]=0;
-		dest[((*n)++)]=0;
-		dest[((*n)++)]=0;
-	}
-	//	an fc/8  encoded bit is a bit pattern of  11000000  x6 = 48 samples
-	if(c==8) {
-		for (idx=0; idx<6; idx++) {
-			dest[((*n)++)]=1;
-			dest[((*n)++)]=1;
-			dest[((*n)++)]=0;
-			dest[((*n)++)]=0;
-			dest[((*n)++)]=0;
-			dest[((*n)++)]=0;
-			dest[((*n)++)]=0;
-			dest[((*n)++)]=0;
-		}
-	}
-
-	//	an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
-	if(c==10) {
-		for (idx=0; idx<5; idx++) {
-			dest[((*n)++)]=1;
-			dest[((*n)++)]=1;
-			dest[((*n)++)]=1;
-			dest[((*n)++)]=0;
-			dest[((*n)++)]=0;
-			dest[((*n)++)]=0;
-			dest[((*n)++)]=0;
-			dest[((*n)++)]=0;
-			dest[((*n)++)]=0;
-			dest[((*n)++)]=0;
-		}
-	}
-}
-
-// prepare a waveform pattern in the buffer based on the ID given then
-// simulate a HID tag until the button is pressed
-void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
-{
-	int n=0, i=0;
-	/*
-	 HID tag bitstream format
-	 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
-	 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
-	 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
-	 A fc8 is inserted before every 4 bits
-	 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
-	 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
-	*/
-
-	if (hi>0xFFF) {
-		DbpString("Tags can only have 44 bits.");
-		return;
-	}
-	fc(0,&n);
-	// special start of frame marker containing invalid bit sequences
-	fc(8,  &n);	fc(8,  &n);	// invalid
-	fc(8,  &n);	fc(10, &n); // logical 0
-	fc(10, &n);	fc(10, &n); // invalid
-	fc(8,  &n);	fc(10, &n); // logical 0
-
-	WDT_HIT();
-	// manchester encode bits 43 to 32
-	for (i=11; i>=0; i--) {
-		if ((i%4)==3) fc(0,&n);
-		if ((hi>>i)&1) {
-			fc(10, &n);	fc(8,  &n);		// low-high transition
-		} else {
-			fc(8,  &n);	fc(10, &n);		// high-low transition
-		}
-	}
-
-	WDT_HIT();
-	// manchester encode bits 31 to 0
-	for (i=31; i>=0; i--) {
-		if ((i%4)==3) fc(0,&n);
-		if ((lo>>i)&1) {
-			fc(10, &n);	fc(8,  &n);		// low-high transition
-		} else {
-			fc(8,  &n);	fc(10, &n);		// high-low transition
-		}
-	}
-
-	if (ledcontrol)
-		LED_A_ON();
-	SimulateTagLowFrequency(n, 0, ledcontrol);
-
-	if (ledcontrol)
-		LED_A_OFF();
-}
-
-
-// loop to capture raw HID waveform then FSK demodulate the TAG ID from it
-void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
-{
-	BYTE *dest = (BYTE *)BigBuf;
-	int m=0, n=0, i=0, idx=0, found=0, lastval=0;
-	DWORD hi=0, lo=0;
-
-	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
-
-	// Connect the A/D to the peak-detected low-frequency path.
-	SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
-
-	// Give it a bit of time for the resonant antenna to settle.
-	SpinDelay(50);
-
-	// Now set up the SSC to get the ADC samples that are now streaming at us.
-	FpgaSetupSsc();
-
-	for(;;) {
-		WDT_HIT();
-		if (ledcontrol)
-			LED_A_ON();
-		if(BUTTON_PRESS()) {
-			DbpString("Stopped");
-			if (ledcontrol)
-				LED_A_OFF();
-			return;
-		}
-
-		i = 0;
-		m = sizeof(BigBuf);
-		memset(dest,128,m);
-		for(;;) {
-			if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
-				AT91C_BASE_SSC->SSC_THR = 0x43;
-				if (ledcontrol)
-					LED_D_ON();
-			}
-			if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
-				dest[i] = (BYTE)AT91C_BASE_SSC->SSC_RHR;
-				// we don't care about actual value, only if it's more or less than a
-				// threshold essentially we capture zero crossings for later analysis
-				if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
-				i++;
-				if (ledcontrol)
-					LED_D_OFF();
-				if(i >= m) {
-					break;
-				}
-			}
-		}
-
-		// FSK demodulator
-
-		// sync to first lo-hi transition
-		for( idx=1; idx<m; idx++) {
-			if (dest[idx-1]<dest[idx])
-				lastval=idx;
-				break;
-		}
-		WDT_HIT();
-
-		// count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
-		// or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
-		// between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
-		for( i=0; idx<m; idx++) {
-			if (dest[idx-1]<dest[idx]) {
-				dest[i]=idx-lastval;
-				if (dest[i] <= 8) {
-						dest[i]=1;
-				} else {
-						dest[i]=0;
-				}
-
-				lastval=idx;
-				i++;
-			}
-		}
-		m=i;
-		WDT_HIT();
-
-		// we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
-		lastval=dest[0];
-		idx=0;
-		i=0;
-		n=0;
-		for( idx=0; idx<m; idx++) {
-			if (dest[idx]==lastval) {
-				n++;
-			} else {
-				// a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents,
-				// an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets
-				// swallowed up by rounding
-				// expected results are 1 or 2 bits, any more and it's an invalid manchester encoding
-				// special start of frame markers use invalid manchester states (no transitions) by using sequences
-				// like 111000
-				if (dest[idx-1]) {
-					n=(n+1)/6;			// fc/8 in sets of 6
-				} else {
-					n=(n+1)/5;			// fc/10 in sets of 5
-				}
-				switch (n) {			// stuff appropriate bits in buffer
-					case 0:
-					case 1:	// one bit
-						dest[i++]=dest[idx-1];
-						break;
-					case 2: // two bits
-						dest[i++]=dest[idx-1];
-						dest[i++]=dest[idx-1];
-						break;
-					case 3: // 3 bit start of frame markers
-						dest[i++]=dest[idx-1];
-						dest[i++]=dest[idx-1];
-						dest[i++]=dest[idx-1];
-						break;
-					// When a logic 0 is immediately followed by the start of the next transmisson
-					// (special pattern) a pattern of 4 bit duration lengths is created.
-					case 4:
-						dest[i++]=dest[idx-1];
-						dest[i++]=dest[idx-1];
-						dest[i++]=dest[idx-1];
-						dest[i++]=dest[idx-1];
-						break;
-					default:	// this shouldn't happen, don't stuff any bits
-						break;
-				}
-				n=0;
-				lastval=dest[idx];
-			}
-		}
-		m=i;
-		WDT_HIT();
-
-		// final loop, go over previously decoded manchester data and decode into usable tag ID
-		// 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
-		for( idx=0; idx<m-6; idx++) {
-			// search for a start of frame marker
-			if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )
-			{
-				found=1;
-				idx+=6;
-				if (found && (hi|lo)) {
-					Dbprintf("TAG ID: %x%08x (%d)",
-						(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
-					/* if we're only looking for one tag */
-					if (findone)
-					{
-						*high = hi;
-						*low = lo;
-						return;
-					}
-					hi=0;
-					lo=0;
-					found=0;
-				}
-			}
-			if (found) {
-				if (dest[idx] && (!dest[idx+1]) ) {
-					hi=(hi<<1)|(lo>>31);
-					lo=(lo<<1)|0;
-				} else if ( (!dest[idx]) && dest[idx+1]) {
-					hi=(hi<<1)|(lo>>31);
-					lo=(lo<<1)|1;
-				} else {
-					found=0;
-					hi=0;
-					lo=0;
-				}
-				idx++;
-			}
-			if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )
-			{
-				found=1;
-				idx+=6;
-				if (found && (hi|lo)) {
-					Dbprintf("TAG ID: %x%08x (%d)",
-						(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
-					/* if we're only looking for one tag */
-					if (findone)
-					{
-						*high = hi;
-						*low = lo;
-						return;
-					}
-					hi=0;
-					lo=0;
-					found=0;
-				}
-			}
-		}
-		WDT_HIT();
-	}
-}
+//-----------------------------------------------------------------------------
+// This code is licensed to you under the terms of the GNU GPL, version 2 or,
+// at your option, any later version. See the LICENSE.txt file for the text of
+// the license.
+//-----------------------------------------------------------------------------
+// Miscellaneous routines for low frequency tag operations.
+// Tags supported here so far are Texas Instruments (TI), HID
+// Also routines for raw mode reading/simulating of LF waveform
+//-----------------------------------------------------------------------------
+
+#include "proxmark3.h"
+#include "apps.h"
+#include "util.h"
+#include "hitag2.h"
+#include "crc16.h"
+#include "string.h"
+#include "lfdemod.h"
+#include "lfsampling.h"
+#include "protocols.h"
+#include "usb_cdc.h" // for usb_poll_validate_length
+
+#ifndef SHORT_COIL
+# define SHORT_COIL()	LOW(GPIO_SSC_DOUT)
+#endif
+#ifndef OPEN_COIL
+# define OPEN_COIL()	HIGH(GPIO_SSC_DOUT)
+#endif
+
+/**
+ * Function to do a modulation and then get samples.
+ * @param delay_off
+ * @param periods  0xFFFF0000 is period_0,  0x0000FFFF is period_1
+ * @param useHighFreg
+ * @param command
+ */
+void ModThenAcquireRawAdcSamples125k(uint32_t delay_off, uint32_t periods, uint32_t useHighFreq, uint8_t *command)
+{
+	/* Make sure the tag is reset */
+	FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+	SpinDelay(200);
+
+	uint16_t period_0 =  periods >> 16;
+	uint16_t period_1 =  periods & 0xFFFF;
+	
+	// 95 == 125 KHz  88 == 124.8 KHz
+	int divisor_used = (useHighFreq) ? 88 : 95;
+	sample_config sc = { 0,0,1, divisor_used, 0};
+	setSamplingConfig(&sc);
+
+	//clear read buffer
+	BigBuf_Clear_keep_EM();
+
+	LFSetupFPGAForADC(sc.divisor, 1);
+
+	// And a little more time for the tag to fully power up
+	SpinDelay(50);
+
+	// now modulate the reader field
+	while(*command != '\0' && *command != ' ') {
+		FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+		LED_D_OFF();
+		WaitUS(delay_off);
+		FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
+
+		FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+		LED_D_ON();
+		if(*(command++) == '0')
+			WaitUS(period_0);
+		else
+			WaitUS(period_1);
+	}
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+	LED_D_OFF();
+	WaitUS(delay_off);
+	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+
+	// now do the read
+	DoAcquisition_config(false);
+}
+
+/* blank r/w tag data stream
+...0000000000000000 01111111
+1010101010101010101010101010101010101010101010101010101010101010
+0011010010100001
+01111111
+101010101010101[0]000...
+
+[5555fe852c5555555555555555fe0000]
+*/
+void ReadTItag(void)
+{
+	StartTicks();
+	// some hardcoded initial params
+	// when we read a TI tag we sample the zerocross line at 2Mhz
+	// TI tags modulate a 1 as 16 cycles of 123.2Khz
+	// TI tags modulate a 0 as 16 cycles of 134.2Khz
+	#define FSAMPLE 2000000
+	#define FREQLO 123200
+	#define FREQHI 134200
+
+	signed char *dest = (signed char *)BigBuf_get_addr();
+	uint16_t n = BigBuf_max_traceLen();
+	// 128 bit shift register [shift3:shift2:shift1:shift0]
+	uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
+
+	int i, cycles=0, samples=0;
+	// how many sample points fit in 16 cycles of each frequency
+	uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
+	// when to tell if we're close enough to one freq or another
+	uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
+
+	// TI tags charge at 134.2Khz
+	FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
+
+	// Place FPGA in passthrough mode, in this mode the CROSS_LO line
+	// connects to SSP_DIN and the SSP_DOUT logic level controls
+	// whether we're modulating the antenna (high)
+	// or listening to the antenna (low)
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
+
+	// get TI tag data into the buffer
+	AcquireTiType();
+
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+
+	for (i=0; i<n-1; i++) {
+		// count cycles by looking for lo to hi zero crossings
+		if ( (dest[i]<0) && (dest[i+1]>0) ) {
+			cycles++;
+			// after 16 cycles, measure the frequency
+			if (cycles>15) {
+				cycles=0;
+				samples=i-samples; // number of samples in these 16 cycles
+
+				// TI bits are coming to us lsb first so shift them
+				// right through our 128 bit right shift register
+				shift0 = (shift0>>1) | (shift1 << 31);
+				shift1 = (shift1>>1) | (shift2 << 31);
+				shift2 = (shift2>>1) | (shift3 << 31);
+				shift3 >>= 1;
+
+				// check if the cycles fall close to the number
+				// expected for either the low or high frequency
+				if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
+					// low frequency represents a 1
+					shift3 |= (1<<31);
+				} else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
+					// high frequency represents a 0
+				} else {
+					// probably detected a gay waveform or noise
+					// use this as gaydar or discard shift register and start again
+					shift3 = shift2 = shift1 = shift0 = 0;
+				}
+				samples = i;
+
+				// for each bit we receive, test if we've detected a valid tag
+
+				// if we see 17 zeroes followed by 6 ones, we might have a tag
+				// remember the bits are backwards
+				if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
+					// if start and end bytes match, we have a tag so break out of the loop
+					if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
+						cycles = 0xF0B; //use this as a flag (ugly but whatever)
+						break;
+					}
+				}
+			}
+		}
+	}
+
+	// if flag is set we have a tag
+	if (cycles!=0xF0B) {
+		DbpString("Info: No valid tag detected.");
+	} else {
+		// put 64 bit data into shift1 and shift0
+		shift0 = (shift0>>24) | (shift1 << 8);
+		shift1 = (shift1>>24) | (shift2 << 8);
+
+		// align 16 bit crc into lower half of shift2
+		shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
+
+		// if r/w tag, check ident match
+		if (shift3 & (1<<15) ) {
+			DbpString("Info: TI tag is rewriteable");
+			// only 15 bits compare, last bit of ident is not valid
+			if (((shift3 >> 16) ^ shift0) & 0x7fff ) {
+				DbpString("Error: Ident mismatch!");
+			} else {
+				DbpString("Info: TI tag ident is valid");
+			}
+		} else {
+			DbpString("Info: TI tag is readonly");
+		}
+
+		// WARNING the order of the bytes in which we calc crc below needs checking
+		// i'm 99% sure the crc algorithm is correct, but it may need to eat the
+		// bytes in reverse or something
+		// calculate CRC
+		uint32_t crc=0;
+
+		crc = update_crc16(crc, (shift0)&0xff);
+		crc = update_crc16(crc, (shift0>>8)&0xff);
+		crc = update_crc16(crc, (shift0>>16)&0xff);
+		crc = update_crc16(crc, (shift0>>24)&0xff);
+		crc = update_crc16(crc, (shift1)&0xff);
+		crc = update_crc16(crc, (shift1>>8)&0xff);
+		crc = update_crc16(crc, (shift1>>16)&0xff);
+		crc = update_crc16(crc, (shift1>>24)&0xff);
+
+		Dbprintf("Info: Tag data: %x%08x, crc=%x", (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
+		if (crc != (shift2&0xffff)) {
+			Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
+		} else {
+			DbpString("Info: CRC is good");
+		}
+	}
+	StopTicks();
+}
+
+void WriteTIbyte(uint8_t b)
+{
+	int i = 0;
+
+	// modulate 8 bits out to the antenna
+	for (i=0; i<8; i++)
+	{
+		if ( b & ( 1 << i ) ) {
+			// stop modulating antenna 1ms
+			LOW(GPIO_SSC_DOUT);
+			WaitUS(1000);
+			// modulate antenna 1ms
+			HIGH(GPIO_SSC_DOUT); 
+			WaitUS(1000);
+		} else {
+			// stop modulating antenna 1ms
+			LOW(GPIO_SSC_DOUT);
+			WaitUS(300);
+			// modulate antenna 1m
+			HIGH(GPIO_SSC_DOUT);
+			WaitUS(1700);
+		}
+	}
+}
+
+void AcquireTiType(void)
+{
+	int i, j, n;
+	// tag transmission is <20ms, sampling at 2M gives us 40K samples max
+	// each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
+	#define TIBUFLEN 1250
+
+	// clear buffer
+	uint32_t *buf = (uint32_t *)BigBuf_get_addr();
+
+	//clear buffer now so it does not interfere with timing later
+	BigBuf_Clear_ext(false);
+
+	// Set up the synchronous serial port
+	AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
+	AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
+
+	// steal this pin from the SSP and use it to control the modulation
+	AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
+	AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
+
+	AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
+	AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
+
+	// Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
+	// 48/2 = 24 MHz clock must be divided by 12
+	AT91C_BASE_SSC->SSC_CMR = 12;
+
+	AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
+	AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
+	AT91C_BASE_SSC->SSC_TCMR = 0;
+	AT91C_BASE_SSC->SSC_TFMR = 0;
+	// iceman, FpgaSetupSsc() ?? the code above? can it be replaced?
+	LED_D_ON();
+
+	// modulate antenna
+	HIGH(GPIO_SSC_DOUT);
+
+	// Charge TI tag for 50ms.
+	WaitMS(50);
+
+	// stop modulating antenna and listen
+	LOW(GPIO_SSC_DOUT);
+
+	LED_D_OFF();
+
+	i = 0;
+	for(;;) {
+		if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
+			buf[i] = AT91C_BASE_SSC->SSC_RHR;	// store 32 bit values in buffer
+			i++; if(i >= TIBUFLEN) break;
+		}
+		WDT_HIT();
+	}
+
+	// return stolen pin to SSP
+	AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
+	AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
+
+	char *dest = (char *)BigBuf_get_addr();
+	n = TIBUFLEN * 32;
+	
+	// unpack buffer
+	for (i = TIBUFLEN-1; i >= 0; i--) {
+		for (j = 0; j < 32; j++) {
+			if(buf[i] & (1 << j)) {
+				dest[--n] = 1;
+			} else {
+				dest[--n] = -1;
+			}
+		}
+	}
+}
+
+// arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
+// if crc provided, it will be written with the data verbatim (even if bogus)
+// if not provided a valid crc will be computed from the data and written.
+void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
+{
+	StartTicks();
+	FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+	if(crc == 0) {
+		crc = update_crc16(crc, (idlo)&0xff);
+		crc = update_crc16(crc, (idlo>>8)&0xff);
+		crc = update_crc16(crc, (idlo>>16)&0xff);
+		crc = update_crc16(crc, (idlo>>24)&0xff);
+		crc = update_crc16(crc, (idhi)&0xff);
+		crc = update_crc16(crc, (idhi>>8)&0xff);
+		crc = update_crc16(crc, (idhi>>16)&0xff);
+		crc = update_crc16(crc, (idhi>>24)&0xff);
+	}
+	Dbprintf("Writing to tag: %x%08x, crc=%x",	(unsigned int) idhi, (unsigned int) idlo, crc);
+
+	// TI tags charge at 134.2Khz
+	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
+	// Place FPGA in passthrough mode, in this mode the CROSS_LO line
+	// connects to SSP_DIN and the SSP_DOUT logic level controls
+	// whether we're modulating the antenna (high)
+	// or listening to the antenna (low)
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
+	LED_A_ON();
+
+	// steal this pin from the SSP and use it to control the modulation
+	AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
+	AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
+
+	// writing algorithm:
+	// a high bit consists of a field off for 1ms and field on for 1ms
+	// a low bit consists of a field off for 0.3ms and field on for 1.7ms
+	// initiate a charge time of 50ms (field on) then immediately start writing bits
+	// start by writing 0xBB (keyword) and 0xEB (password)
+	// then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
+	// finally end with 0x0300 (write frame)
+	// all data is sent lsb first
+	// finish with 15ms programming time
+
+	// modulate antenna
+	HIGH(GPIO_SSC_DOUT);
+	WaitMS(50);	// charge time
+
+	WriteTIbyte(0xbb); // keyword
+	WriteTIbyte(0xeb); // password
+	WriteTIbyte( (idlo    )&0xff );
+	WriteTIbyte( (idlo>>8 )&0xff );
+	WriteTIbyte( (idlo>>16)&0xff );
+	WriteTIbyte( (idlo>>24)&0xff );
+	WriteTIbyte( (idhi    )&0xff );
+	WriteTIbyte( (idhi>>8 )&0xff );
+	WriteTIbyte( (idhi>>16)&0xff );
+	WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
+	WriteTIbyte( (crc     )&0xff ); // crc lo
+	WriteTIbyte( (crc>>8  )&0xff ); // crc hi
+	WriteTIbyte(0x00); // write frame lo
+	WriteTIbyte(0x03); // write frame hi
+	HIGH(GPIO_SSC_DOUT);
+	WaitMS(50);	// programming time
+
+	LED_A_OFF();
+
+	// get TI tag data into the buffer
+	AcquireTiType();
+
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+	DbpString("Now use `lf ti read` to check");
+	StopTicks();
+}
+
+void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
+{
+	int i = 0;
+	uint8_t *buf = BigBuf_get_addr();
+
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_READER_FIELD);
+	//FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
+
+	AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
+	//AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
+	AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
+	AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
+
+	StartTicks();
+
+	for(;;) {
+		WDT_HIT();
+
+		if (ledcontrol) LED_D_ON();
+				
+		// wait until SSC_CLK goes HIGH
+		// used as a simple detection of a reader field?
+		while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
+			WDT_HIT();
+			if ( usb_poll_validate_length() || BUTTON_PRESS() )
+				goto OUT;
+		}
+		
+		if(buf[i])
+			OPEN_COIL();
+		else
+			SHORT_COIL();
+
+		if (ledcontrol) LED_D_OFF();
+		
+		//wait until SSC_CLK goes LOW
+		while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
+			WDT_HIT();
+			if ( usb_poll_validate_length() || BUTTON_PRESS() )
+				goto OUT;
+		}
+
+		i++;
+		if(i == period) {
+			i = 0;
+			if (gap) {
+				WDT_HIT();
+				SHORT_COIL();
+				WaitUS(gap);
+			}
+		}
+	}
+OUT: 
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+	StopTicks();
+	LED_D_OFF();
+	DbpString("Simulation stopped");
+	return;	
+}
+
+#define DEBUG_FRAME_CONTENTS 1
+void SimulateTagLowFrequencyBidir(int divisor, int t0)
+{
+}
+
+// compose fc/8 fc/10 waveform (FSK2)
+static void fc(int c, int *n)
+{
+	uint8_t *dest = BigBuf_get_addr();
+	int idx;
+
+	// for when we want an fc8 pattern every 4 logical bits
+	if(c==0) {
+		dest[((*n)++)]=1;
+		dest[((*n)++)]=1;
+		dest[((*n)++)]=1;
+		dest[((*n)++)]=1;
+		dest[((*n)++)]=0;
+		dest[((*n)++)]=0;
+		dest[((*n)++)]=0;
+		dest[((*n)++)]=0;
+	}
+
+	//	an fc/8  encoded bit is a bit pattern of  11110000  x6 = 48 samples
+	if(c==8) {
+		for (idx=0; idx<6; idx++) {
+			dest[((*n)++)]=1;
+			dest[((*n)++)]=1;
+			dest[((*n)++)]=1;
+			dest[((*n)++)]=1;
+			dest[((*n)++)]=0;
+			dest[((*n)++)]=0;
+			dest[((*n)++)]=0;
+			dest[((*n)++)]=0;
+		}
+	}
+
+	//	an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
+	if(c==10) {
+		for (idx=0; idx<5; idx++) {
+			dest[((*n)++)]=1;
+			dest[((*n)++)]=1;
+			dest[((*n)++)]=1;
+			dest[((*n)++)]=1;
+			dest[((*n)++)]=1;
+			dest[((*n)++)]=0;
+			dest[((*n)++)]=0;
+			dest[((*n)++)]=0;
+			dest[((*n)++)]=0;
+			dest[((*n)++)]=0;
+		}
+	}
+}
+// compose fc/X fc/Y waveform (FSKx)
+static void fcAll(uint8_t fc, int *n, uint8_t clock, uint16_t *modCnt) 
+{
+	uint8_t *dest = BigBuf_get_addr();
+	uint8_t halfFC = fc/2;
+	uint8_t wavesPerClock = clock/fc;
+	uint8_t mod = clock % fc;    //modifier
+	uint8_t modAdj = fc/mod;     //how often to apply modifier
+	bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk=TRUE;
+	// loop through clock - step field clock
+	for (uint8_t idx=0; idx < wavesPerClock; idx++){
+		// put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
+		memset(dest+(*n), 0, fc-halfFC);  //in case of odd number use extra here
+		memset(dest+(*n)+(fc-halfFC), 1, halfFC);
+		*n += fc;
+	}
+	if (mod>0) (*modCnt)++;
+	if ((mod>0) && modAdjOk){  //fsk2 
+		if ((*modCnt % modAdj) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
+			memset(dest+(*n), 0, fc-halfFC);
+			memset(dest+(*n)+(fc-halfFC), 1, halfFC);
+			*n += fc;
+		}
+	}
+	if (mod>0 && !modAdjOk){  //fsk1
+		memset(dest+(*n), 0, mod-(mod/2));
+		memset(dest+(*n)+(mod-(mod/2)), 1, mod/2);
+		*n += mod;
+	}
+}
+
+// prepare a waveform pattern in the buffer based on the ID given then
+// simulate a HID tag until the button is pressed
+void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
+{
+	FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+	set_tracing(FALSE);
+		
+	int n = 0, i = 0;
+	/*
+	 HID tag bitstream format
+	 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
+	 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
+	 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
+	 A fc8 is inserted before every 4 bits
+	 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
+	 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
+	*/
+
+	if (hi > 0xFFF) {
+		DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags");
+		return;
+	}
+	fc(0,&n);
+	// special start of frame marker containing invalid bit sequences
+	fc(8,  &n);	fc(8,  &n); // invalid
+	fc(8,  &n);	fc(10, &n); // logical 0
+	fc(10, &n);	fc(10, &n); // invalid
+	fc(8,  &n);	fc(10, &n); // logical 0
+
+	WDT_HIT();
+	// manchester encode bits 43 to 32
+	for (i=11; i>=0; i--) {
+		if ((i%4)==3) fc(0,&n);
+		if ((hi>>i)&1) {
+			fc(10, &n); fc(8,  &n);		// low-high transition
+		} else {
+			fc(8,  &n); fc(10, &n);		// high-low transition
+		}
+	}
+
+	WDT_HIT();
+	// manchester encode bits 31 to 0
+	for (i=31; i>=0; i--) {
+		if ((i%4)==3) fc(0,&n);
+		if ((lo>>i)&1) {
+			fc(10, &n); fc(8,  &n);		// low-high transition
+		} else {
+			fc(8,  &n); fc(10, &n);		// high-low transition
+		}
+	}
+	WDT_HIT();
+	
+	if (ledcontrol)	LED_A_ON();
+	SimulateTagLowFrequency(n, 0, ledcontrol);
+	if (ledcontrol)	LED_A_OFF();
+}
+
+// prepare a waveform pattern in the buffer based on the ID given then
+// simulate a FSK tag until the button is pressed
+// arg1 contains fcHigh and fcLow, arg2 contains invert and clock
+void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
+{
+	FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+
+	// free eventually allocated BigBuf memory
+	BigBuf_free(); BigBuf_Clear_ext(false);
+	clear_trace();
+	set_tracing(FALSE);
+	
+	int ledcontrol = 1, n = 0, i = 0;
+	uint8_t fcHigh = arg1 >> 8;
+	uint8_t fcLow = arg1 & 0xFF;
+	uint16_t modCnt = 0;
+	uint8_t clk = arg2 & 0xFF;
+	uint8_t invert = (arg2 >> 8) & 1;
+
+	for (i=0; i<size; i++){
+		
+		if (BitStream[i] == invert)
+			fcAll(fcLow, &n, clk, &modCnt);
+		else
+			fcAll(fcHigh, &n, clk, &modCnt);
+	}
+	WDT_HIT();
+	
+	Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d", fcHigh, fcLow, clk, invert, n);
+
+	if (ledcontrol)	LED_A_ON();
+	SimulateTagLowFrequency(n, 0, ledcontrol);
+	if (ledcontrol)	LED_A_OFF();
+}
+
+// compose ask waveform for one bit(ASK)
+static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester)
+{
+	uint8_t *dest = BigBuf_get_addr();
+	uint8_t halfClk = clock/2;
+	// c = current bit 1 or 0
+	if (manchester==1){
+		memset(dest+(*n), c, halfClk);
+		memset(dest+(*n) + halfClk, c^1, halfClk);
+	} else {
+		memset(dest+(*n), c, clock);
+	}
+	*n += clock;
+}
+
+static void biphaseSimBit(uint8_t c, int *n, uint8_t clock, uint8_t *phase)
+{
+	uint8_t *dest = BigBuf_get_addr();
+	uint8_t halfClk = clock/2;
+	if (c){
+		memset(dest+(*n), c ^ 1 ^ *phase, halfClk);
+		memset(dest+(*n) + halfClk, c ^ *phase, halfClk);
+	} else {
+		memset(dest+(*n), c ^ *phase, clock);
+		*phase ^= 1;
+	}
+	*n += clock;
+}
+
+static void stAskSimBit(int *n, uint8_t clock) {
+	uint8_t *dest = BigBuf_get_addr();
+	uint8_t halfClk = clock/2;
+	//ST = .5 high .5 low 1.5 high .5 low 1 high	
+	memset(dest+(*n), 1, halfClk);
+	memset(dest+(*n) + halfClk, 0, halfClk);
+	memset(dest+(*n) + clock, 1, clock + halfClk);
+	memset(dest+(*n) + clock*2 + halfClk, 0, halfClk);
+	memset(dest+(*n) + clock*3, 1, clock);
+	*n += clock*4;
+}
+
+// args clock, ask/man or askraw, invert, transmission separator
+void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
+{
+	FpgaDownloadAndGo(FPGA_BITSTREAM_LF);	
+	set_tracing(FALSE);
+	
+	int ledcontrol = 1, n = 0, i = 0;
+	uint8_t clk = (arg1 >> 8) & 0xFF;
+	uint8_t encoding = arg1 & 0xFF;
+	uint8_t separator = arg2 & 1;
+	uint8_t invert = (arg2 >> 8) & 1;
+
+	if (encoding == 2){  //biphase
+		uint8_t phase = 0;
+		for (i=0; i<size; i++){
+			biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
+		}
+		if (phase == 1) { //run a second set inverted to keep phase in check
+			for (i=0; i<size; i++){
+				biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
+			}
+		}
+	} else {  // ask/manchester || ask/raw
+		for (i=0; i<size; i++){
+			askSimBit(BitStream[i]^invert, &n, clk, encoding);
+		}
+		if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for biphase phase)
+			for (i=0; i<size; i++){
+				askSimBit(BitStream[i]^invert^1, &n, clk, encoding);
+			}
+		}
+	}
+	if (separator==1 && encoding == 1)
+		stAskSimBit(&n, clk);
+	else if (separator==1)
+		Dbprintf("sorry but separator option not yet available");
+
+	WDT_HIT();
+	
+	Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk, invert, encoding, separator, n);
+
+	if (ledcontrol)	LED_A_ON();
+	SimulateTagLowFrequency(n, 0, ledcontrol);
+	if (ledcontrol)	LED_A_OFF();
+}
+
+//carrier can be 2,4 or 8
+static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg)
+{
+	uint8_t *dest = BigBuf_get_addr();
+	uint8_t halfWave = waveLen/2;
+	//uint8_t idx;
+	int i = 0;
+	if (phaseChg){
+		// write phase change
+		memset(dest+(*n), *curPhase^1, halfWave);
+		memset(dest+(*n) + halfWave, *curPhase, halfWave);
+		*n += waveLen;
+		*curPhase ^= 1;
+		i += waveLen;
+	}
+	//write each normal clock wave for the clock duration
+	for (; i < clk; i+=waveLen){
+		memset(dest+(*n), *curPhase, halfWave);
+		memset(dest+(*n) + halfWave, *curPhase^1, halfWave);
+		*n += waveLen;
+	}
+}
+
+// args clock, carrier, invert,
+void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
+{
+	FpgaDownloadAndGo(FPGA_BITSTREAM_LF);	
+	set_tracing(FALSE);
+	
+	int ledcontrol = 1, n = 0, i = 0;
+	uint8_t clk = arg1 >> 8;
+	uint8_t carrier = arg1 & 0xFF;
+	uint8_t invert = arg2 & 0xFF;
+	uint8_t curPhase = 0;
+	for (i=0; i<size; i++){
+		if (BitStream[i] == curPhase){
+			pskSimBit(carrier, &n, clk, &curPhase, FALSE);
+		} else {
+			pskSimBit(carrier, &n, clk, &curPhase, TRUE);
+		}
+	}
+	
+	WDT_HIT();
+	
+	Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n);
+		   
+	if (ledcontrol)	LED_A_ON();
+	SimulateTagLowFrequency(n, 0, ledcontrol);
+	if (ledcontrol)	LED_A_OFF();
+}
+
+// loop to get raw HID waveform then FSK demodulate the TAG ID from it
+void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
+{
+	uint8_t *dest = BigBuf_get_addr();
+	size_t size = 0; 
+	uint32_t hi2=0, hi=0, lo=0;
+	int idx=0;
+	// Configure to go in 125Khz listen mode
+	LFSetupFPGAForADC(95, true);
+
+	//clear read buffer
+	BigBuf_Clear_keep_EM();
+
+	while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
+
+		WDT_HIT();
+		if (ledcontrol) LED_A_ON();
+
+		DoAcquisition_default(-1,true);
+		// FSK demodulator
+		size = 50*128*2; //big enough to catch 2 sequences of largest format
+		idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo);
+		
+		if (idx>0 && lo>0 && (size==96 || size==192)){
+			// go over previously decoded manchester data and decode into usable tag ID
+			if (hi2 != 0){ //extra large HID tags  88/192 bits
+				Dbprintf("TAG ID: %x%08x%08x (%d)",
+				  (unsigned int) hi2,
+				  (unsigned int) hi,
+				  (unsigned int) lo,
+				  (unsigned int) (lo>>1) & 0xFFFF
+				  );
+			} else {  //standard HID tags 44/96 bits
+				uint8_t bitlen = 0;
+				uint32_t fc = 0;
+				uint32_t cardnum = 0;
+				
+				if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
+					uint32_t lo2=0;
+					lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
+					uint8_t idx3 = 1;
+					while(lo2 > 1){ //find last bit set to 1 (format len bit)
+						lo2=lo2 >> 1;
+						idx3++;
+					}
+					bitlen = idx3+19;
+					fc =0;
+					cardnum=0;
+					if(bitlen == 26){
+						cardnum = (lo>>1)&0xFFFF;
+						fc = (lo>>17)&0xFF;
+					}
+					if(bitlen == 37){
+						cardnum = (lo>>1)&0x7FFFF;
+						fc = ((hi&0xF)<<12)|(lo>>20);
+					}
+					if(bitlen == 34){
+						cardnum = (lo>>1)&0xFFFF;
+						fc= ((hi&1)<<15)|(lo>>17);
+					}
+					if(bitlen == 35){
+						cardnum = (lo>>1)&0xFFFFF;
+						fc = ((hi&1)<<11)|(lo>>21);
+					}
+				}
+				else { //if bit 38 is not set then 37 bit format is used
+					bitlen= 37;
+					fc =0;
+					cardnum=0;
+					if(bitlen==37){
+						cardnum = (lo>>1)&0x7FFFF;
+						fc = ((hi&0xF)<<12)|(lo>>20);
+					}
+				}
+				Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
+						 (unsigned int) hi,
+						 (unsigned int) lo,
+						 (unsigned int) (lo>>1) & 0xFFFF,
+						 (unsigned int) bitlen,
+						 (unsigned int) fc,
+						 (unsigned int) cardnum);
+			}
+			if (findone){
+				if (ledcontrol)	LED_A_OFF();
+				*high = hi;
+				*low = lo;
+				return;
+			}
+			// reset
+		}
+		hi2 = hi = lo = idx = 0;
+		WDT_HIT();
+	}
+	DbpString("Stopped");
+	if (ledcontrol) LED_A_OFF();
+}
+
+// loop to get raw HID waveform then FSK demodulate the TAG ID from it
+void CmdAWIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
+{
+	uint8_t *dest = BigBuf_get_addr();
+	size_t size; 
+	int idx=0;
+	//clear read buffer
+	BigBuf_Clear_keep_EM();
+	// Configure to go in 125Khz listen mode
+	LFSetupFPGAForADC(95, true);
+
+	while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
+
+		WDT_HIT();
+		if (ledcontrol) LED_A_ON();
+
+		DoAcquisition_default(-1,true);
+		// FSK demodulator
+		size = 50*128*2; //big enough to catch 2 sequences of largest format
+		idx = AWIDdemodFSK(dest, &size);
+		
+		if (idx<=0 || size!=96) continue;
+	        // Index map
+	        // 0            10            20            30              40            50              60
+	        // |            |             |             |               |             |               |
+	        // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
+	        // -----------------------------------------------------------------------------
+	        // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
+	        // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
+	        //          |---26 bit---|    |-----117----||-------------142-------------|
+	        // b = format bit len, o = odd parity of last 3 bits
+	        // f = facility code, c = card number
+	        // w = wiegand parity
+	        // (26 bit format shown)
+
+	        //get raw ID before removing parities
+	        uint32_t rawLo = bytebits_to_byte(dest+idx+64,32);
+	        uint32_t rawHi = bytebits_to_byte(dest+idx+32,32);
+	        uint32_t rawHi2 = bytebits_to_byte(dest+idx,32);
+
+	        size = removeParity(dest, idx+8, 4, 1, 88);
+		if (size != 66) continue;
+
+	        // Index map
+	        // 0           10         20        30          40        50        60
+	        // |           |          |         |           |         |         |
+	        // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
+	        // -----------------------------------------------------------------------------
+	        // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
+	        // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
+	        // |26 bit|   |-117--| |-----142------|
+			//
+			// 00110010 0 0000011111010000000000000001000100101000100001111 0 00000000 
+			// bbbbbbbb w ffffffffffffffffccccccccccccccccccccccccccccccccc w xxxxxxxx
+			// |50 bit|   |----4000------||-----------2248975-------------| 			
+			//
+	        // b = format bit len, o = odd parity of last 3 bits
+	        // f = facility code, c = card number
+	        // w = wiegand parity
+
+	        uint32_t fc = 0;
+	        uint32_t cardnum = 0;
+	        uint32_t code1 = 0;
+	        uint32_t code2 = 0;
+	        uint8_t fmtLen = bytebits_to_byte(dest,8);
+			switch(fmtLen) {
+				case 26: 
+					fc = bytebits_to_byte(dest + 9, 8);
+					cardnum = bytebits_to_byte(dest + 17, 16);
+					code1 = bytebits_to_byte(dest + 8,fmtLen);
+					Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %u - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo);
+					break;
+				case 50:
+					fc = bytebits_to_byte(dest + 9, 16);
+					cardnum = bytebits_to_byte(dest + 25, 32);
+					code1 = bytebits_to_byte(dest + 8, (fmtLen-32) );
+					code2 = bytebits_to_byte(dest + 8 + (fmtLen-32), 32);
+					Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %u - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, code2, rawHi2, rawHi, rawLo);
+					break;
+				default:
+					if (fmtLen > 32 ) {
+						cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16);
+						code1 = bytebits_to_byte(dest+8,fmtLen-32);
+						code2 = bytebits_to_byte(dest+8+(fmtLen-32),32);
+						Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%u) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo);
+					} else {
+						cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16);
+						code1 = bytebits_to_byte(dest+8,fmtLen);
+						Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%u) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo);
+					}
+					break;		
+			}
+			if (findone){
+				if (ledcontrol)	LED_A_OFF();
+				return;
+			}
+		idx = 0;
+		WDT_HIT();
+	}
+	DbpString("Stopped");
+	if (ledcontrol) LED_A_OFF();
+}
+
+void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
+{
+	uint8_t *dest = BigBuf_get_addr();
+
+	size_t size=0, idx=0;
+	int clk=0, invert=0, errCnt=0, maxErr=20;
+	uint32_t hi=0;
+	uint64_t lo=0;
+	//clear read buffer
+	BigBuf_Clear_keep_EM();
+	// Configure to go in 125Khz listen mode
+	LFSetupFPGAForADC(95, true);
+
+	while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
+
+		WDT_HIT();
+		if (ledcontrol) LED_A_ON();
+
+		DoAcquisition_default(-1,true);
+		size  = BigBuf_max_traceLen();
+		//askdemod and manchester decode
+		if (size > 16385) size = 16385; //big enough to catch 2 sequences of largest format
+		errCnt = askdemod(dest, &size, &clk, &invert, maxErr, 0, 1);
+		WDT_HIT();
+
+		if (errCnt<0) continue;
+	
+			errCnt = Em410xDecode(dest, &size, &idx, &hi, &lo);
+			if (errCnt){
+				if (size>64){
+					Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)",
+					  hi,
+					  (uint32_t)(lo>>32),
+					  (uint32_t)lo,
+					  (uint32_t)(lo&0xFFFF),
+					  (uint32_t)((lo>>16LL) & 0xFF),
+					  (uint32_t)(lo & 0xFFFFFF));
+				} else {
+					Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
+					  (uint32_t)(lo>>32),
+					  (uint32_t)lo,
+					  (uint32_t)(lo&0xFFFF),
+					  (uint32_t)((lo>>16LL) & 0xFF),
+					  (uint32_t)(lo & 0xFFFFFF));
+				}
+
+			if (findone){
+				if (ledcontrol) LED_A_OFF();
+				*high=lo>>32;
+				*low=lo & 0xFFFFFFFF;
+				return;
+			}
+		}
+		WDT_HIT();
+		hi = lo = size = idx = 0;
+		clk = invert = errCnt = 0;
+	}
+	DbpString("Stopped");
+	if (ledcontrol) LED_A_OFF();
+}
+
+void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
+{
+	uint8_t *dest = BigBuf_get_addr();
+	int idx=0;
+	uint32_t code=0, code2=0;
+	uint8_t version=0;
+	uint8_t facilitycode=0;
+	uint16_t number=0;
+	uint8_t crc = 0;
+	uint16_t calccrc = 0;
+
+	//clear read buffer
+	BigBuf_Clear_keep_EM();
+	
+	// Configure to go in 125Khz listen mode
+	LFSetupFPGAForADC(95, true);
+
+	while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
+		WDT_HIT();
+		if (ledcontrol) LED_A_ON();
+		DoAcquisition_default(-1,true);
+		//fskdemod and get start index
+		WDT_HIT();
+		idx = IOdemodFSK(dest, BigBuf_max_traceLen());
+		if (idx<0) continue;
+			//valid tag found
+
+			//Index map
+			//0           10          20          30          40          50          60
+			//|           |           |           |           |           |           |
+			//01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
+			//-----------------------------------------------------------------------------
+            //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 checksum 11
+			//
+			//Checksum:  
+			//00000000 0 11110000 1 11100000 1 00000001 1 00000011 1 10110110 1 01110101 11
+			//preamble      F0         E0         01         03         B6         75
+			// How to calc checksum,
+			// http://www.proxmark.org/forum/viewtopic.php?id=364&p=6
+			//   F0 + E0 + 01 + 03 + B6 = 28A
+			//   28A & FF = 8A
+			//   FF - 8A = 75
+			// Checksum: 0x75
+			//XSF(version)facility:codeone+codetwo
+			//Handle the data
+			if(findone){ //only print binary if we are doing one
+				Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx],   dest[idx+1],   dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
+				Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
+				Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
+				Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
+				Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
+				Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
+				Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
+			}
+			code = bytebits_to_byte(dest+idx,32);
+			code2 = bytebits_to_byte(dest+idx+32,32);
+			version = bytebits_to_byte(dest+idx+27,8); //14,4
+			facilitycode = bytebits_to_byte(dest+idx+18,8);
+			number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
+
+			crc = bytebits_to_byte(dest+idx+54,8);
+			for (uint8_t i=1; i<6; ++i)
+				calccrc += bytebits_to_byte(dest+idx+9*i,8);
+			calccrc &= 0xff;
+			calccrc = 0xff - calccrc;
+			
+			char *crcStr = (crc == calccrc) ? "ok":"!crc";
+
+            Dbprintf("IO Prox XSF(%02d)%02x:%05d (%08x%08x)  [%02x %s]",version,facilitycode,number,code,code2, crc, crcStr);
+			// if we're only looking for one tag
+			if (findone){
+				if (ledcontrol)	LED_A_OFF();
+				*high=code;
+				*low=code2;
+				return;
+			}
+			code=code2=0;
+			version=facilitycode=0;
+			number=0;
+			idx=0;
+
+		WDT_HIT();
+	}
+	DbpString("Stopped");
+	if (ledcontrol) LED_A_OFF();
+}
+
+/*------------------------------
+ * T5555/T5557/T5567/T5577 routines
+ *------------------------------
+ * NOTE: T55x7/T5555 configuration register definitions moved to protocols.h 
+ *
+ * Relevant communication times in microsecond
+ * To compensate antenna falling times shorten the write times
+ * and enlarge the gap ones.
+ * Q5 tags seems to have issues when these values changes. 
+ */
+
+#define START_GAP 50*8 // was 250 // SPEC:  1*8 to 50*8 - typ 15*8 (15fc)
+#define WRITE_GAP 20*8 // was 160 // SPEC:  1*8 to 20*8 - typ 10*8 (10fc)
+#define WRITE_0   18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (24fc)
+#define WRITE_1   54*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (56fc)  432 for T55x7; 448 for E5550
+#define READ_GAP  15*8 
+
+//  VALUES TAKEN FROM EM4x function: SendForward
+//  START_GAP = 440;       (55*8) cycles at 125Khz (8us = 1cycle)
+//  WRITE_GAP = 128;       (16*8)
+//  WRITE_1   = 256 32*8;  (32*8) 
+
+//  These timings work for 4469/4269/4305 (with the 55*8 above)
+//  WRITE_0 = 23*8 , 9*8 
+
+// Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK)
+// TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
+// Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier)
+// T0 = TIMER_CLOCK1 / 125000 = 192
+// 1 Cycle = 8 microseconds(us)  == 1 field clock
+
+// new timer:
+//     = 1us = 1.5ticks
+// 1fc = 8us = 12ticks
+void TurnReadLFOn(uint32_t delay) {
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+
+	// measure antenna strength.
+	//int adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
+
+	// Give it a bit of time for the resonant antenna to settle.
+	WaitUS(delay);
+}
+
+// Write one bit to card
+void T55xxWriteBit(int bit) {
+	if (!bit)
+		TurnReadLFOn(WRITE_0);
+	else
+		TurnReadLFOn(WRITE_1);
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+	WaitUS(WRITE_GAP);
+}
+
+// Send T5577 reset command then read stream (see if we can identify the start of the stream)
+void T55xxResetRead(void) {
+	LED_A_ON();
+	//clear buffer now so it does not interfere with timing later
+	BigBuf_Clear_keep_EM();
+
+	// Set up FPGA, 125kHz
+	LFSetupFPGAForADC(95, true);
+
+	// Trigger T55x7 in mode.
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+	WaitUS(START_GAP);
+
+	// reset tag - op code 00
+	T55xxWriteBit(0);
+	T55xxWriteBit(0);
+
+	// Turn field on to read the response
+	TurnReadLFOn(READ_GAP);
+
+	// Acquisition
+	doT55x7Acquisition(BigBuf_max_traceLen());
+
+	// Turn the field off
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+	cmd_send(CMD_ACK,0,0,0,0,0);    
+	LED_A_OFF();
+}
+
+// Write one card block in page 0, no lock
+void T55xxWriteBlockExt(uint32_t Data, uint8_t Block, uint32_t Pwd, uint8_t arg) {
+	LED_A_ON();
+	bool PwdMode = arg & 0x1;
+	uint8_t Page = (arg & 0x2)>>1;
+	uint32_t i = 0;
+
+	// Set up FPGA, 125kHz
+	LFSetupFPGAForADC(95, true);
+	
+	// Trigger T55x7 in mode.
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+	WaitUS(START_GAP);
+
+	// Opcode 10
+	T55xxWriteBit(1);
+	T55xxWriteBit(Page); //Page 0
+	if (PwdMode){
+		// Send Pwd
+		for (i = 0x80000000; i != 0; i >>= 1)
+			T55xxWriteBit(Pwd & i);
+	}
+	// Send Lock bit
+	T55xxWriteBit(0);
+
+	// Send Data
+	for (i = 0x80000000; i != 0; i >>= 1)
+		T55xxWriteBit(Data & i);
+
+	// Send Block number
+	for (i = 0x04; i != 0; i >>= 1)
+		T55xxWriteBit(Block & i);
+
+	// Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
+	// so wait a little more)
+	TurnReadLFOn(20 * 1000);
+	
+	//could attempt to do a read to confirm write took
+	// as the tag should repeat back the new block 
+	// until it is reset, but to confirm it we would 
+	// need to know the current block 0 config mode
+	
+	// turn field off
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+	LED_A_OFF();
+}
+
+// Write one card block in page 0, no lock
+void T55xxWriteBlock(uint32_t Data, uint8_t Block, uint32_t Pwd, uint8_t arg) {
+	T55xxWriteBlockExt(Data, Block, Pwd, arg);
+	cmd_send(CMD_ACK,0,0,0,0,0);
+}
+
+// Read one card block in page [page]
+void T55xxReadBlock(uint16_t arg0, uint8_t Block, uint32_t Pwd) {
+	LED_A_ON();
+	bool PwdMode = arg0 & 0x1;
+	uint8_t Page = (arg0 & 0x2) >> 1;
+	uint32_t i = 0;
+	bool RegReadMode = (Block == 0xFF);
+	
+	//clear buffer now so it does not interfere with timing later
+	BigBuf_Clear_keep_EM();
+
+	//make sure block is at max 7
+	Block &= 0x7;
+
+	// Set up FPGA, 125kHz to power up the tag
+	LFSetupFPGAForADC(95, true);
+	SpinDelay(3);
+	
+	// Trigger T55x7 Direct Access Mode with start gap
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+	WaitUS(START_GAP);
+	
+	// Opcode 1[page]
+	T55xxWriteBit(1);
+	T55xxWriteBit(Page); //Page 0
+
+	if (PwdMode){
+		// Send Pwd
+		for (i = 0x80000000; i != 0; i >>= 1)
+			T55xxWriteBit(Pwd & i);
+	}
+	// Send a zero bit separation
+	T55xxWriteBit(0);
+	
+	// Send Block number (if direct access mode)
+	if (!RegReadMode)
+		for (i = 0x04; i != 0; i >>= 1)
+			T55xxWriteBit(Block & i);
+
+	// Turn field on to read the response
+	TurnReadLFOn(READ_GAP);
+	
+	// Acquisition
+	doT55x7Acquisition(12000);
+	
+	// Turn the field off
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+	cmd_send(CMD_ACK,0,0,0,0,0);    
+	LED_A_OFF();
+}
+
+void T55xxWakeUp(uint32_t Pwd){
+	LED_B_ON();
+	uint32_t i = 0;
+	
+	// Set up FPGA, 125kHz
+	LFSetupFPGAForADC(95, true);
+	
+	// Trigger T55x7 Direct Access Mode
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+	WaitUS(START_GAP);
+	
+	// Opcode 10
+	T55xxWriteBit(1);
+	T55xxWriteBit(0); //Page 0
+
+	// Send Pwd
+	for (i = 0x80000000; i != 0; i >>= 1)
+		T55xxWriteBit(Pwd & i);
+
+	// Turn and leave field on to let the begin repeating transmission
+	TurnReadLFOn(20*1000);
+}
+
+/*-------------- Cloning routines -----------*/
+void WriteT55xx(uint32_t *blockdata, uint8_t startblock, uint8_t numblocks) {
+	// write last block first and config block last (if included)
+	for (uint8_t i = numblocks+startblock; i > startblock; i--)
+		T55xxWriteBlockExt(blockdata[i-1], i-1, 0, 0);
+}
+
+// Copy HID id to card and setup block 0 config
+void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) {
+	uint32_t data[] = {0,0,0,0,0,0,0};
+	uint8_t last_block = 0;
+
+	if (longFMT){
+		// Ensure no more than 84 bits supplied
+		if (hi2 > 0xFFFFF) {
+			DbpString("Tags can only have 84 bits.");
+			return;
+		}
+		// Build the 6 data blocks for supplied 84bit ID
+		last_block = 6;
+		// load preamble (1D) & long format identifier (9E manchester encoded)
+		data[1] = 0x1D96A900 | (manchesterEncode2Bytes((hi2 >> 16) & 0xF) & 0xFF);
+		// load raw id from hi2, hi, lo to data blocks (manchester encoded)
+		data[2] = manchesterEncode2Bytes(hi2 & 0xFFFF);
+		data[3] = manchesterEncode2Bytes(hi >> 16);
+		data[4] = manchesterEncode2Bytes(hi & 0xFFFF);
+		data[5] = manchesterEncode2Bytes(lo >> 16);
+		data[6] = manchesterEncode2Bytes(lo & 0xFFFF);
+	}	else {
+		// Ensure no more than 44 bits supplied
+		if (hi > 0xFFF) {
+			DbpString("Tags can only have 44 bits.");
+			return;
+		}
+		// Build the 3 data blocks for supplied 44bit ID
+		last_block = 3;
+		// load preamble
+		data[1] = 0x1D000000 | (manchesterEncode2Bytes(hi) & 0xFFFFFF);
+		data[2] = manchesterEncode2Bytes(lo >> 16);
+		data[3] = manchesterEncode2Bytes(lo & 0xFFFF);
+	}
+	// load chip config block
+	data[0] = T55x7_BITRATE_RF_50 | T55x7_MODULATION_FSK2a | last_block << T55x7_MAXBLOCK_SHIFT;
+
+	//TODO add selection of chip for Q5 or T55x7
+	// data[0] = (((50-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT;
+
+	LED_D_ON();
+	// Program the data blocks for supplied ID
+	// and the block 0 for HID format
+	WriteT55xx(data, 0, last_block+1);
+
+	LED_D_OFF();
+
+	DbpString("DONE!");
+}
+
+void CopyIOtoT55x7(uint32_t hi, uint32_t lo) {
+	uint32_t data[] = {T55x7_BITRATE_RF_64 | T55x7_MODULATION_FSK2a | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
+	//TODO add selection of chip for Q5 or T55x7
+	//t5555 (Q5) BITRATE = (RF-2)/2 (iceman)
+	// data[0] = (64 << T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | 2 << T5555_MAXBLOCK_SHIFT;
+
+	LED_D_ON();
+	// Program the data blocks for supplied ID
+	// and the block 0 config
+	WriteT55xx(data, 0, 3);
+	LED_D_OFF();
+	DbpString("DONE!");
+}
+
+// Clone Indala 64-bit tag by UID to T55x7
+void CopyIndala64toT55x7(uint32_t hi, uint32_t lo) {
+	//Program the 2 data blocks for supplied 64bit UID
+	// and the Config for Indala 64 format (RF/32;PSK1 with RF/2;Maxblock=2)
+	uint32_t data[] = { T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
+	//TODO add selection of chip for Q5 or T55x7
+	// data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 2 << T5555_MAXBLOCK_SHIFT;
+
+	WriteT55xx(data, 0, 3);
+	//Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
+	//	T5567WriteBlock(0x603E1042,0);
+	DbpString("DONE!");
+}
+// Clone Indala 224-bit tag by UID to T55x7
+void CopyIndala224toT55x7(uint32_t uid1, uint32_t uid2, uint32_t uid3, uint32_t uid4, uint32_t uid5, uint32_t uid6, uint32_t uid7) {
+	//Program the 7 data blocks for supplied 224bit UID
+	uint32_t data[] = {0, uid1, uid2, uid3, uid4, uid5, uid6, uid7};
+	// and the block 0 for Indala224 format	
+	//Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
+	data[0] = T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (7 << T55x7_MAXBLOCK_SHIFT);
+	//TODO add selection of chip for Q5 or T55x7
+	// data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 7 << T5555_MAXBLOCK_SHIFT;
+	WriteT55xx(data, 0, 8);
+	//Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
+	//	T5567WriteBlock(0x603E10E2,0);
+	DbpString("DONE!");
+}
+// clone viking tag to T55xx
+void CopyVikingtoT55xx(uint32_t block1, uint32_t block2, uint8_t Q5) {
+	uint32_t data[] = {T55x7_BITRATE_RF_32 | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT), block1, block2};
+	//t5555 (Q5) BITRATE = (RF-2)/2 (iceman)
+	if (Q5) data[0] = (32 << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | 2 << T5555_MAXBLOCK_SHIFT;
+	// Program the data blocks for supplied ID and the block 0 config
+	WriteT55xx(data, 0, 3);
+	LED_D_OFF();
+	cmd_send(CMD_ACK,0,0,0,0,0);
+}
+
+// Define 9bit header for EM410x tags
+#define EM410X_HEADER		0x1FF
+#define EM410X_ID_LENGTH	40
+
+void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) {
+	int i, id_bit;
+	uint64_t id = EM410X_HEADER;
+	uint64_t rev_id = 0;	// reversed ID
+	int c_parity[4];	// column parity
+	int r_parity = 0;	// row parity
+	uint32_t clock = 0;
+
+	// Reverse ID bits given as parameter (for simpler operations)
+	for (i = 0; i < EM410X_ID_LENGTH; ++i) {
+		if (i < 32) {
+			rev_id = (rev_id << 1) | (id_lo & 1);
+			id_lo >>= 1;
+		} else {
+			rev_id = (rev_id << 1) | (id_hi & 1);
+			id_hi >>= 1;
+		}
+	}
+
+	for (i = 0; i < EM410X_ID_LENGTH; ++i) {
+		id_bit = rev_id & 1;
+
+		if (i % 4 == 0) {
+			// Don't write row parity bit at start of parsing
+			if (i)
+				id = (id << 1) | r_parity;
+			// Start counting parity for new row
+			r_parity = id_bit;
+		} else {
+			// Count row parity
+			r_parity ^= id_bit;
+		}
+
+		// First elements in column?
+		if (i < 4)
+			// Fill out first elements
+			c_parity[i] = id_bit;
+		else
+			// Count column parity
+			c_parity[i % 4] ^= id_bit;
+
+		// Insert ID bit
+		id = (id << 1) | id_bit;
+		rev_id >>= 1;
+	}
+
+	// Insert parity bit of last row
+	id = (id << 1) | r_parity;
+
+	// Fill out column parity at the end of tag
+	for (i = 0; i < 4; ++i)
+		id = (id << 1) | c_parity[i];
+
+	// Add stop bit
+	id <<= 1;
+
+	Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
+	LED_D_ON();
+
+	// Write EM410x ID
+	uint32_t data[] = {0, (uint32_t)(id>>32), (uint32_t)(id & 0xFFFFFFFF)};
+
+	clock = (card & 0xFF00) >> 8;
+	clock = (clock == 0) ? 64 : clock;
+	Dbprintf("Clock rate: %d", clock);
+	if (card & 0xFF) { //t55x7
+		clock = GetT55xxClockBit(clock);
+		if (clock == 0) {
+			Dbprintf("Invalid clock rate: %d", clock);
+			return;
+		}
+		data[0] = clock | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT);
+	} else { //t5555 (Q5)
+		clock = (clock-2)>>1;  //n = (RF-2)/2
+		data[0] = (clock << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | (2 << T5555_MAXBLOCK_SHIFT);
+	}
+ 
+	WriteT55xx(data, 0, 3);
+
+	LED_D_OFF();
+	Dbprintf("Tag %s written with 0x%08x%08x\n",
+			card ? "T55x7":"T5555",
+			(uint32_t)(id >> 32),
+			(uint32_t)id);
+}
+
+//-----------------------------------
+// EM4469 / EM4305 routines
+//-----------------------------------
+#define FWD_CMD_LOGIN   0xC //including the even parity, binary mirrored
+#define FWD_CMD_WRITE   0xA
+#define FWD_CMD_READ    0x9
+#define FWD_CMD_DISABLE 0x5
+
+uint8_t forwardLink_data[64]; //array of forwarded bits
+uint8_t * forward_ptr; //ptr for forward message preparation
+uint8_t fwd_bit_sz; //forwardlink bit counter
+uint8_t * fwd_write_ptr; //forwardlink bit pointer
+
+//====================================================================
+// prepares command bits
+// see EM4469 spec
+//====================================================================
+//--------------------------------------------------------------------
+//  VALUES TAKEN FROM EM4x function: SendForward
+//  START_GAP = 440;       (55*8) cycles at 125Khz (8us = 1cycle)
+//  WRITE_GAP = 128;       (16*8)
+//  WRITE_1   = 256 32*8;  (32*8) 
+
+//  These timings work for 4469/4269/4305 (with the 55*8 above)
+//  WRITE_0 = 23*8 , 9*8
+
+uint8_t Prepare_Cmd( uint8_t cmd ) {
+
+	*forward_ptr++ = 0; //start bit
+	*forward_ptr++ = 0; //second pause for 4050 code
+
+	*forward_ptr++ = cmd;
+	cmd >>= 1;
+	*forward_ptr++ = cmd;
+	cmd >>= 1;
+	*forward_ptr++ = cmd;
+	cmd >>= 1;
+	*forward_ptr++ = cmd;
+
+	return 6; //return number of emited bits
+}
+
+//====================================================================
+// prepares address bits
+// see EM4469 spec
+//====================================================================
+uint8_t Prepare_Addr( uint8_t addr ) {
+
+	register uint8_t line_parity;
+
+	uint8_t i;
+	line_parity = 0;
+	for(i=0;i<6;i++) {
+		*forward_ptr++ = addr;
+		line_parity ^= addr;
+		addr >>= 1;
+	}
+
+	*forward_ptr++ = (line_parity & 1);
+
+	return 7; //return number of emited bits
+}
+
+//====================================================================
+// prepares data bits intreleaved with parity bits
+// see EM4469 spec
+//====================================================================
+uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
+
+	register uint8_t line_parity;
+	register uint8_t column_parity;
+	register uint8_t i, j;
+	register uint16_t data;
+
+	data = data_low;
+	column_parity = 0;
+
+	for(i=0; i<4; i++) {
+		line_parity = 0;
+		for(j=0; j<8; j++) {
+			line_parity ^= data;
+			column_parity ^= (data & 1) << j;
+			*forward_ptr++ = data;
+			data >>= 1;
+		}
+		*forward_ptr++ = line_parity;
+		if(i == 1)
+			data = data_hi;
+	}
+
+	for(j=0; j<8; j++) {
+		*forward_ptr++ = column_parity;
+		column_parity >>= 1;
+	}
+	*forward_ptr = 0;
+
+	return 45; //return number of emited bits
+}
+
+//====================================================================
+// Forward Link send function
+// Requires: forwarLink_data filled with valid bits (1 bit per byte)
+// fwd_bit_count set with number of bits to be sent
+//====================================================================
+void SendForward(uint8_t fwd_bit_count) {
+
+	fwd_write_ptr = forwardLink_data;
+	fwd_bit_sz = fwd_bit_count;
+
+	LED_D_ON();
+
+	// Set up FPGA, 125kHz
+	LFSetupFPGAForADC(95, true);
+	
+	// force 1st mod pulse (start gap must be longer for 4305)
+	fwd_bit_sz--; //prepare next bit modulation
+	fwd_write_ptr++;
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+	WaitUS(55*8); //55 cycles off (8us each)for 4305	// ICEMAN:  problem with (us) clock is  21.3us increments
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
+	WaitUS(16*8); //16 cycles on (8us each)	// ICEMAN:  problem with (us) clock is  21.3us increments
+
+	// now start writting
+	while(fwd_bit_sz-- > 0) { //prepare next bit modulation
+		if(((*fwd_write_ptr++) & 1) == 1)
+			WaitUS(32*8); //32 cycles at 125Khz (8us each)	// ICEMAN:  problem with (us) clock is  21.3us increments
+		else {
+			//These timings work for 4469/4269/4305 (with the 55*8 above)
+			FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+			WaitUS(16*8); //16-4 cycles off (8us each)	// ICEMAN:  problem with (us) clock is  21.3us increments
+			FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
+			WaitUS(16*8); //16 cycles on (8us each)	// ICEMAN:  problem with (us) clock is  21.3us increments
+		}
+	}
+}
+
+void EM4xLogin(uint32_t Password) {
+
+	uint8_t fwd_bit_count;
+	forward_ptr = forwardLink_data;
+	fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
+	fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
+	SendForward(fwd_bit_count);
+
+	//Wait for command to complete
+	WaitMS(20);
+}
+
+void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
+
+	uint8_t fwd_bit_count;
+	uint8_t *dest = BigBuf_get_addr();
+	uint16_t bufsize = BigBuf_max_traceLen();  // ICEMAN: this tries to fill up all tracelog space
+	uint32_t i = 0;
+
+	// Clear destination buffer before sending the command
+	BigBuf_Clear_ext(false);
+	
+	//If password mode do login
+	if (PwdMode == 1) EM4xLogin(Pwd);
+
+	forward_ptr = forwardLink_data;
+	fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
+	fwd_bit_count += Prepare_Addr( Address );
+
+	SendForward(fwd_bit_count);
+
+	// Now do the acquisition
+	// ICEMAN, change to the one in lfsampling.c
+	i = 0;
+	for(;;) {
+		if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
+			AT91C_BASE_SSC->SSC_THR = 0x43;
+		}
+		if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
+			dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+			++i;
+			if (i >= bufsize) break;
+		}
+	}
+
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off	
+	cmd_send(CMD_ACK,0,0,0,0,0);
+	LED_D_OFF();
+}
+
+void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
+
+	uint8_t fwd_bit_count;
+
+	//If password mode do login
+	if (PwdMode == 1) EM4xLogin(Pwd);
+
+	forward_ptr = forwardLink_data;
+	fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
+	fwd_bit_count += Prepare_Addr( Address );
+	fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
+
+	SendForward(fwd_bit_count);
+
+	//Wait for write to complete
+	WaitMS(20);
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+	LED_D_OFF();
+}