X-Git-Url: http://cvs.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/1eb874ee3f7690cc92a720c0636fbe100e82b1e5..096dee178438c0a722eaf112c8b63ad4eaa9064a:/fpga/hi_simulate.v diff --git a/fpga/hi_simulate.v b/fpga/hi_simulate.v index 0768c29d..de58a74e 100644 --- a/fpga/hi_simulate.v +++ b/fpga/hi_simulate.v @@ -17,28 +17,22 @@ //----------------------------------------------------------------------------- module hi_simulate( - pck0, ck_1356meg, ck_1356megb, + ck_1356meg, pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4, adc_d, adc_clk, ssp_frame, ssp_din, ssp_dout, ssp_clk, - cross_hi, cross_lo, dbg, mod_type ); - input pck0, ck_1356meg, ck_1356megb; + input ck_1356meg; output pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4; input [7:0] adc_d; output adc_clk; input ssp_dout; output ssp_frame, ssp_din, ssp_clk; - input cross_hi, cross_lo; output dbg; input [2:0] mod_type; -// Power amp goes between LOW and tri-state, so pwr_hi (and pwr_lo) can -// always be low. -assign pwr_hi = 1'b0; -assign pwr_lo = 1'b0; // The comparator with hysteresis on the output from the peak detector. reg after_hysteresis; @@ -46,43 +40,34 @@ assign adc_clk = ck_1356meg; always @(negedge adc_clk) begin - if(& adc_d[7:5]) after_hysteresis = 1'b1; - else if(~(| adc_d[7:5])) after_hysteresis = 1'b0; + if(& adc_d[7:5]) after_hysteresis = 1'b1; // if (adc_d >= 224) + else if(~(| adc_d[7:5])) after_hysteresis = 1'b0; // if (adc_d <= 31) end -// Divide 13.56 MHz by 32 to produce the SSP_CLK -// The register is bigger to allow higher division factors of up to /128 -reg [10:0] ssp_clk_divider; +// Divide 13.56 MHz to produce various frequencies for SSP_CLK +// and modulation. +reg [7:0] ssp_clk_divider; always @(posedge adc_clk) ssp_clk_divider <= (ssp_clk_divider + 1); reg ssp_clk; -reg ssp_frame; + always @(negedge adc_clk) begin - //If we're in 101, we only need a new bit every 8th carrier bit (53Hz). Otherwise, get next bit at 424Khz - if(mod_type == 3'b101) - begin - if(ssp_clk_divider[7:0] == 8'b00000000) - ssp_clk <= 1'b0; - if(ssp_clk_divider[7:0] == 8'b10000000) - ssp_clk <= 1'b1; - - end + if(mod_type == `FPGA_HF_SIMULATOR_MODULATE_424K_8BIT) + // Get bit every at 53KHz (every 8th carrier bit of 424kHz) + ssp_clk <= ssp_clk_divider[7]; + else if(mod_type == `FPGA_HF_SIMULATOR_MODULATE_212K) + // Get next bit at 212kHz + ssp_clk <= ssp_clk_divider[5]; else - begin - if(ssp_clk_divider[4:0] == 5'd0)//[4:0] == 5'b00000) - ssp_clk <= 1'b1; - if(ssp_clk_divider[4:0] == 5'd16) //[4:0] == 5'b10000) - ssp_clk <= 1'b0; - end + // Get next bit at 424Khz + ssp_clk <= ssp_clk_divider[4]; end -//assign ssp_clk = ssp_clk_divider[4]; - // Divide SSP_CLK by 8 to produce the byte framing signal; the phase of // this is arbitrary, because it's just a bitstream. // One nasty issue, though: I can't make it work with both rx and tx at @@ -96,46 +81,45 @@ always @(negedge ssp_clk) ssp_frame_divider_from_arm <= (ssp_frame_divider_from_arm + 1); - +reg ssp_frame; always @(ssp_frame_divider_to_arm or ssp_frame_divider_from_arm or mod_type) - if(mod_type == 3'b000) // not modulating, so listening, to ARM + if(mod_type == `FPGA_HF_SIMULATOR_NO_MODULATION) // not modulating, so listening, to ARM ssp_frame = (ssp_frame_divider_to_arm == 3'b000); else - ssp_frame = (ssp_frame_divider_from_arm == 3'b000); + ssp_frame = (ssp_frame_divider_from_arm == 3'b000); // Synchronize up the after-hysteresis signal, to produce DIN. reg ssp_din; always @(posedge ssp_clk) ssp_din = after_hysteresis; -// Modulating carrier frequency is fc/16, reuse ssp_clk divider for that +// Modulating carrier frequency is fc/64 (212kHz) to fc/16 (848kHz). Reuse ssp_clk divider for that. reg modulating_carrier; -always @(mod_type or ssp_clk or ssp_dout) - if(mod_type == 3'b000) +always @(*) + if (mod_type == `FPGA_HF_SIMULATOR_NO_MODULATION) modulating_carrier <= 1'b0; // no modulation - else if(mod_type == 3'b001) + else if (mod_type == `FPGA_HF_SIMULATOR_MODULATE_BPSK) modulating_carrier <= ssp_dout ^ ssp_clk_divider[3]; // XOR means BPSK - else if(mod_type == 3'b010) - modulating_carrier <= ssp_dout & ssp_clk_divider[5]; // switch 212kHz subcarrier on/off - else if(mod_type == 3'b100 || mod_type == 3'b101) - modulating_carrier <= ssp_dout & ssp_clk_divider[4]; // switch 424kHz modulation on/off + else if (mod_type == `FPGA_HF_SIMULATOR_MODULATE_212K) + modulating_carrier <= ssp_dout & ssp_clk_divider[5]; // switch 212kHz subcarrier on/off + else if (mod_type == `FPGA_HF_SIMULATOR_MODULATE_424K || mod_type == `FPGA_HF_SIMULATOR_MODULATE_424K_8BIT) + modulating_carrier <= ssp_dout & ssp_clk_divider[4]; // switch 424kHz modulation on/off else modulating_carrier <= 1'b0; // yet unused -// This one is all LF, so doesn't matter -assign pwr_oe2 = modulating_carrier; -// Toggle only one of these, since we are already producing much deeper +// Load modulation. Toggle only one of these, since we are already producing much deeper // modulation than a real tag would. -assign pwr_oe1 = modulating_carrier; -assign pwr_oe4 = modulating_carrier; +assign pwr_hi = 1'b0; // HF antenna connected to GND +assign pwr_oe3 = 1'b0; // 10k Load +assign pwr_oe1 = modulating_carrier; // 33 Ohms Load +assign pwr_oe4 = modulating_carrier; // 33 Ohms Load + +// This is all LF and doesn't matter +assign pwr_lo = 1'b0; +assign pwr_oe2 = 1'b0; -// This one is always on, so that we can watch the carrier. -assign pwr_oe3 = 1'b0; -assign dbg = modulating_carrier; -//reg dbg; -//always @(ssp_dout) -// dbg <= ssp_dout; +assign dbg = ssp_din; endmodule