X-Git-Url: http://cvs.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/30f2a7d38fd35b2427a7eb42e1cd75fb1105f927..9d8f56e35d83e7691f6b018b01342419b7e0360b:/armsrc/appmain.c diff --git a/armsrc/appmain.c b/armsrc/appmain.c index bb733fef..eef208a7 100644 --- a/armsrc/appmain.c +++ b/armsrc/appmain.c @@ -1,792 +1,1024 @@ -//----------------------------------------------------------------------------- -// The main application code. This is the first thing called after start.c -// executes. -// Jonathan Westhues, Mar 2006 -// Edits by Gerhard de Koning Gans, Sep 2007 (##) -//----------------------------------------------------------------------------- -#include -#include "apps.h" -#include "fonts.h" -#include "LCD.h" - -// The large multi-purpose buffer, typically used to hold A/D samples, -// maybe pre-processed in some way. -DWORD BigBuf[16000]; - -//============================================================================= -// A buffer where we can queue things up to be sent through the FPGA, for -// any purpose (fake tag, as reader, whatever). We go MSB first, since that -// is the order in which they go out on the wire. -//============================================================================= - -BYTE ToSend[256]; -int ToSendMax; -static int ToSendBit; - -void ToSendReset(void) -{ - ToSendMax = -1; - ToSendBit = 8; -} - -void ToSendStuffBit(int b) -{ - if(ToSendBit >= 8) { - ToSendMax++; - ToSend[ToSendMax] = 0; - ToSendBit = 0; - } - - if(b) { - ToSend[ToSendMax] |= (1 << (7 - ToSendBit)); - } - - ToSendBit++; - - if(ToSendBit >= sizeof(ToSend)) { - ToSendBit = 0; - DbpString("ToSendStuffBit overflowed!"); - } -} - -//============================================================================= -// Debug print functions, to go out over USB, to the usual PC-side client. -//============================================================================= - -void DbpString(char *str) -{ - UsbCommand c; - c.cmd = CMD_DEBUG_PRINT_STRING; - c.ext1 = strlen(str); - memcpy(c.d.asBytes, str, c.ext1); - - UsbSendPacket((BYTE *)&c, sizeof(c)); - // TODO fix USB so stupid things like this aren't req'd - SpinDelay(50); -} - -void DbpIntegers(int x1, int x2, int x3) -{ - UsbCommand c; - c.cmd = CMD_DEBUG_PRINT_INTEGERS; - c.ext1 = x1; - c.ext2 = x2; - c.ext3 = x3; - - UsbSendPacket((BYTE *)&c, sizeof(c)); - // XXX - SpinDelay(50); -} - -void AcquireRawAdcSamples125k(BOOL at134khz) -{ - BYTE *dest = (BYTE *)BigBuf; - int n = sizeof(BigBuf); - int i; - - memset(dest,0,n); - - if(at134khz) { - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ); - } else { - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ); - } - - // Connect the A/D to the peak-detected low-frequency path. - SetAdcMuxFor(GPIO_MUXSEL_LOPKD); - - // Give it a bit of time for the resonant antenna to settle. - SpinDelay(50); - - // Now set up the SSC to get the ADC samples that are now streaming at us. - FpgaSetupSsc(); - - i = 0; - for(;;) { - if(SSC_STATUS & (SSC_STATUS_TX_READY)) { - SSC_TRANSMIT_HOLDING = 0x43; - LED_D_ON(); - } - if(SSC_STATUS & (SSC_STATUS_RX_READY)) { - dest[i] = (BYTE)SSC_RECEIVE_HOLDING; - i++; - LED_D_OFF(); - if(i >= n) { - break; - } - } - } - DbpIntegers(dest[0], dest[1], at134khz); -} - -//----------------------------------------------------------------------------- -// Read an ADC channel and block till it completes, then return the result -// in ADC units (0 to 1023). Also a routine to average 32 samples and -// return that. -//----------------------------------------------------------------------------- -static int ReadAdc(int ch) -{ - DWORD d; - - ADC_CONTROL = ADC_CONTROL_RESET; - ADC_MODE = ADC_MODE_PRESCALE(32) | ADC_MODE_STARTUP_TIME(16) | - ADC_MODE_SAMPLE_HOLD_TIME(8); - ADC_CHANNEL_ENABLE = ADC_CHANNEL(ch); - - ADC_CONTROL = ADC_CONTROL_START; - while(!(ADC_STATUS & ADC_END_OF_CONVERSION(ch))) - ; - d = ADC_CHANNEL_DATA(ch); - - return d; -} - -static int AvgAdc(int ch) -{ - int i; - int a = 0; - - for(i = 0; i < 32; i++) { - a += ReadAdc(ch); - } - - return (a + 15) >> 5; -} +//----------------------------------------------------------------------------- +// Jonathan Westhues, Mar 2006 +// Edits by Gerhard de Koning Gans, Sep 2007 (##) +// +// This code is licensed to you under the terms of the GNU GPL, version 2 or, +// at your option, any later version. See the LICENSE.txt file for the text of +// the license. +//----------------------------------------------------------------------------- +// The main application code. This is the first thing called after start.c +// executes. +//----------------------------------------------------------------------------- + +#include "usb_cdc.h" +#include "cmd.h" + +#include "proxmark3.h" +#include "apps.h" +#include "util.h" +#include "printf.h" +#include "string.h" + +#include + +#include "legicrf.h" +#include + +#ifdef WITH_LCD + #include "LCD.h" +#endif + +#define abs(x) ( ((x)<0) ? -(x) : (x) ) + +//============================================================================= +// A buffer where we can queue things up to be sent through the FPGA, for +// any purpose (fake tag, as reader, whatever). We go MSB first, since that +// is the order in which they go out on the wire. +//============================================================================= + +uint8_t ToSend[512]; +int ToSendMax; +static int ToSendBit; +struct common_area common_area __attribute__((section(".commonarea"))); + +void BufferClear(void) +{ + memset(BigBuf,0,sizeof(BigBuf)); + Dbprintf("Buffer cleared (%i bytes)",sizeof(BigBuf)); +} + +void ToSendReset(void) +{ + ToSendMax = -1; + ToSendBit = 8; +} + +void ToSendStuffBit(int b) +{ + if(ToSendBit >= 8) { + ToSendMax++; + ToSend[ToSendMax] = 0; + ToSendBit = 0; + } + + if(b) { + ToSend[ToSendMax] |= (1 << (7 - ToSendBit)); + } + + ToSendBit++; + + if(ToSendBit >= sizeof(ToSend)) { + ToSendBit = 0; + DbpString("ToSendStuffBit overflowed!"); + } +} + +//============================================================================= +// Debug print functions, to go out over USB, to the usual PC-side client. +//============================================================================= + +void DbpString(char *str) +{ + byte_t len = strlen(str); + cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(byte_t*)str,len); +// /* this holds up stuff unless we're connected to usb */ +// if (!UsbConnected()) +// return; +// +// UsbCommand c; +// c.cmd = CMD_DEBUG_PRINT_STRING; +// c.arg[0] = strlen(str); +// if(c.arg[0] > sizeof(c.d.asBytes)) { +// c.arg[0] = sizeof(c.d.asBytes); +// } +// memcpy(c.d.asBytes, str, c.arg[0]); +// +// UsbSendPacket((uint8_t *)&c, sizeof(c)); +// // TODO fix USB so stupid things like this aren't req'd +// SpinDelay(50); +} + +#if 0 +void DbpIntegers(int x1, int x2, int x3) +{ + cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0); +// /* this holds up stuff unless we're connected to usb */ +// if (!UsbConnected()) +// return; +// +// UsbCommand c; +// c.cmd = CMD_DEBUG_PRINT_INTEGERS; +// c.arg[0] = x1; +// c.arg[1] = x2; +// c.arg[2] = x3; +// +// UsbSendPacket((uint8_t *)&c, sizeof(c)); +// // XXX +// SpinDelay(50); +} +#endif + +void Dbprintf(const char *fmt, ...) { +// should probably limit size here; oh well, let's just use a big buffer + char output_string[128]; + va_list ap; + + va_start(ap, fmt); + kvsprintf(fmt, output_string, 10, ap); + va_end(ap); + + DbpString(output_string); +} + +// prints HEX & ASCII +void Dbhexdump(int len, uint8_t *d, bool bAsci) { + int l=0,i; + char ascii[9]; + + while (len>0) { + if (len>8) l=8; + else l=len; + + memcpy(ascii,d,l); + ascii[l]=0; + + // filter safe ascii + for (i=0;i126) ascii[i]='.'; + + if (bAsci) { + Dbprintf("%-8s %*D",ascii,l,d," "); + } else { + Dbprintf("%*D",l,d," "); + } + + len-=8; + d+=8; + } +} + +//----------------------------------------------------------------------------- +// Read an ADC channel and block till it completes, then return the result +// in ADC units (0 to 1023). Also a routine to average 32 samples and +// return that. +//----------------------------------------------------------------------------- +static int ReadAdc(int ch) +{ + uint32_t d; + + AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST; + AT91C_BASE_ADC->ADC_MR = + ADC_MODE_PRESCALE(32) | + ADC_MODE_STARTUP_TIME(16) | + ADC_MODE_SAMPLE_HOLD_TIME(8); + AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch); + + AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; + while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch))) + ; + d = AT91C_BASE_ADC->ADC_CDR[ch]; + + return d; +} + +int AvgAdc(int ch) // was static - merlok +{ + int i; + int a = 0; + + for(i = 0; i < 32; i++) { + a += ReadAdc(ch); + } + + return (a + 15) >> 5; +} + +void MeasureAntennaTuning(void) +{ + uint8_t *dest = (uint8_t *)BigBuf+FREE_BUFFER_OFFSET; + int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; //ptr = 0 + int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV + +// UsbCommand c; + + LED_B_ON(); + DbpString("Measuring antenna characteristics, please wait..."); + memset(dest,0,sizeof(FREE_BUFFER_SIZE)); /* * Sweeps the useful LF range of the proxmark from * 46.8kHz (divisor=255) to 600kHz (divisor=19) and - * reads the voltage in the antenna: the result is a graph - * which should clearly show the resonating frequency of your - * LF antenna ( hopefully around 90 if it is tuned to 125kHz!) - */ -void SweepLFrange() -{ - BYTE *dest = (BYTE *)BigBuf; - int i; - - // clear buffer - memset(BigBuf,0,sizeof(BigBuf)); - - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); - for (i=255; i>19; i--) { - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i); - SpinDelay(20); - dest[i] = (137500 * AvgAdc(4)) >> 18; - } -} - -void MeasureAntennaTuning(void) -{ -// Impedances are Zc = 1/(j*omega*C), in ohms -#define LF_TUNING_CAP_Z 1273 // 1 nF @ 125 kHz -#define HF_TUNING_CAP_Z 235 // 50 pF @ 13.56 MHz - - int vLf125, vLf134, vHf; // in mV - - UsbCommand c; - - // Let the FPGA drive the low-frequency antenna around 125 kHz. - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ); - SpinDelay(20); - vLf125 = AvgAdc(4); - // Vref = 3.3V, and a 10000:240 voltage divider on the input - // can measure voltages up to 137500 mV - vLf125 = (137500 * vLf125) >> 10; - - // Let the FPGA drive the low-frequency antenna around 134 kHz. - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ); - SpinDelay(20); - vLf134 = AvgAdc(4); - // Vref = 3.3V, and a 10000:240 voltage divider on the input - // can measure voltages up to 137500 mV - vLf134 = (137500 * vLf134) >> 10; - - // Let the FPGA drive the high-frequency antenna around 13.56 MHz. - FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); - SpinDelay(20); - vHf = AvgAdc(5); - // Vref = 3300mV, and an 10:1 voltage divider on the input - // can measure voltages up to 33000 mV - vHf = (33000 * vHf) >> 10; - - c.cmd = CMD_MEASURED_ANTENNA_TUNING; - c.ext1 = (vLf125 << 0) | (vLf134 << 16); - c.ext2 = vHf; - c.ext3 = (LF_TUNING_CAP_Z << 0) | (HF_TUNING_CAP_Z << 16); - UsbSendPacket((BYTE *)&c, sizeof(c)); -} - -void SimulateTagLowFrequency(int period) -{ - int i; - BYTE *tab = (BYTE *)BigBuf; - - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR); - - PIO_ENABLE = (1 << GPIO_SSC_DOUT) | (1 << GPIO_SSC_CLK); - - PIO_OUTPUT_ENABLE = (1 << GPIO_SSC_DOUT); - PIO_OUTPUT_DISABLE = (1 << GPIO_SSC_CLK); - -#define SHORT_COIL() LOW(GPIO_SSC_DOUT) -#define OPEN_COIL() HIGH(GPIO_SSC_DOUT) - - i = 0; - for(;;) { - while(!(PIO_PIN_DATA_STATUS & (1<0xFFF) { - DbpString("Tags can only have 44 bits."); - return; - } - fc(0,&n); - // special start of frame marker containing invalid bit sequences - fc(8, &n); fc(8, &n); // invalid - fc(8, &n); fc(10, &n); // logical 0 - fc(10, &n); fc(10, &n); // invalid - fc(8, &n); fc(10, &n); // logical 0 - - WDT_HIT(); - // manchester encode bits 43 to 32 - for (i=11; i>=0; i--) { - if ((i%4)==3) fc(0,&n); - if ((hi>>i)&1) { - fc(10, &n); fc(8, &n); // low-high transition - } else { - fc(8, &n); fc(10, &n); // high-low transition - } - } - - WDT_HIT(); - // manchester encode bits 31 to 0 - for (i=31; i>=0; i--) { - if ((i%4)==3) fc(0,&n); - if ((lo>>i)&1) { - fc(10, &n); fc(8, &n); // low-high transition - } else { - fc(8, &n); fc(10, &n); // high-low transition - } - } - - LED_A_ON(); - SimulateTagLowFrequency(n); - LED_A_OFF(); -} - -// loop to capture raw HID waveform then FSK demodulate the TAG ID from it -static void CmdHIDdemodFSK(void) -{ - BYTE *dest = (BYTE *)BigBuf; - int m=0, n=0, i=0, idx=0, found=0, lastval=0; - DWORD hi=0, lo=0; - - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ); - - // Connect the A/D to the peak-detected low-frequency path. - SetAdcMuxFor(GPIO_MUXSEL_LOPKD); - - // Give it a bit of time for the resonant antenna to settle. - SpinDelay(50); - - // Now set up the SSC to get the ADC samples that are now streaming at us. - FpgaSetupSsc(); - - for(;;) { - WDT_HIT(); - LED_A_ON(); - if(BUTTON_PRESS()) { - LED_A_OFF(); - return; - } - - i = 0; - m = sizeof(BigBuf); - memset(dest,128,m); - for(;;) { - if(SSC_STATUS & (SSC_STATUS_TX_READY)) { - SSC_TRANSMIT_HOLDING = 0x43; - LED_D_ON(); - } - if(SSC_STATUS & (SSC_STATUS_RX_READY)) { - dest[i] = (BYTE)SSC_RECEIVE_HOLDING; - // we don't care about actual value, only if it's more or less than a - // threshold essentially we capture zero crossings for later analysis - if(dest[i] < 127) dest[i] = 0; else dest[i] = 1; - i++; - LED_D_OFF(); - if(i >= m) { - break; - } - } - } - - // FSK demodulator - - // sync to first lo-hi transition - for( idx=1; idx>1)&0xffff); - hi=0; - lo=0; - found=0; - } - } - if (found) { - if (dest[idx] && (!dest[idx+1]) ) { - hi=(hi<<1)|(lo>>31); - lo=(lo<<1)|0; - } else if ( (!dest[idx]) && dest[idx+1]) { - hi=(hi<<1)|(lo>>31); - lo=(lo<<1)|1; - } else { - found=0; - hi=0; - lo=0; - } - idx++; - } - if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) ) - { - found=1; - idx+=6; - if (found && (hi|lo)) { - DbpString("TAG ID"); - DbpIntegers(hi, lo, (lo>>1)&0xffff); - hi=0; - lo=0; - found=0; - } - } - } - WDT_HIT(); - } -} - -void SimulateTagHfListen(void) -{ - BYTE *dest = (BYTE *)BigBuf; - int n = sizeof(BigBuf); - BYTE v = 0; - int i; - int p = 0; - - // We're using this mode just so that I can test it out; the simulated - // tag mode would work just as well and be simpler. - FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP); - - // We need to listen to the high-frequency, peak-detected path. - SetAdcMuxFor(GPIO_MUXSEL_HIPKD); - - FpgaSetupSsc(); - - i = 0; - for(;;) { - if(SSC_STATUS & (SSC_STATUS_TX_READY)) { - SSC_TRANSMIT_HOLDING = 0xff; - } - if(SSC_STATUS & (SSC_STATUS_RX_READY)) { - BYTE r = (BYTE)SSC_RECEIVE_HOLDING; - - v <<= 1; - if(r & 1) { - v |= 1; - } - p++; - - if(p >= 8) { - dest[i] = v; - v = 0; - p = 0; - i++; - - if(i >= n) { - break; - } - } - } - } - DbpString("simulate tag (now type bitsamples)"); -} - -void UsbPacketReceived(BYTE *packet, int len) -{ - UsbCommand *c = (UsbCommand *)packet; - - switch(c->cmd) { - case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K: - AcquireRawAdcSamples125k(c->ext1); - break; - - case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693: - AcquireRawAdcSamplesIso15693(); - break; - - case CMD_READER_ISO_15693: - ReaderIso15693(c->ext1); - break; - - case CMD_SIMTAG_ISO_15693: - SimTagIso15693(c->ext1); - break; - - case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443: - AcquireRawAdcSamplesIso14443(c->ext1); - break; - - case CMD_READER_ISO_14443a: - ReaderIso14443a(c->ext1); - break; - - case CMD_SNOOP_ISO_14443: - SnoopIso14443(); - break; - - case CMD_SNOOP_ISO_14443a: - SnoopIso14443a(); - break; - - case CMD_SIMULATE_TAG_HF_LISTEN: - SimulateTagHfListen(); - break; - - case CMD_SIMULATE_TAG_ISO_14443: - SimulateIso14443Tag(); - break; - - case CMD_SIMULATE_TAG_ISO_14443a: - SimulateIso14443aTag(c->ext1, c->ext2); // ## Simulate iso14443a tag - pass tag type & UID - break; - - case CMD_MEASURE_ANTENNA_TUNING: - MeasureAntennaTuning(); - break; - - case CMD_HID_DEMOD_FSK: - CmdHIDdemodFSK(); // Demodulate HID tag - break; - - case CMD_HID_SIM_TAG: - CmdHIDsimTAG(c->ext1, c->ext2); // Simulate HID tag by ID - break; - - case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control - LED_C_ON(); - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); - SpinDelay(200); - LED_C_OFF(); - break; - - case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K: - case CMD_DOWNLOAD_RAW_BITS_TI_TYPE: { - UsbCommand n; - if(c->cmd == CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K) { - n.cmd = CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K; - } else { - n.cmd = CMD_DOWNLOADED_RAW_BITS_TI_TYPE; - } - n.ext1 = c->ext1; - memcpy(n.d.asDwords, BigBuf+c->ext1, 12*sizeof(DWORD)); - UsbSendPacket((BYTE *)&n, sizeof(n)); - break; - } - case CMD_DOWNLOADED_SIM_SAMPLES_125K: { - BYTE *b = (BYTE *)BigBuf; - memcpy(b+c->ext1, c->d.asBytes, 48); - break; - } - case CMD_SIMULATE_TAG_125K: - LED_A_ON(); - SimulateTagLowFrequency(c->ext1); - LED_A_OFF(); - break; - - case CMD_LCD_RESET: - LCDReset(); - break; - - case CMD_SWEEP_LF: - SweepLFrange(); - break; - - case CMD_SET_LF_DIVISOR: - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->ext1); - break; - - case CMD_LCD: - LCDSend(c->ext1); - break; - - case CMD_SETUP_WRITE: - case CMD_FINISH_WRITE: - USB_D_PLUS_PULLUP_OFF(); - SpinDelay(1000); - SpinDelay(1000); - RSTC_CONTROL = RST_CONTROL_KEY | RST_CONTROL_PROCESSOR_RESET; - for(;;) { - // We're going to reset, and the bootrom will take control. - } - break; - - default: - DbpString("unknown command"); - break; - } -} - -void AppMain(void) -{ - memset(BigBuf,0,sizeof(BigBuf)); - SpinDelay(100); - - LED_D_OFF(); - LED_C_OFF(); - LED_B_OFF(); - LED_A_OFF(); - - UsbStart(); - - // The FPGA gets its clock from us from PCK0 output, so set that up. - PIO_PERIPHERAL_B_SEL = (1 << GPIO_PCK0); - PIO_DISABLE = (1 << GPIO_PCK0); - PMC_SYS_CLK_ENABLE = PMC_SYS_CLK_PROGRAMMABLE_CLK_0; - // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz - PMC_PROGRAMMABLE_CLK_0 = PMC_CLK_SELECTION_PLL_CLOCK | - PMC_CLK_PRESCALE_DIV_4; - PIO_OUTPUT_ENABLE = (1 << GPIO_PCK0); - - // Reset SPI - SPI_CONTROL = SPI_CONTROL_RESET; - // Reset SSC - SSC_CONTROL = SSC_CONTROL_RESET; - - // Load the FPGA image, which we have stored in our flash. - FpgaDownloadAndGo(); - - LCDInit(); - - // test text on different colored backgrounds - LCDString(" The quick brown fox ", &FONT6x8,1,1+8*0,WHITE ,BLACK ); - LCDString(" jumped over the ", &FONT6x8,1,1+8*1,BLACK ,WHITE ); - LCDString(" lazy dog. ", &FONT6x8,1,1+8*2,YELLOW ,RED ); - LCDString(" AaBbCcDdEeFfGgHhIiJj ", &FONT6x8,1,1+8*3,RED ,GREEN ); - LCDString(" KkLlMmNnOoPpQqRrSsTt ", &FONT6x8,1,1+8*4,MAGENTA,BLUE ); - LCDString("UuVvWwXxYyZz0123456789", &FONT6x8,1,1+8*5,BLUE ,YELLOW); - LCDString("`-=[]_;',./~!@#$%^&*()", &FONT6x8,1,1+8*6,BLACK ,CYAN ); - LCDString(" _+{}|:\\\"<>? ",&FONT6x8,1,1+8*7,BLUE ,MAGENTA); - - // color bands - LCDFill(0, 1+8* 8, 132, 8, BLACK); - LCDFill(0, 1+8* 9, 132, 8, WHITE); - LCDFill(0, 1+8*10, 132, 8, RED); - LCDFill(0, 1+8*11, 132, 8, GREEN); - LCDFill(0, 1+8*12, 132, 8, BLUE); - LCDFill(0, 1+8*13, 132, 8, YELLOW); - LCDFill(0, 1+8*14, 132, 8, CYAN); - LCDFill(0, 1+8*15, 132, 8, MAGENTA); - - for(;;) { - UsbPoll(FALSE); - WDT_HIT(); - } -} - -void SpinDelay(int ms) -{ - int ticks = (48000*ms) >> 10; - - // Borrow a PWM unit for my real-time clock - PWM_ENABLE = PWM_CHANNEL(0); - // 48 MHz / 1024 gives 46.875 kHz - PWM_CH_MODE(0) = PWM_CH_MODE_PRESCALER(10); - PWM_CH_DUTY_CYCLE(0) = 0; - PWM_CH_PERIOD(0) = 0xffff; - - WORD start = (WORD)PWM_CH_COUNTER(0); - - for(;;) { - WORD now = (WORD)PWM_CH_COUNTER(0); - if(now == (WORD)(start + ticks)) { - return; - } - WDT_HIT(); - } -} + * read the voltage in the antenna, the result left + * in the buffer is a graph which should clearly show + * the resonating frequency of your LF antenna + * ( hopefully around 95 if it is tuned to 125kHz!) + */ + + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); + for (i=255; i>19; i--) { + WDT_HIT(); + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i); + SpinDelay(20); + // Vref = 3.3V, and a 10000:240 voltage divider on the input + // can measure voltages up to 137500 mV + adcval = ((137500 * AvgAdc(ADC_CHAN_LF)) >> 10); + if (i==95) vLf125 = adcval; // voltage at 125Khz + if (i==89) vLf134 = adcval; // voltage at 134Khz + + dest[i] = adcval>>8; // scale int to fit in byte for graphing purposes + if(dest[i] > peak) { + peakv = adcval; + peak = dest[i]; + peakf = i; + //ptr = i; + } + } + + LED_A_ON(); + // Let the FPGA drive the high-frequency antenna around 13.56 MHz. + FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); + SpinDelay(20); + // Vref = 3300mV, and an 10:1 voltage divider on the input + // can measure voltages up to 33000 mV + vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10; + +// c.cmd = CMD_MEASURED_ANTENNA_TUNING; +// c.arg[0] = (vLf125 << 0) | (vLf134 << 16); +// c.arg[1] = vHf; +// c.arg[2] = peakf | (peakv << 16); + + DbpString("Measuring complete, sending report back to host"); + cmd_send(CMD_MEASURED_ANTENNA_TUNING,vLf125|(vLf134<<16),vHf,peakf|(peakv<<16),0,0); +// UsbSendPacket((uint8_t *)&c, sizeof(c)); + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + LED_A_OFF(); + LED_B_OFF(); + return; +} + +void MeasureAntennaTuningHf(void) +{ + int vHf = 0; // in mV + + DbpString("Measuring HF antenna, press button to exit"); + + for (;;) { + // Let the FPGA drive the high-frequency antenna around 13.56 MHz. + FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); + SpinDelay(20); + // Vref = 3300mV, and an 10:1 voltage divider on the input + // can measure voltages up to 33000 mV + vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10; + + Dbprintf("%d mV",vHf); + if (BUTTON_PRESS()) break; + } + DbpString("cancelled"); +} + + +void SimulateTagHfListen(void) +{ + uint8_t *dest = (uint8_t *)BigBuf+FREE_BUFFER_OFFSET; + uint8_t v = 0; + int i; + int p = 0; + + // We're using this mode just so that I can test it out; the simulated + // tag mode would work just as well and be simpler. + FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP); + + // We need to listen to the high-frequency, peak-detected path. + SetAdcMuxFor(GPIO_MUXSEL_HIPKD); + + FpgaSetupSsc(); + + i = 0; + for(;;) { + if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { + AT91C_BASE_SSC->SSC_THR = 0xff; + } + if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { + uint8_t r = (uint8_t)AT91C_BASE_SSC->SSC_RHR; + + v <<= 1; + if(r & 1) { + v |= 1; + } + p++; + + if(p >= 8) { + dest[i] = v; + v = 0; + p = 0; + i++; + + if(i >= FREE_BUFFER_SIZE) { + break; + } + } + } + } + DbpString("simulate tag (now type bitsamples)"); +} + +void ReadMem(int addr) +{ + const uint8_t *data = ((uint8_t *)addr); + + Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x", + addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]); +} + +/* osimage version information is linked in */ +extern struct version_information version_information; +/* bootrom version information is pointed to from _bootphase1_version_pointer */ +extern char *_bootphase1_version_pointer, _flash_start, _flash_end; +void SendVersion(void) +{ + char temp[48]; /* Limited data payload in USB packets */ + DbpString("Prox/RFID mark3 RFID instrument"); + + /* Try to find the bootrom version information. Expect to find a pointer at + * symbol _bootphase1_version_pointer, perform slight sanity checks on the + * pointer, then use it. + */ + char *bootrom_version = *(char**)&_bootphase1_version_pointer; + if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) { + DbpString("bootrom version information appears invalid"); + } else { + FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version); + DbpString(temp); + } + + FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information); + DbpString(temp); + + FpgaGatherVersion(temp, sizeof(temp)); + DbpString(temp); +} + +#ifdef WITH_LF +// samy's sniff and repeat routine +void SamyRun() +{ + DbpString("Stand-alone mode! No PC necessary."); + + // 3 possible options? no just 2 for now +#define OPTS 2 + + int high[OPTS], low[OPTS]; + + // Oooh pretty -- notify user we're in elite samy mode now + LED(LED_RED, 200); + LED(LED_ORANGE, 200); + LED(LED_GREEN, 200); + LED(LED_ORANGE, 200); + LED(LED_RED, 200); + LED(LED_ORANGE, 200); + LED(LED_GREEN, 200); + LED(LED_ORANGE, 200); + LED(LED_RED, 200); + + int selected = 0; + int playing = 0; + + // Turn on selected LED + LED(selected + 1, 0); + + for (;;) + { +// UsbPoll(FALSE); + usb_poll(); + WDT_HIT(); + + // Was our button held down or pressed? + int button_pressed = BUTTON_HELD(1000); + SpinDelay(300); + + // Button was held for a second, begin recording + if (button_pressed > 0) + { + LEDsoff(); + LED(selected + 1, 0); + LED(LED_RED2, 0); + + // record + DbpString("Starting recording"); + + // wait for button to be released + while(BUTTON_PRESS()) + WDT_HIT(); + + /* need this delay to prevent catching some weird data */ + SpinDelay(500); + + CmdHIDdemodFSK(1, &high[selected], &low[selected], 0); + Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]); + + LEDsoff(); + LED(selected + 1, 0); + // Finished recording + + // If we were previously playing, set playing off + // so next button push begins playing what we recorded + playing = 0; + } + + // Change where to record (or begin playing) + else if (button_pressed) + { + // Next option if we were previously playing + if (playing) + selected = (selected + 1) % OPTS; + playing = !playing; + + LEDsoff(); + LED(selected + 1, 0); + + // Begin transmitting + if (playing) + { + LED(LED_GREEN, 0); + DbpString("Playing"); + // wait for button to be released + while(BUTTON_PRESS()) + WDT_HIT(); + Dbprintf("%x %x %x", selected, high[selected], low[selected]); + CmdHIDsimTAG(high[selected], low[selected], 0); + DbpString("Done playing"); + if (BUTTON_HELD(1000) > 0) + { + DbpString("Exiting"); + LEDsoff(); + return; + } + + /* We pressed a button so ignore it here with a delay */ + SpinDelay(300); + + // when done, we're done playing, move to next option + selected = (selected + 1) % OPTS; + playing = !playing; + LEDsoff(); + LED(selected + 1, 0); + } + else + while(BUTTON_PRESS()) + WDT_HIT(); + } + } +} +#endif + +/* +OBJECTIVE +Listen and detect an external reader. Determine the best location +for the antenna. + +INSTRUCTIONS: +Inside the ListenReaderField() function, there is two mode. +By default, when you call the function, you will enter mode 1. +If you press the PM3 button one time, you will enter mode 2. +If you press the PM3 button a second time, you will exit the function. + +DESCRIPTION OF MODE 1: +This mode just listens for an external reader field and lights up green +for HF and/or red for LF. This is the original mode of the detectreader +function. + +DESCRIPTION OF MODE 2: +This mode will visually represent, using the LEDs, the actual strength of the +current compared to the maximum current detected. Basically, once you know +what kind of external reader is present, it will help you spot the best location to place +your antenna. You will probably not get some good results if there is a LF and a HF reader +at the same place! :-) + +LIGHT SCHEME USED: +*/ +static const char LIGHT_SCHEME[] = { + 0x0, /* ---- | No field detected */ + 0x1, /* X--- | 14% of maximum current detected */ + 0x2, /* -X-- | 29% of maximum current detected */ + 0x4, /* --X- | 43% of maximum current detected */ + 0x8, /* ---X | 57% of maximum current detected */ + 0xC, /* --XX | 71% of maximum current detected */ + 0xE, /* -XXX | 86% of maximum current detected */ + 0xF, /* XXXX | 100% of maximum current detected */ +}; +static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]); + +void ListenReaderField(int limit) +{ + int lf_av, lf_av_new, lf_baseline= 0, lf_count= 0, lf_max; + int hf_av, hf_av_new, hf_baseline= 0, hf_count= 0, hf_max; + int mode=1, display_val, display_max, i; + +#define LF_ONLY 1 +#define HF_ONLY 2 + + LEDsoff(); + + lf_av=lf_max=ReadAdc(ADC_CHAN_LF); + + if(limit != HF_ONLY) { + Dbprintf("LF 125/134 Baseline: %d", lf_av); + lf_baseline = lf_av; + } + + hf_av=hf_max=ReadAdc(ADC_CHAN_HF); + + if (limit != LF_ONLY) { + Dbprintf("HF 13.56 Baseline: %d", hf_av); + hf_baseline = hf_av; + } + + for(;;) { + if (BUTTON_PRESS()) { + SpinDelay(500); + switch (mode) { + case 1: + mode=2; + DbpString("Signal Strength Mode"); + break; + case 2: + default: + DbpString("Stopped"); + LEDsoff(); + return; + break; + } + } + WDT_HIT(); + + if (limit != HF_ONLY) { + if(mode==1) { + if (abs(lf_av - lf_baseline) > 10) LED_D_ON(); + else LED_D_OFF(); + } + + ++lf_count; + lf_av_new= ReadAdc(ADC_CHAN_LF); + // see if there's a significant change + if(abs(lf_av - lf_av_new) > 10) { + Dbprintf("LF 125/134 Field Change: %x %x %x", lf_av, lf_av_new, lf_count); + lf_av = lf_av_new; + if (lf_av > lf_max) + lf_max = lf_av; + lf_count= 0; + } + } + + if (limit != LF_ONLY) { + if (mode == 1){ + if (abs(hf_av - hf_baseline) > 10) LED_B_ON(); + else LED_B_OFF(); + } + + ++hf_count; + hf_av_new= ReadAdc(ADC_CHAN_HF); + // see if there's a significant change + if(abs(hf_av - hf_av_new) > 10) { + Dbprintf("HF 13.56 Field Change: %x %x %x", hf_av, hf_av_new, hf_count); + hf_av = hf_av_new; + if (hf_av > hf_max) + hf_max = hf_av; + hf_count= 0; + } + } + + if(mode == 2) { + if (limit == LF_ONLY) { + display_val = lf_av; + display_max = lf_max; + } else if (limit == HF_ONLY) { + display_val = hf_av; + display_max = hf_max; + } else { /* Pick one at random */ + if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) { + display_val = hf_av; + display_max = hf_max; + } else { + display_val = lf_av; + display_max = lf_max; + } + } + for (i=0; i= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) { + if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF(); + if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF(); + if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF(); + if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF(); + break; + } + } + } + } +} + +void UsbPacketReceived(uint8_t *packet, int len) +{ + UsbCommand *c = (UsbCommand *)packet; + +// Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]); + + switch(c->cmd) { +#ifdef WITH_LF + case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K: + AcquireRawAdcSamples125k(c->arg[0]); + cmd_send(CMD_ACK,0,0,0,0,0); + break; + case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K: + ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes); + break; + case CMD_HID_DEMOD_FSK: + CmdHIDdemodFSK(0, 0, 0, 1); // Demodulate HID tag + break; + case CMD_HID_SIM_TAG: + CmdHIDsimTAG(c->arg[0], c->arg[1], 1); // Simulate HID tag by ID + break; + case CMD_HID_CLONE_TAG: // Clone HID tag by ID to T55x7 + CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]); + break; + case CMD_EM410X_WRITE_TAG: + WriteEM410x(c->arg[0], c->arg[1], c->arg[2]); + break; + case CMD_READ_TI_TYPE: + ReadTItag(); + break; + case CMD_WRITE_TI_TYPE: + WriteTItag(c->arg[0],c->arg[1],c->arg[2]); + break; + case CMD_SIMULATE_TAG_125K: + LED_A_ON(); + SimulateTagLowFrequency(c->arg[0], c->arg[1], 1); + LED_A_OFF(); + break; + case CMD_LF_SIMULATE_BIDIR: + SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]); + break; + case CMD_INDALA_CLONE_TAG: // Clone Indala 64-bit tag by UID to T55x7 + CopyIndala64toT55x7(c->arg[0], c->arg[1]); + break; + case CMD_INDALA_CLONE_TAG_L: // Clone Indala 224-bit tag by UID to T55x7 + CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]); + break; + case CMD_T55XX_READ_BLOCK: + T55xxReadBlock(c->arg[1], c->arg[2],c->d.asBytes[0]); + break; + case CMD_T55XX_WRITE_BLOCK: + T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]); + break; + case CMD_T55XX_READ_TRACE: // Clone HID tag by ID to T55x7 + T55xxReadTrace(); + break; + case CMD_PCF7931_READ: // Read PCF7931 tag + ReadPCF7931(); + cmd_send(CMD_ACK,0,0,0,0,0); +// UsbSendPacket((uint8_t*)&ack, sizeof(ack)); + break; + case CMD_EM4X_READ_WORD: + EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]); + break; + case CMD_EM4X_WRITE_WORD: + EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]); + break; +#endif + +#ifdef WITH_HITAG + case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type + SnoopHitag(c->arg[0]); + break; + case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content + SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes); + break; + case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function + ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes); + break; +#endif + +#ifdef WITH_ISO15693 + case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693: + AcquireRawAdcSamplesIso15693(); + break; + case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693: + RecordRawAdcSamplesIso15693(); + break; + + case CMD_ISO_15693_COMMAND: + DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes); + break; + + case CMD_ISO_15693_FIND_AFI: + BruteforceIso15693Afi(c->arg[0]); + break; + + case CMD_ISO_15693_DEBUG: + SetDebugIso15693(c->arg[0]); + break; + + case CMD_READER_ISO_15693: + ReaderIso15693(c->arg[0]); + break; + case CMD_SIMTAG_ISO_15693: + SimTagIso15693(c->arg[0]); + break; +#endif + +#ifdef WITH_LEGICRF + case CMD_SIMULATE_TAG_LEGIC_RF: + LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]); + break; + + case CMD_WRITER_LEGIC_RF: + LegicRfWriter(c->arg[1], c->arg[0]); + break; + + case CMD_READER_LEGIC_RF: + LegicRfReader(c->arg[0], c->arg[1]); + break; +#endif + +#ifdef WITH_ISO14443b + case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443: + AcquireRawAdcSamplesIso14443(c->arg[0]); + break; + case CMD_READ_SRI512_TAG: + ReadSRI512Iso14443(c->arg[0]); + break; + case CMD_READ_SRIX4K_TAG: + ReadSRIX4KIso14443(c->arg[0]); + break; + case CMD_SNOOP_ISO_14443: + SnoopIso14443(); + break; + case CMD_SIMULATE_TAG_ISO_14443: + SimulateIso14443Tag(); + break; +#endif + +#ifdef WITH_ISO14443a + case CMD_SNOOP_ISO_14443a: + SnoopIso14443a(c->arg[0]); + break; + case CMD_READER_ISO_14443a: + ReaderIso14443a(c); + break; + case CMD_SIMULATE_TAG_ISO_14443a: + SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2]); // ## Simulate iso14443a tag - pass tag type & UID + break; + case CMD_EPA_PACE_COLLECT_NONCE: + EPA_PACE_Collect_Nonce(c); + break; + + case CMD_READER_MIFARE: + ReaderMifare(c->arg[0]); + break; + case CMD_MIFARE_READBL: + MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); + break; + case CMD_MIFARE_READSC: + MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); + break; + case CMD_MIFARE_WRITEBL: + MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); + break; + case CMD_MIFARE_NESTED: + MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); + break; + case CMD_MIFARE_CHKKEYS: + MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); + break; + case CMD_SIMULATE_MIFARE_CARD: + Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); + break; + + // emulator + case CMD_MIFARE_SET_DBGMODE: + MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); + break; + case CMD_MIFARE_EML_MEMCLR: + MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); + break; + case CMD_MIFARE_EML_MEMSET: + MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); + break; + case CMD_MIFARE_EML_MEMGET: + MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); + break; + case CMD_MIFARE_EML_CARDLOAD: + MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); + break; + + // Work with "magic Chinese" card + case CMD_MIFARE_EML_CSETBLOCK: + MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); + break; + case CMD_MIFARE_EML_CGETBLOCK: + MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); + break; + + // mifare sniffer + case CMD_MIFARE_SNIFFER: + SniffMifare(c->arg[0]); + break; +#endif + +#ifdef WITH_ICLASS + // Makes use of ISO14443a FPGA Firmware + case CMD_SNOOP_ICLASS: + SnoopIClass(); + break; + case CMD_SIMULATE_TAG_ICLASS: + SimulateIClass(c->arg[0], c->d.asBytes); + break; + case CMD_READER_ICLASS: + ReaderIClass(c->arg[0]); + break; +#endif + + case CMD_SIMULATE_TAG_HF_LISTEN: + SimulateTagHfListen(); + break; + + case CMD_BUFF_CLEAR: + BufferClear(); + break; + + case CMD_MEASURE_ANTENNA_TUNING: + MeasureAntennaTuning(); + break; + + case CMD_MEASURE_ANTENNA_TUNING_HF: + MeasureAntennaTuningHf(); + break; + + case CMD_LISTEN_READER_FIELD: + ListenReaderField(c->arg[0]); + break; + + case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + SpinDelay(200); + LED_D_OFF(); // LED D indicates field ON or OFF + break; + + case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K: { +// UsbCommand n; +// if(c->cmd == CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K) { +// n.cmd = CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K; +// } else { +// n.cmd = CMD_DOWNLOADED_RAW_BITS_TI_TYPE; +// } +// n.arg[0] = c->arg[0]; + // memcpy(n.d.asBytes, BigBuf+c->arg[0], 48); // 12*sizeof(uint32_t) + // LED_B_ON(); + // usb_write((uint8_t *)&n, sizeof(n)); + // UsbSendPacket((uint8_t *)&n, sizeof(n)); + // LED_B_OFF(); + + LED_B_ON(); + for(size_t i=0; iarg[1]; i += USB_CMD_DATA_SIZE) { + size_t len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE); + cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,0,((byte_t*)BigBuf)+c->arg[0]+i,len); + } + // Trigger a finish downloading signal with an ACK frame + cmd_send(CMD_ACK,0,0,0,0,0); + LED_B_OFF(); + } break; + + case CMD_DOWNLOADED_SIM_SAMPLES_125K: { + uint8_t *b = (uint8_t *)BigBuf; + memcpy(b+c->arg[0], c->d.asBytes, 48); + //Dbprintf("copied 48 bytes to %i",b+c->arg[0]); +// UsbSendPacket((uint8_t*)&ack, sizeof(ack)); + cmd_send(CMD_ACK,0,0,0,0,0); + } break; + + case CMD_READ_MEM: + ReadMem(c->arg[0]); + break; + + case CMD_SET_LF_DIVISOR: + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]); + break; + + case CMD_SET_ADC_MUX: + switch(c->arg[0]) { + case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break; + case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break; + case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break; + case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break; + } + break; + + case CMD_VERSION: + SendVersion(); + break; + +#ifdef WITH_LCD + case CMD_LCD_RESET: + LCDReset(); + break; + case CMD_LCD: + LCDSend(c->arg[0]); + break; +#endif + case CMD_SETUP_WRITE: + case CMD_FINISH_WRITE: + case CMD_HARDWARE_RESET: { + usb_disable(); + SpinDelay(1000); + SpinDelay(1000); + AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST; + for(;;) { + // We're going to reset, and the bootrom will take control. + } + } break; + + case CMD_START_FLASH: { + if(common_area.flags.bootrom_present) { + common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE; + } + usb_disable(); + AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST; + for(;;); + } break; + + case CMD_DEVICE_INFO: { + uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS; + if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT; +// UsbSendPacket((uint8_t*)&c, sizeof(c)); + cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0); + } break; + + default: { + Dbprintf("%s: 0x%04x","unknown command:",c->cmd); + } break; + } +} + +void __attribute__((noreturn)) AppMain(void) +{ + SpinDelay(100); + + if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) { + /* Initialize common area */ + memset(&common_area, 0, sizeof(common_area)); + common_area.magic = COMMON_AREA_MAGIC; + common_area.version = 1; + } + common_area.flags.osimage_present = 1; + + LED_D_OFF(); + LED_C_OFF(); + LED_B_OFF(); + LED_A_OFF(); + + // Init USB device` + usb_enable(); +// UsbStart(); + + // The FPGA gets its clock from us from PCK0 output, so set that up. + AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0; + AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0; + AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0; + // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz + AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK | + AT91C_PMC_PRES_CLK_4; + AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0; + + // Reset SPI + AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST; + // Reset SSC + AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST; + + // Load the FPGA image, which we have stored in our flash. + FpgaDownloadAndGo(); + + StartTickCount(); + +#ifdef WITH_LCD + LCDInit(); +#endif + + byte_t rx[sizeof(UsbCommand)]; + size_t rx_len; + + for(;;) { + if (usb_poll()) { + rx_len = usb_read(rx,sizeof(UsbCommand)); + if (rx_len) { + UsbPacketReceived(rx,rx_len); + } + } +// UsbPoll(FALSE); + + WDT_HIT(); + +#ifdef WITH_LF + if (BUTTON_HELD(1000) > 0) + SamyRun(); +#endif + } +}