X-Git-Url: http://cvs.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/39cc1c879e3d75b3cafd79e4e139a7f6673dd349..700d8687944db0a48535f818b59b6c9859952c61:/common/mbedtls/ecp_internal.h diff --git a/common/mbedtls/ecp_internal.h b/common/mbedtls/ecp_internal.h new file mode 100644 index 00000000..73bccd42 --- /dev/null +++ b/common/mbedtls/ecp_internal.h @@ -0,0 +1,295 @@ +/** + * \file ecp_internal.h + * + * \brief Function declarations for alternative implementation of elliptic curve + * point arithmetic. + */ +/* + * Copyright (C) 2016, ARM Limited, All Rights Reserved + * SPDX-License-Identifier: GPL-2.0 + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License along + * with this program; if not, write to the Free Software Foundation, Inc., + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + * + * This file is part of mbed TLS (https://tls.mbed.org) + */ + +/* + * References: + * + * [1] BERNSTEIN, Daniel J. Curve25519: new Diffie-Hellman speed records. + * + * + * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis + * for elliptic curve cryptosystems. In : Cryptographic Hardware and + * Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302. + * + * + * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to + * render ECC resistant against Side Channel Attacks. IACR Cryptology + * ePrint Archive, 2004, vol. 2004, p. 342. + * + * + * [4] Certicom Research. SEC 2: Recommended Elliptic Curve Domain Parameters. + * + * + * [5] HANKERSON, Darrel, MENEZES, Alfred J., VANSTONE, Scott. Guide to Elliptic + * Curve Cryptography. + * + * [6] Digital Signature Standard (DSS), FIPS 186-4. + * + * + * [7] Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer + * Security (TLS), RFC 4492. + * + * + * [8] + * + * [9] COHEN, Henri. A Course in Computational Algebraic Number Theory. + * Springer Science & Business Media, 1 Aug 2000 + */ + +#ifndef MBEDTLS_ECP_INTERNAL_H +#define MBEDTLS_ECP_INTERNAL_H + +#if defined(MBEDTLS_ECP_INTERNAL_ALT) + +/** + * \brief Indicate if the Elliptic Curve Point module extension can + * handle the group. + * + * \param grp The pointer to the elliptic curve group that will be the + * basis of the cryptographic computations. + * + * \return Non-zero if successful. + */ +unsigned char mbedtls_internal_ecp_grp_capable( const mbedtls_ecp_group *grp ); + +/** + * \brief Initialise the Elliptic Curve Point module extension. + * + * If mbedtls_internal_ecp_grp_capable returns true for a + * group, this function has to be able to initialise the + * module for it. + * + * This module can be a driver to a crypto hardware + * accelerator, for which this could be an initialise function. + * + * \param grp The pointer to the group the module needs to be + * initialised for. + * + * \return 0 if successful. + */ +int mbedtls_internal_ecp_init( const mbedtls_ecp_group *grp ); + +/** + * \brief Frees and deallocates the Elliptic Curve Point module + * extension. + * + * \param grp The pointer to the group the module was initialised for. + */ +void mbedtls_internal_ecp_free( const mbedtls_ecp_group *grp ); + +#if defined(ECP_SHORTWEIERSTRASS) + +#if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT) +/** + * \brief Randomize jacobian coordinates: + * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l. + * + * \param grp Pointer to the group representing the curve. + * + * \param pt The point on the curve to be randomised, given with Jacobian + * coordinates. + * + * \param f_rng A function pointer to the random number generator. + * + * \param p_rng A pointer to the random number generator state. + * + * \return 0 if successful. + */ +int mbedtls_internal_ecp_randomize_jac( const mbedtls_ecp_group *grp, + mbedtls_ecp_point *pt, int (*f_rng)(void *, unsigned char *, size_t), + void *p_rng ); +#endif + +#if defined(MBEDTLS_ECP_ADD_MIXED_ALT) +/** + * \brief Addition: R = P + Q, mixed affine-Jacobian coordinates. + * + * The coordinates of Q must be normalized (= affine), + * but those of P don't need to. R is not normalized. + * + * This function is used only as a subrutine of + * ecp_mul_comb(). + * + * Special cases: (1) P or Q is zero, (2) R is zero, + * (3) P == Q. + * None of these cases can happen as intermediate step in + * ecp_mul_comb(): + * - at each step, P, Q and R are multiples of the base + * point, the factor being less than its order, so none of + * them is zero; + * - Q is an odd multiple of the base point, P an even + * multiple, due to the choice of precomputed points in the + * modified comb method. + * So branches for these cases do not leak secret information. + * + * We accept Q->Z being unset (saving memory in tables) as + * meaning 1. + * + * Cost in field operations if done by [5] 3.22: + * 1A := 8M + 3S + * + * \param grp Pointer to the group representing the curve. + * + * \param R Pointer to a point structure to hold the result. + * + * \param P Pointer to the first summand, given with Jacobian + * coordinates + * + * \param Q Pointer to the second summand, given with affine + * coordinates. + * + * \return 0 if successful. + */ +int mbedtls_internal_ecp_add_mixed( const mbedtls_ecp_group *grp, + mbedtls_ecp_point *R, const mbedtls_ecp_point *P, + const mbedtls_ecp_point *Q ); +#endif + +/** + * \brief Point doubling R = 2 P, Jacobian coordinates. + * + * Cost: 1D := 3M + 4S (A == 0) + * 4M + 4S (A == -3) + * 3M + 6S + 1a otherwise + * when the implementation is based on the "dbl-1998-cmo-2" + * doubling formulas in [8] and standard optimizations are + * applied when curve parameter A is one of { 0, -3 }. + * + * \param grp Pointer to the group representing the curve. + * + * \param R Pointer to a point structure to hold the result. + * + * \param P Pointer to the point that has to be doubled, given with + * Jacobian coordinates. + * + * \return 0 if successful. + */ +#if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) +int mbedtls_internal_ecp_double_jac( const mbedtls_ecp_group *grp, + mbedtls_ecp_point *R, const mbedtls_ecp_point *P ); +#endif + +/** + * \brief Normalize jacobian coordinates of an array of (pointers to) + * points. + * + * Using Montgomery's trick to perform only one inversion mod P + * the cost is: + * 1N(t) := 1I + (6t - 3)M + 1S + * (See for example Algorithm 10.3.4. in [9]) + * + * This function is used only as a subrutine of + * ecp_mul_comb(). + * + * Warning: fails (returning an error) if one of the points is + * zero! + * This should never happen, see choice of w in ecp_mul_comb(). + * + * \param grp Pointer to the group representing the curve. + * + * \param T Array of pointers to the points to normalise. + * + * \param t_len Number of elements in the array. + * + * \return 0 if successful, + * an error if one of the points is zero. + */ +#if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT) +int mbedtls_internal_ecp_normalize_jac_many( const mbedtls_ecp_group *grp, + mbedtls_ecp_point *T[], size_t t_len ); +#endif + +/** + * \brief Normalize jacobian coordinates so that Z == 0 || Z == 1. + * + * Cost in field operations if done by [5] 3.2.1: + * 1N := 1I + 3M + 1S + * + * \param grp Pointer to the group representing the curve. + * + * \param pt pointer to the point to be normalised. This is an + * input/output parameter. + * + * \return 0 if successful. + */ +#if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT) +int mbedtls_internal_ecp_normalize_jac( const mbedtls_ecp_group *grp, + mbedtls_ecp_point *pt ); +#endif + +#endif /* ECP_SHORTWEIERSTRASS */ + +#if defined(ECP_MONTGOMERY) + +#if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT) +int mbedtls_internal_ecp_double_add_mxz( const mbedtls_ecp_group *grp, + mbedtls_ecp_point *R, mbedtls_ecp_point *S, const mbedtls_ecp_point *P, + const mbedtls_ecp_point *Q, const mbedtls_mpi *d ); +#endif + +/** + * \brief Randomize projective x/z coordinates: + * (X, Z) -> (l X, l Z) for random l + * + * \param grp pointer to the group representing the curve + * + * \param P the point on the curve to be randomised given with + * projective coordinates. This is an input/output parameter. + * + * \param f_rng a function pointer to the random number generator + * + * \param p_rng a pointer to the random number generator state + * + * \return 0 if successful + */ +#if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT) +int mbedtls_internal_ecp_randomize_mxz( const mbedtls_ecp_group *grp, + mbedtls_ecp_point *P, int (*f_rng)(void *, unsigned char *, size_t), + void *p_rng ); +#endif + +/** + * \brief Normalize Montgomery x/z coordinates: X = X/Z, Z = 1. + * + * \param grp pointer to the group representing the curve + * + * \param P pointer to the point to be normalised. This is an + * input/output parameter. + * + * \return 0 if successful + */ +#if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT) +int mbedtls_internal_ecp_normalize_mxz( const mbedtls_ecp_group *grp, + mbedtls_ecp_point *P ); +#endif + +#endif /* ECP_MONTGOMERY */ + +#endif /* MBEDTLS_ECP_INTERNAL_ALT */ + +#endif /* ecp_internal.h */ +