X-Git-Url: http://cvs.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/3ad48540d4d77f50cc62d16acb78f17019ef431d..refs/pull/876/head:/client/loclass/elite_crack.c

diff --git a/client/loclass/elite_crack.c b/client/loclass/elite_crack.c
index 27a2a1bc..8fda0fbd 100644
--- a/client/loclass/elite_crack.c
+++ b/client/loclass/elite_crack.c
@@ -1,32 +1,70 @@
+/*****************************************************************************
+ * WARNING
+ *
+ * THIS CODE IS CREATED FOR EXPERIMENTATION AND EDUCATIONAL USE ONLY.
+ *
+ * USAGE OF THIS CODE IN OTHER WAYS MAY INFRINGE UPON THE INTELLECTUAL
+ * PROPERTY OF OTHER PARTIES, SUCH AS INSIDE SECURE AND HID GLOBAL,
+ * AND MAY EXPOSE YOU TO AN INFRINGEMENT ACTION FROM THOSE PARTIES.
+ *
+ * THIS CODE SHOULD NEVER BE USED TO INFRINGE PATENTS OR INTELLECTUAL PROPERTY RIGHTS.
+ *
+ *****************************************************************************
+ *
+ * This file is part of loclass. It is a reconstructon of the cipher engine
+ * used in iClass, and RFID techology.
+ *
+ * The implementation is based on the work performed by
+ * Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and
+ * Milosch Meriac in the paper "Dismantling IClass".
+ *
+ * Copyright (C) 2014 Martin Holst Swende
+ *
+ * This is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as published
+ * by the Free Software Foundation, or, at your option, any later version.
+ *
+ * This file is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with loclass.  If not, see <http://www.gnu.org/licenses/>.
+ *
+ *
+ ****************************************************************************/
+
 #include <stdint.h>
 #include <stdbool.h>
 #include <string.h>
 #include <stdio.h>
-#include <time.h>
+#include "util.h"
+#include "util_posix.h"
 #include "cipherutils.h"
 #include "cipher.h"
 #include "ikeys.h"
 #include "elite_crack.h"
 #include "fileutils.h"
-#include "des.h"
+#include "mbedtls/des.h"
 
 /**
  * @brief Permutes a key from standard NIST format to Iclass specific format
- *	from http://www.proxmark.org/forum/viewtopic.php?pid=11220#p11220
+ *  from http://www.proxmark.org/forum/viewtopic.php?pid=11220#p11220
  *
- *	If you permute [6c 8d 44 f9 2a 2d 01 bf]  you get  [8a 0d b9 88 bb a7 90 ea]  as shown below.
+ *  If you permute [6c 8d 44 f9 2a 2d 01 bf]  you get  [8a 0d b9 88 bb a7 90 ea]  as shown below.
  *
- * 	1 0 1 1 1 1 1 1  bf
- *	0 0 0 0 0 0 0 1  01
- *	0 0 1 0 1 1 0 1  2d
- *	0 0 1 0 1 0 1 0  2a
- *	1 1 1 1 1 0 0 1  f9
- *	0 1 0 0 0 1 0 0  44
- *	1 0 0 0 1 1 0 1  8d
- *	0 1 1 0 1 1 0 0  6c
+ *  1 0 1 1 1 1 1 1  bf
+ *  0 0 0 0 0 0 0 1  01
+ *  0 0 1 0 1 1 0 1  2d
+ *  0 0 1 0 1 0 1 0  2a
+ *  1 1 1 1 1 0 0 1  f9
+ *  0 1 0 0 0 1 0 0  44
+ *  1 0 0 0 1 1 0 1  8d
+ *  0 1 1 0 1 1 0 0  6c
  *
- *	8 0 b 8 b a 9 e
- *	a d 9 8 b 7 0 a
+ *  8 0 b 8 b a 9 e
+ *  a d 9 8 b 7 0 a
  *
  * @param key
  * @param dest
@@ -37,7 +75,7 @@ void permutekey(uint8_t key[8], uint8_t dest[8])
 	int i;
 	for(i = 0 ; i < 8 ; i++)
 	{
-		dest[i] =	(((key[7] & (0x80 >> i)) >> (7-i)) << 7) |
+		dest[i] =   (((key[7] & (0x80 >> i)) >> (7-i)) << 7) |
 					(((key[6] & (0x80 >> i)) >> (7-i)) << 6) |
 					(((key[5] & (0x80 >> i)) >> (7-i)) << 5) |
 					(((key[4] & (0x80 >> i)) >> (7-i)) << 4) |
@@ -60,7 +98,7 @@ void permutekey_rev(uint8_t key[8], uint8_t dest[8])
 	int i;
 	for(i = 0 ; i < 8 ; i++)
 	{
-		dest[7-i] =	(((key[0] & (0x80 >> i)) >> (7-i)) << 7) |
+		dest[7-i] = (((key[0] & (0x80 >> i)) >> (7-i)) << 7) |
 					(((key[1] & (0x80 >> i)) >> (7-i)) << 6) |
 					(((key[2] & (0x80 >> i)) >> (7-i)) << 5) |
 					(((key[3] & (0x80 >> i)) >> (7-i)) << 4) |
@@ -113,26 +151,128 @@ void hash1(uint8_t csn[] , uint8_t k[])
 	k[0] = csn[0]^csn[1]^csn[2]^csn[3]^csn[4]^csn[5]^csn[6]^csn[7];
 	k[1] = csn[0]+csn[1]+csn[2]+csn[3]+csn[4]+csn[5]+csn[6]+csn[7];
 	k[2] = rr(swap( csn[2]+k[1] ));
-	k[3] = rr(swap( csn[3]+k[0] ));
-	k[4] = ~rr(swap( csn[4]+k[2] ))+1;
-	k[5] = ~rr(swap( csn[5]+k[3] ))+1;
+	k[3] = rl(swap( csn[3]+k[0] ));
+	k[4] = ~rr( csn[4]+k[2] )+1;
+	k[5] = ~rl( csn[5]+k[3] )+1;
 	k[6] = rr( csn[6]+(k[4]^0x3c) );
 	k[7] = rl( csn[7]+(k[5]^0xc3) );
 	int i;
 	for(i = 7; i >=0; i--)
 		k[i] = k[i] & 0x7F;
 }
+/**
+Definition 14. Define the rotate key function rk : (F 82 ) 8 × N → (F 82 ) 8 as
+rk(x [0] . . . x [7] , 0) = x [0] . . . x [7]
+rk(x [0] . . . x [7] , n + 1) = rk(rl(x [0] ) . . . rl(x [7] ), n)
+**/
+void rk(uint8_t *key, uint8_t n, uint8_t *outp_key)
+{
+
+	memcpy(outp_key, key, 8);
+
+	uint8_t j;
+
+	while(n-- > 0)
+		for(j=0; j < 8 ; j++)
+			outp_key[j] = rl(outp_key[j]);
+
+	return;
+}
+
+static mbedtls_des_context ctx_enc = { {0} };
+static mbedtls_des_context ctx_dec = { {0} };
+
+void desdecrypt_iclass(uint8_t *iclass_key, uint8_t *input, uint8_t *output)
+{
+	uint8_t key_std_format[8] = {0};
+	permutekey_rev(iclass_key, key_std_format);
+	mbedtls_des_setkey_dec( &ctx_dec, key_std_format);
+	mbedtls_des_crypt_ecb(&ctx_dec,input,output);
+}
+void desencrypt_iclass(uint8_t *iclass_key, uint8_t *input, uint8_t *output)
+{
+	uint8_t key_std_format[8] = {0};
+	permutekey_rev(iclass_key, key_std_format);
+	mbedtls_des_setkey_enc( &ctx_enc, key_std_format);
+	mbedtls_des_crypt_ecb(&ctx_enc,input,output);
+}
+
+/**
+ * @brief Insert uint8_t[8] custom master key to calculate hash2 and return key_select.
+ * @param key unpermuted custom key
+ * @param hash1 hash1
+ * @param key_sel output key_sel=h[hash1[i]]
+ */
+void hash2(uint8_t *key64, uint8_t *outp_keytable)
+{
+	/**
+	 *Expected:
+	 * High Security Key Table
+
+00  F1 35 59 A1 0D 5A 26 7F 18 60 0B 96 8A C0 25 C1
+10  BF A1 3B B0 FF 85 28 75 F2 1F C6 8F 0E 74 8F 21
+20  14 7A 55 16 C8 A9 7D B3 13 0C 5D C9 31 8D A9 B2
+30  A3 56 83 0F 55 7E DE 45 71 21 D2 6D C1 57 1C 9C
+40  78 2F 64 51 42 7B 64 30 FA 26 51 76 D3 E0 FB B6
+50  31 9F BF 2F 7E 4F 94 B4 BD 4F 75 91 E3 1B EB 42
+60  3F 88 6F B8 6C 2C 93 0D 69 2C D5 20 3C C1 61 95
+70  43 08 A0 2F FE B3 26 D7 98 0B 34 7B 47 70 A0 AB
+
+**** The 64-bit HS Custom Key Value = 5B7C62C491C11B39 ******/
+	uint8_t key64_negated[8] = {0};
+	uint8_t z[8][8]={{0},{0}};
+	uint8_t temp_output[8]={0};
+	//calculate complement of key
+	int i;
+	for(i=0;i<8;i++)
+		key64_negated[i]= ~key64[i];
+
+	// Once again, key is on iclass-format
+	desencrypt_iclass(key64, key64_negated, z[0]);
+
+	prnlog("\nHigh security custom key (Kcus):");
+	printvar("z0  ",  z[0],8);
+
+	uint8_t y[8][8]={{0},{0}};
 
+	// y[0]=DES_dec(z[0],~key)
+	// Once again, key is on iclass-format
+	desdecrypt_iclass(z[0], key64_negated, y[0]);
+	printvar("y0  ",  y[0],8);
+
+	for(i=1; i<8; i++)
+	{
+
+		// z [i] = DES dec (rk(K cus , i), z [i−1] )
+		rk(key64, i, temp_output);
+		//y [i] = DES enc (rk(K cus , i), y [i−1] )
+
+		desdecrypt_iclass(temp_output,z[i-1], z[i]);
+		desencrypt_iclass(temp_output,y[i-1], y[i]);
+
+	}
+	if(outp_keytable != NULL)
+	{
+		for(i = 0 ; i < 8 ; i++)
+		{
+			memcpy(outp_keytable+i*16,y[i],8);
+			memcpy(outp_keytable+8+i*16,z[i],8);
+		}
+	}else
+	{
+		printarr_human_readable("hash2", outp_keytable,128);
+	}
+}
 
 /**
  * @brief Reads data from the iclass-reader-attack dump file.
  * @param dump, data from a iclass reader attack dump.  The format of the dumpdata is expected to be as follows:
- *		<8 byte CSN><8 byte CC><4 byte NR><4 byte MAC><8 byte HASH1><1 byte NUM_BYTES_TO_RECOVER><3 bytes BYTES_TO_RECOVER>
- *		.. N times...
+ *      <8 byte CSN><8 byte CC><4 byte NR><4 byte MAC><8 byte HASH1><1 byte NUM_BYTES_TO_RECOVER><3 bytes BYTES_TO_RECOVER>
+ *      .. N times...
  *
- *	So the first attack, with 3 bytes to recover would be : ... 03000145
- *	And a later attack, with 1 byte to recover (byte 0x5)would be : ...01050000
- *	And an attack, with 2 bytes to recover (byte 0x5 and byte 0x07 )would be : ...02050700
+ *  So the first attack, with 3 bytes to recover would be : ... 03000145
+ *  And a later attack, with 1 byte to recover (byte 0x5)would be : ...01050000
+ *  And an attack, with 2 bytes to recover (byte 0x5 and byte 0x07 )would be : ...02050700
  *
  * @param cc_nr an array to store cc_nr into (12 bytes)
  * @param csn an arracy ot store CSN into (8 bytes)
@@ -166,8 +306,7 @@ static uint32_t startvalue = 0;
  * @param keytable where to write found values.
  * @return
  */
-int bruteforceItem(dumpdata item, uint16_t keytable[])
-{
+int bruteforceItem(dumpdata item, uint16_t keytable[]) {
 	int errors = 0;
 	uint8_t key_sel_p[8] = { 0 };
 	uint8_t div_key[8] = {0};
@@ -179,6 +318,8 @@ int bruteforceItem(dumpdata item, uint16_t keytable[])
 	uint8_t key_index[8] = {0};
 	hash1(item.csn, key_index);
 
+	printvar("CSN  ", item.csn, 8);
+	printvar("HASH1", key_index, 8);
 
 	/*
 	 * Determine which bytes to retrieve. A hash is typically
@@ -193,26 +334,20 @@ int bruteforceItem(dumpdata item, uint16_t keytable[])
 	 * Only the lower eight bits correspond to the (hopefully cracked) key-value.
 	 **/
 	uint8_t bytes_to_recover[3] = {0};
-	uint8_t numbytes_to_recover = 0 ;
-	int i;
-	for(i =0 ; i < 8 ; i++)
-	{
-		if(keytable[key_index[i]] & (CRACKED | BEING_CRACKED)) continue;
-		bytes_to_recover[numbytes_to_recover++] = key_index[i];
-		keytable[key_index[i]] |= BEING_CRACKED;
+	uint8_t numbytes_to_recover = 0;
 
-		if(numbytes_to_recover > 3)
-		{
+	for (int i = 0; i < 8; i++) {
+		if (keytable[key_index[i]] & (CRACKED | BEING_CRACKED)) continue;
+		if (numbytes_to_recover == 3) {
 			prnlog("The CSN requires > 3 byte bruteforce, not supported");
-			printvar("CSN", item.csn,8);
-			printvar("HASH1", key_index,8);
-
 			//Before we exit, reset the 'BEING_CRACKED' to zero
-			keytable[bytes_to_recover[0]]  &= ~BEING_CRACKED;
-			keytable[bytes_to_recover[1]]  &= ~BEING_CRACKED;
-			keytable[bytes_to_recover[2]]  &= ~BEING_CRACKED;
-
+			keytable[bytes_to_recover[0]] &= ~BEING_CRACKED;
+			keytable[bytes_to_recover[1]] &= ~BEING_CRACKED;
+			keytable[bytes_to_recover[2]] &= ~BEING_CRACKED;
 			return 1;
+		} else {
+			bytes_to_recover[numbytes_to_recover++] = key_index[i];
+			keytable[key_index[i]] |= BEING_CRACKED;
 		}
 	}
 
@@ -230,86 +365,81 @@ int bruteforceItem(dumpdata item, uint16_t keytable[])
 
 	uint32_t endmask =  1 << 8*numbytes_to_recover;
 
-	for(i =0 ; i < numbytes_to_recover && numbytes_to_recover > 1; i++)
+	for (int i = 0; i < numbytes_to_recover; i++) {
 		prnlog("Bruteforcing byte %d", bytes_to_recover[i]);
+	}
 
-	while(!found && !(brute & endmask))
-	{
+	while (!found && !(brute & endmask)) {
 
 		//Update the keytable with the brute-values
-		for(i =0 ; i < numbytes_to_recover; i++)
-		{
+		for(int i = 0 ; i < numbytes_to_recover; i++) {
 			keytable[bytes_to_recover[i]] &= 0xFF00;
-			keytable[bytes_to_recover[i]] |= (brute >> (i*8) & 0xFF);
+			keytable[bytes_to_recover[i]] |= ((brute >> (i*8)) & 0xFF);
 		}
 
 		// Piece together the key
-		key_sel[0] = keytable[key_index[0]] & 0xFF;key_sel[1] = keytable[key_index[1]] & 0xFF;
-		key_sel[2] = keytable[key_index[2]] & 0xFF;key_sel[3] = keytable[key_index[3]] & 0xFF;
-		key_sel[4] = keytable[key_index[4]] & 0xFF;key_sel[5] = keytable[key_index[5]] & 0xFF;
-		key_sel[6] = keytable[key_index[6]] & 0xFF;key_sel[7] = keytable[key_index[7]] & 0xFF;
+		key_sel[0] = keytable[key_index[0]] & 0xFF;
+		key_sel[1] = keytable[key_index[1]] & 0xFF;
+		key_sel[2] = keytable[key_index[2]] & 0xFF;
+		key_sel[3] = keytable[key_index[3]] & 0xFF;
+		key_sel[4] = keytable[key_index[4]] & 0xFF;
+		key_sel[5] = keytable[key_index[5]] & 0xFF;
+		key_sel[6] = keytable[key_index[6]] & 0xFF;
+		key_sel[7] = keytable[key_index[7]] & 0xFF;
 
 		//Permute from iclass format to standard format
 		permutekey_rev(key_sel,key_sel_p);
 		//Diversify
 		diversifyKey(item.csn, key_sel_p, div_key);
 		//Calc mac
-		doMAC(item.cc_nr, div_key,calculated_MAC);
+		doMAC(item.cc_nr, div_key, calculated_MAC);
 
-		if(memcmp(calculated_MAC, item.mac, 4) == 0)
-		{
-			for(i =0 ; i < numbytes_to_recover; i++)
-				prnlog("=> %d: 0x%02x", bytes_to_recover[i],0xFF & keytable[bytes_to_recover[i]]);
+		if (memcmp(calculated_MAC, item.mac, 4) == 0) {
+			for (int i = 0; i < numbytes_to_recover; i++)
+				prnlog("=> %d: 0x%02x", bytes_to_recover[i], 0xFF & keytable[bytes_to_recover[i]]);
 			found = true;
 			break;
 		}
 		brute++;
-		if((brute & 0xFFFF) == 0)
-		{
+		if ((brute & 0xFFFF) == 0) {
 			printf("%d",(brute >> 16) & 0xFF);
 			fflush(stdout);
 		}
 	}
-	if(! found)
-	{
-		prnlog("Failed to recover %d bytes using the following CSN",numbytes_to_recover);
-		printvar("CSN",item.csn,8);
+
+	if (!found) {
+		prnlog("\nFailed to recover %d bytes", numbytes_to_recover);
 		errors++;
 		//Before we exit, reset the 'BEING_CRACKED' to zero
-		for(i =0 ; i < numbytes_to_recover; i++)
-		{
-			keytable[bytes_to_recover[i]]  &= 0xFF;
-			keytable[bytes_to_recover[i]]  |= CRACK_FAILED;
+		for (int i = 0; i < numbytes_to_recover; i++) {
+			keytable[bytes_to_recover[i]] &= ~BEING_CRACKED;
 		}
-
-	}else
-	{
-		for(i =0 ; i < numbytes_to_recover; i++)
-		{
-			keytable[bytes_to_recover[i]]  &= 0xFF;
-			keytable[bytes_to_recover[i]]  |= CRACKED;
+	} else {
+		for (int i = 0; i < numbytes_to_recover; i++) {
+			keytable[bytes_to_recover[i]] &= ~BEING_CRACKED;
+			keytable[bytes_to_recover[i]] |= CRACKED;
 		}
-
 	}
+
 	return errors;
 }
 
 
 /**
  * From dismantling iclass-paper:
- *	Assume that an adversary somehow learns the first 16 bytes of hash2(K_cus ), i.e., y [0] and z [0] .
- *	Then he can simply recover the master custom key K_cus by computing
- *	K_cus = ~DES(z[0] , y[0] ) .
+ *  Assume that an adversary somehow learns the first 16 bytes of hash2(K_cus ), i.e., y [0] and z [0] .
+ *  Then he can simply recover the master custom key K_cus by computing
+ *  K_cus = ~DES(z[0] , y[0] ) .
  *
- *	Furthermore, the adversary is able to verify that he has the correct K cus by
- *	checking whether z [0] = DES enc (K_cus , ~K_cus ).
+ *  Furthermore, the adversary is able to verify that he has the correct K cus by
+ *  checking whether z [0] = DES enc (K_cus , ~K_cus ).
  * @param keytable an array (128 bytes) of hash2(kcus)
  * @param master_key where to put the master key
  * @return 0 for ok, 1 for failz
  */
 int calculateMasterKey(uint8_t first16bytes[], uint64_t master_key[] )
 {
-	des_context ctx_e = {DES_ENCRYPT,{0}};
+	mbedtls_des_context ctx_e = { {0} };
 
 	uint8_t z_0[8] = {0};
 	uint8_t y_0[8] = {0};
@@ -328,8 +458,8 @@ int calculateMasterKey(uint8_t first16bytes[], uint64_t master_key[] )
 	permutekey_rev(z_0, z_0_rev);
 
 	// ~K_cus = DESenc(z[0], y[0])
-	des_setkey_enc( &ctx_e, z_0_rev );
-	des_crypt_ecb(&ctx_e, y_0, key64_negated);
+	mbedtls_des_setkey_enc( &ctx_e, z_0_rev );
+	mbedtls_des_crypt_ecb(&ctx_e, y_0, key64_negated);
 
 	int i;
 	for(i = 0; i < 8 ; i++)
@@ -342,8 +472,8 @@ int calculateMasterKey(uint8_t first16bytes[], uint64_t master_key[] )
 	uint8_t key64_stdformat[8] = {0};
 	permutekey_rev(key64, key64_stdformat);
 
-	des_setkey_enc( &ctx_e, key64_stdformat );
-	des_crypt_ecb(&ctx_e, key64_negated, result);
+	mbedtls_des_setkey_enc( &ctx_e, key64_stdformat );
+	mbedtls_des_crypt_ecb(&ctx_e, key64_negated, result);
 	prnlog("\nHigh security custom key (Kcus):");
 	printvar("Std format   ", key64_stdformat,8);
 	printvar("Iclass format", key64,8);
@@ -372,19 +502,19 @@ int bruteforceDump(uint8_t dump[], size_t dumpsize, uint16_t keytable[])
 	uint8_t i;
 	int errors = 0;
 	size_t itemsize = sizeof(dumpdata);
-	clock_t t1 = clock();
+	uint64_t t1 = msclock();
 
 	dumpdata* attack = (dumpdata* ) malloc(itemsize);
 
-	for(i = 0 ; i * itemsize < dumpsize ; i++ )
+	for (i = 0 ; i * itemsize < dumpsize ; i++ )
 	{
 		memcpy(attack,dump+i*itemsize, itemsize);
 		errors += bruteforceItem(*attack, keytable);
 	}
 	free(attack);
-	clock_t t2 = clock();
-	float diff = (((float)t2 - (float)t1) / CLOCKS_PER_SEC );
-	prnlog("\nPerformed full crack in %f seconds",diff);
+	t1 = msclock() - t1;
+	float diff = (float)t1 / 1000.0;
+	prnlog("\nPerformed full crack in %f seconds", diff);
 
 	// Pick out the first 16 bytes of the keytable.
 	// The keytable is now in 16-bit ints, where the upper 8 bits
@@ -392,12 +522,11 @@ int bruteforceDump(uint8_t dump[], size_t dumpsize, uint16_t keytable[])
 	// master key calculation
 	uint8_t first16bytes[16] = {0};
 
-	for(i = 0 ; i < 16 ; i++)
-	{
+	for (int i = 0; i < 16; i++) {
 		first16bytes[i] = keytable[i] & 0xFF;
-		if(!(keytable[i] & CRACKED))
-		{
-			prnlog("Error, we are missing byte %d, custom key calculation will fail...", i);
+		if (!(keytable[i] & CRACKED)) {
+			prnlog("Error, we are missing byte %d, cannot calculate custom key.", i);
+			return 1;
 		}
 	}
 	errors += calculateMasterKey(first16bytes, NULL);
@@ -423,15 +552,23 @@ int bruteforceFile(const char *filename, uint16_t keytable[])
 	long fsize = ftell(f);
 	fseek(f, 0, SEEK_SET);
 
+	if (fsize < 0) {
+		prnlog("Error, when getting fsize");
+		fclose(f);
+		return 1;
+	}
+
 	uint8_t *dump = malloc(fsize);
-    size_t bytes_read = fread(dump, fsize, 1, f);
+	size_t bytes_read = fread(dump, 1, fsize, f);
 
 	fclose(f);
-    if (bytes_read < fsize)
-    {
-        prnlog("Error, could only read %d bytes (should be %d)",bytes_read, fsize );
-    }
-	return bruteforceDump(dump,fsize,keytable);
+	if (bytes_read < fsize) {
+		prnlog("Error, could only read %d bytes (should be %d)",bytes_read, fsize );
+	}
+
+	uint8_t res = bruteforceDump(dump,fsize,keytable);
+	free(dump);
+	return res;
 }
 /**
  *
@@ -475,9 +612,18 @@ int _testBruteforce()
 			**** The 64-bit HS Custom Key Value = 5B7C62C491C11B39 ****
 		**/
 		uint16_t keytable[128] = {0};
-		//save some time...
-		startvalue = 0x7B0000;
-		errors |= bruteforceFile("iclass_dump.bin",keytable);
+
+		//Test a few variants
+		if(fileExists("iclass_dump.bin"))
+		{
+			errors |= bruteforceFile("iclass_dump.bin",keytable);
+		}else if(fileExists("loclass/iclass_dump.bin")){
+			errors |= bruteforceFile("loclass/iclass_dump.bin",keytable);
+		}else if(fileExists("client/loclass/iclass_dump.bin")){
+			errors |= bruteforceFile("client/loclass/iclass_dump.bin",keytable);
+		}else{
+			prnlog("Error: The file iclass_dump.bin was not found!");
+		}
 	}
 	return errors;
 }
@@ -511,15 +657,60 @@ int _test_iclass_key_permutation()
 	prnlog("[+] Iclass key permutation OK!");
 	return 0;
 }
+int _testHash1()
+{
+	uint8_t csn[8]= {0x01,0x02,0x03,0x04,0xF7,0xFF,0x12,0xE0};
+	uint8_t k[8] = {0};
+	hash1(csn, k);
+	uint8_t expected[8] = {0x7E,0x72,0x2F,0x40,0x2D,0x02,0x51,0x42};
+	if(memcmp(k,expected,8) != 0)
+	{
+		prnlog("Error with hash1!");
+		printarr("calculated", k, 8);
+		printarr("expected", expected, 8);
+		return 1;
+	}
+	return 0;
+}
 
 int testElite()
 {
 	prnlog("[+] Testing iClass Elite functinality...");
-	prnlog("[+] Testing key diversification ...");
+	prnlog("[+] Testing hash2");
+	uint8_t k_cus[8] = {0x5B,0x7C,0x62,0xC4,0x91,0xC1,0x1B,0x39};
+
+	/**
+	 *Expected:
+	 * High Security Key Table
+
+00  F1 35 59 A1 0D 5A 26 7F 18 60 0B 96 8A C0 25 C1
+10  BF A1 3B B0 FF 85 28 75 F2 1F C6 8F 0E 74 8F 21
+20  14 7A 55 16 C8 A9 7D B3 13 0C 5D C9 31 8D A9 B2
+30  A3 56 83 0F 55 7E DE 45 71 21 D2 6D C1 57 1C 9C
+40  78 2F 64 51 42 7B 64 30 FA 26 51 76 D3 E0 FB B6
+50  31 9F BF 2F 7E 4F 94 B4 BD 4F 75 91 E3 1B EB 42
+60  3F 88 6F B8 6C 2C 93 0D 69 2C D5 20 3C C1 61 95
+70  43 08 A0 2F FE B3 26 D7 98 0B 34 7B 47 70 A0 AB
+
+
+
+**** The 64-bit HS Custom Key Value = 5B7C62C491C11B39 ****
+	 */
+	uint8_t keytable[128] = {0};
+	hash2(k_cus, keytable);
+	printarr_human_readable("Hash2", keytable, 128);
+	if(keytable[3] == 0xA1 && keytable[0x30] == 0xA3 && keytable[0x6F] == 0x95)
+	{
+		prnlog("[+] Hash2 looks fine...");
+	}
 
 	int errors = 0 ;
+	prnlog("[+] Testing hash1...");
+	errors += _testHash1();
+	prnlog("[+] Testing key diversification ...");
 	errors +=_test_iclass_key_permutation();
 	errors += _testBruteforce();
+
 	return errors;
 
 }