X-Git-Url: http://cvs.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/45293f1096a2fae3fbdad5f90248929cd9c6f562..00e524aaf54ed7ba5f2b25585dc8ceec629cd8aa:/client/ui.c diff --git a/client/ui.c b/client/ui.c index 48a55b1f..6819f649 100644 --- a/client/ui.c +++ b/client/ui.c @@ -77,30 +77,34 @@ void PrintAndLog(char *fmt, ...) } void SetLogFilename(char *fn) { - logfilename = fn; + logfilename = fn; } -void iceFsk3(int * data, const size_t len){ +void iceIIR_Butterworth(int *data, const size_t len){ int i,j; int * output = (int* ) malloc(sizeof(int) * len); + if ( !output ) return; + + // clear mem memset(output, 0x00, len); - float fc = 0.1125f; // center frequency - size_t adjustedLen = len; + size_t adjustedLen = len; + float fc = 0.1125f; // center frequency + // create very simple low-pass filter to remove images (2nd-order Butterworth) float complex iir_buf[3] = {0,0,0}; float b[3] = {0.003621681514929, 0.007243363029857, 0.003621681514929}; float a[3] = {1.000000000000000, -1.822694925196308, 0.837181651256023}; - float sample = 0; // input sample read from file + float sample = 0; // input sample read from array float complex x_prime = 1.0f; // save sample for estimating frequency float complex x; - for (i=0; i<adjustedLen; ++i) { + for (i = 0; i < adjustedLen; ++i) { - sample = data[i]+128; + sample = data[i]; // remove DC offset and mix to complex baseband x = (sample - 127.5f) * cexpf( _Complex_I * 2 * M_PI * fc * i ); @@ -118,71 +122,36 @@ void iceFsk3(int * data, const size_t len){ float freq = cargf(x*conjf(x_prime)); x_prime = x; // retain this sample for next iteration - output[i] =(freq > 0)? 10 : -10; + output[i] =(freq > 0) ? 127 : -127; } // show data + //memcpy(data, output, adjustedLen); for (j=0; j<adjustedLen; ++j) data[j] = output[j]; - - CmdLtrim("30"); - adjustedLen -= 30; - - // zero crossings. - for (j=0; j<adjustedLen; ++j){ - if ( data[j] == 10) break; - } - int startOne =j; - - for (;j<adjustedLen; ++j){ - if ( data[j] == -10 ) break; - } - int stopOne = j-1; - - int fieldlen = stopOne-startOne; - - fieldlen = (fieldlen == 39 || fieldlen == 41)? 40 : fieldlen; - fieldlen = (fieldlen == 59 || fieldlen == 51)? 50 : fieldlen; - if ( fieldlen != 40 && fieldlen != 50){ - printf("Detected field Length: %d \n", fieldlen); - printf("Can only handle 40 or 50. Aborting...\n"); - free(output); - return; - } - - // FSK sequence start == 000111 - int startPos = 0; - for (i =0; i<adjustedLen; ++i){ - int dec = 0; - for ( j = 0; j < 6*fieldlen; ++j){ - dec += data[i + j]; - } - if (dec == 0) { - startPos = i; - break; - } - } - printf("000111 position: %d \n", startPos); + free(output); +} - startPos += 6*fieldlen+5; - - int bit =0; - printf("BINARY\n"); - printf("R/40 : "); - for (i =startPos ; i < adjustedLen; i += 40){ - bit = data[i]>0 ? 1:0; - printf("%d", bit ); +void iceSimple_Filter(int *data, const size_t len, uint8_t k){ +// ref: http://www.edn.com/design/systems-design/4320010/A-simple-software-lowpass-filter-suits-embedded-system-applications +// parameter K +#define FILTER_SHIFT 4 + + int32_t filter_reg = 0; + int16_t input, output; + int8_t shift = (k <=8 ) ? k : FILTER_SHIFT; + + for (int i = 0; i < len; ++i){ + + input = data[i]; + // Update filter with current sample + filter_reg = filter_reg - (filter_reg >> shift) + input; + + // Scale output for unity gain + output = filter_reg >> shift; + data[i] = output; } - printf("\n"); - - printf("R/50 : "); - for (i =startPos ; i < adjustedLen; i += 50){ - bit = data[i]>0 ? 1:0; - printf("%d", bit ); } - printf("\n"); - - free(output); } float complex cexpf (float complex Z)