X-Git-Url: http://cvs.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/5ebcb867a3552a36953b36653b67d4e83e5a9ab3..98c799ba499b81a02bef8f04ccb5149394c4d4d5:/armsrc/iso14443a.c?ds=sidebyside diff --git a/armsrc/iso14443a.c b/armsrc/iso14443a.c index 8a925475..dfd167f0 100644 --- a/armsrc/iso14443a.c +++ b/armsrc/iso14443a.c @@ -106,8 +106,6 @@ static uint32_t NextTransferTime; static uint32_t LastTimeProxToAirStart; static uint32_t LastProxToAirDuration; - - // CARD TO READER - manchester // Sequence D: 11110000 modulation with subcarrier during first half // Sequence E: 00001111 modulation with subcarrier during second half @@ -127,13 +125,11 @@ void iso14a_set_trigger(bool enable) { trigger = enable; } - void iso14a_set_timeout(uint32_t timeout) { iso14a_timeout = timeout; if(MF_DBGLEVEL >= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", iso14a_timeout, iso14a_timeout / 106); } - void iso14a_set_ATS_timeout(uint8_t *ats) { uint8_t tb1; @@ -142,20 +138,22 @@ void iso14a_set_ATS_timeout(uint8_t *ats) { if (ats[0] > 1) { // there is a format byte T0 if ((ats[1] & 0x20) == 0x20) { // there is an interface byte TB(1) - if ((ats[1] & 0x10) == 0x10) { // there is an interface byte TA(1) preceding TB(1) + + if ((ats[1] & 0x10) == 0x10) // there is an interface byte TA(1) preceding TB(1) tb1 = ats[3]; - } else { + else tb1 = ats[2]; - } + fwi = (tb1 & 0xf0) >> 4; // frame waiting indicator (FWI) - fwt = 256 * 16 * (1 << fwi); // frame waiting time (FWT) in 1/fc + //fwt = 256 * 16 * (1 << fwi); // frame waiting time (FWT) in 1/fc + fwt = 4096 * (1 << fwi); - iso14a_set_timeout(fwt/(8*16)); + //iso14a_set_timeout(fwt/(8*16)); + iso14a_set_timeout(fwt/128); } } } - //----------------------------------------------------------------------------- // Generate the parity value for a byte sequence // @@ -752,7 +750,7 @@ static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *par static void CodeIso14443aAsTag(const uint8_t *cmd, uint16_t len) { - uint8_t par[MAX_PARITY_SIZE]; + uint8_t par[MAX_PARITY_SIZE] = {0}; GetParity(cmd, len, par); CodeIso14443aAsTagPar(cmd, len, par); @@ -1059,10 +1057,12 @@ void SimulateIso14443aTag(int tagType, int flags, byte_t* data) { .response = response3a, .response_n = sizeof(response3a) }, // Acknowledge select - cascade 2 { .response = response5, .response_n = sizeof(response5) }, // Authentication answer (random nonce) { .response = response6, .response_n = sizeof(response6) }, // dummy ATS (pseudo-ATR), answer to RATS - //{ .response = response7_NTAG, .response_n = sizeof(response7_NTAG)}, // EV1/NTAG GET_VERSION response + { .response = response8, .response_n = sizeof(response8) } // EV1/NTAG PACK response + }; + //{ .response = response7_NTAG, .response_n = sizeof(response7_NTAG)}, // EV1/NTAG GET_VERSION response //{ .response = response9, .response_n = sizeof(response9) } // EV1/NTAG CHK_TEAR response - }; + // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it // Such a response is less time critical, so we can prepare them on the fly @@ -1112,6 +1112,9 @@ void SimulateIso14443aTag(int tagType, int flags, byte_t* data) LED_A_ON(); for(;;) { + + WDT_HIT(); + // Clean receive command buffer if(!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)) { DbpString("Button press"); @@ -1164,20 +1167,12 @@ void SimulateIso14443aTag(int tagType, int flags, byte_t* data) p_response = NULL; } else if(receivedCmd[0] == 0x3C && tagType == 7) { // Received a READ SIGNATURE -- - // ECC data, taken from a NTAG215 amiibo token. might work. LEN: 32, + 2 crc //first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature] uint16_t start = 4 * 4; uint8_t emdata[34]; emlGetMemBt( emdata, start, 32); AppendCrc14443a(emdata, 32); EmSendCmdEx(emdata, sizeof(emdata), false); - //uint8_t data[] = {0x56,0x06,0xa6,0x4f,0x43,0x32,0x53,0x6f, - // 0x43,0xda,0x45,0xd6,0x61,0x38,0xaa,0x1e, - // 0xcf,0xd3,0x61,0x36,0xca,0x5f,0xbb,0x05, - // 0xce,0x21,0x24,0x5b,0xa6,0x7a,0x79,0x07, - // 0x00,0x00}; - //AppendCrc14443a(data, sizeof(data)-2); - //EmSendCmdEx(data,sizeof(data),false); p_response = NULL; } else if (receivedCmd[0] == 0x39 && tagType == 7) { // Received a READ COUNTER -- uint8_t index = receivedCmd[1]; @@ -1207,14 +1202,9 @@ void SimulateIso14443aTag(int tagType, int flags, byte_t* data) emlGetMemBt( emdata, 10+counter, 1); AppendCrc14443a(emdata, sizeof(emdata)-2); EmSendCmdEx(emdata, sizeof(emdata), false); - p_response = NULL; - //p_response = &responses[9]; - + p_response = NULL; } else if(receivedCmd[0] == 0x50) { // Received a HALT - - if (tracing) { - LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); - } + LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); p_response = NULL; } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request @@ -1224,7 +1214,6 @@ void SimulateIso14443aTag(int tagType, int flags, byte_t* data) AppendCrc14443a(emdata, sizeof(emdata)-2); EmSendCmdEx(emdata, sizeof(emdata), false); p_response = NULL; - //p_response = &responses[7]; } else { p_response = &responses[5]; order = 7; } @@ -1236,9 +1225,7 @@ void SimulateIso14443aTag(int tagType, int flags, byte_t* data) p_response = &responses[6]; order = 70; } } else if (order == 7 && len == 8) { // Received {nr] and {ar} (part of authentication) - if (tracing) { - LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); - } + LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); uint32_t nonce = bytes_to_num(response5,4); uint32_t nr = bytes_to_num(receivedCmd,4); uint32_t ar = bytes_to_num(receivedCmd+4,4); @@ -1301,7 +1288,6 @@ void SimulateIso14443aTag(int tagType, int flags, byte_t* data) AppendCrc14443a(emdata, 2); EmSendCmdEx(emdata, sizeof(emdata), false); p_response = NULL; - //p_response = &responses[8]; // PACK response uint32_t pwd = bytes_to_num(receivedCmd+1,4); if ( MF_DBGLEVEL >= 3) Dbprintf("Auth attempt: %08x", pwd); @@ -1352,9 +1338,7 @@ void SimulateIso14443aTag(int tagType, int flags, byte_t* data) default: { // Never seen this command before - if (tracing) { - LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); - } + LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); Dbprintf("Received unknown command (len=%d):",len); Dbhexdump(len,receivedCmd,false); // Do not respond @@ -1372,9 +1356,7 @@ void SimulateIso14443aTag(int tagType, int flags, byte_t* data) if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) { Dbprintf("Error preparing tag response"); - if (tracing) { - LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); - } + LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); break; } p_response = &dynamic_response_info; @@ -1396,7 +1378,7 @@ void SimulateIso14443aTag(int tagType, int flags, byte_t* data) if (p_response != NULL) { EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52); // do the tracing for the previous reader request and this tag answer: - uint8_t par[MAX_PARITY_SIZE]; + uint8_t par[MAX_PARITY_SIZE] = {0x00}; GetParity(p_response->response, p_response->response_n, par); EmLogTrace(Uart.output, @@ -1434,24 +1416,26 @@ void SimulateIso14443aTag(int tagType, int flags, byte_t* data) // of bits specified in the delay parameter. void PrepareDelayedTransfer(uint16_t delay) { + delay &= 0x07; + if (!delay) return; + uint8_t bitmask = 0; uint8_t bits_to_shift = 0; uint8_t bits_shifted = 0; + uint16_t i = 0; - delay &= 0x07; - if (delay) { - for (uint16_t i = 0; i < delay; i++) { - bitmask |= (0x01 << i); - } - ToSend[ToSendMax++] = 0x00; - for (uint16_t i = 0; i < ToSendMax; i++) { + for (i = 0; i < delay; ++i) + bitmask |= (0x01 << i); + + ToSend[++ToSendMax] = 0x00; + + for (i = 0; i < ToSendMax; ++i) { bits_to_shift = ToSend[i] & bitmask; ToSend[i] = ToSend[i] >> delay; ToSend[i] = ToSend[i] | (bits_shifted << (8 - delay)); bits_shifted = bits_to_shift; } } -} //------------------------------------------------------------------------------------- @@ -1469,17 +1453,27 @@ static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing uint32_t ThisTransferTime = 0; if (timing) { - if(*timing == 0) { // Measure time + + if (*timing != 0) + // Delay transfer (fine tuning - up to 7 MF clock ticks) + PrepareDelayedTransfer(*timing & 0x00000007); + else + // Measure time *timing = (GetCountSspClk() + 8) & 0xfffffff8; - } else { - PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks) - } - if(MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing"); - while(GetCountSspClk() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks) + + + if (MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) + Dbprintf("TransmitFor14443a: Missed timing"); + + // Delay transfer (multiple of 8 MF clock ticks) + while (GetCountSspClk() < (*timing & 0xfffffff8)); + LastTimeProxToAirStart = *timing; } else { ThisTransferTime = ((MAX(NextTransferTime, GetCountSspClk()) & 0xfffffff8) + 8); + while(GetCountSspClk() < ThisTransferTime); + LastTimeProxToAirStart = ThisTransferTime; } @@ -1490,7 +1484,7 @@ static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing for(;;) { if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { AT91C_BASE_SSC->SSC_THR = cmd[c]; - c++; + ++c; if(c >= len) break; } @@ -1577,7 +1571,7 @@ void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8 ToSend[++ToSendMax] = SEC_Y; // Convert to length of command: - ToSendMax++; + ++ToSendMax; } //----------------------------------------------------------------------------- @@ -1585,7 +1579,8 @@ void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8 //----------------------------------------------------------------------------- void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *parity) { - CodeIso14443aBitsAsReaderPar(cmd, len*8, parity); + //CodeIso14443aBitsAsReaderPar(cmd, len*8, parity); + CodeIso14443aBitsAsReaderPar(cmd, len<<3, parity); } @@ -1708,7 +1703,7 @@ static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNe } // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again: - uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3; + uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3; // twich /8 ?? >>3, for (i = 0; i <= fpga_queued_bits/8 + 1; ) { if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { AT91C_BASE_SSC->SSC_THR = SEC_F; @@ -1781,24 +1776,20 @@ int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par){ bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity, uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity) { - if (tracing) { - // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from - // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp. - // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated: - uint16_t reader_modlen = reader_EndTime - reader_StartTime; - uint16_t approx_fdt = tag_StartTime - reader_EndTime; - uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20; - reader_EndTime = tag_StartTime - exact_fdt; - reader_StartTime = reader_EndTime - reader_modlen; + // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from + // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp. + // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated: + uint16_t reader_modlen = reader_EndTime - reader_StartTime; + uint16_t approx_fdt = tag_StartTime - reader_EndTime; + uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20; + reader_EndTime = tag_StartTime - exact_fdt; + reader_StartTime = reader_EndTime - reader_modlen; - if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, TRUE)) - return FALSE; - else - return(!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, FALSE)); - - } else { - return TRUE; - } + if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, TRUE)) + return FALSE; + else + return(!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, FALSE)); + } //----------------------------------------------------------------------------- @@ -1847,20 +1838,22 @@ void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t LED_A_ON(); // Log reader command in trace buffer - if (tracing) - LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, TRUE); + //LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, TRUE); + LogTrace(frame, nbytes(bits), (LastTimeProxToAirStart<<4) + DELAY_ARM2AIR_AS_READER, ((LastTimeProxToAirStart + LastProxToAirDuration)<<4) + DELAY_ARM2AIR_AS_READER, par, TRUE); } void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing) { - ReaderTransmitBitsPar(frame, len*8, par, timing); + //ReaderTransmitBitsPar(frame, len*8, par, timing); + ReaderTransmitBitsPar(frame, len<<3, par, timing); } void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing) { // Generate parity and redirect uint8_t par[MAX_PARITY_SIZE] = {0x00}; - GetParity(frame, len/8, par); + //GetParity(frame, len/8, par); + GetParity(frame, len >> 3, par); ReaderTransmitBitsPar(frame, len, par, timing); } @@ -1869,7 +1862,8 @@ void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing) // Generate parity and redirect uint8_t par[MAX_PARITY_SIZE] = {0x00}; GetParity(frame, len, par); - ReaderTransmitBitsPar(frame, len*8, par, timing); + //ReaderTransmitBitsPar(frame, len*8, par, timing); + ReaderTransmitBitsPar(frame, len<<3, par, timing); } int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity) @@ -1877,9 +1871,8 @@ int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parit if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset)) return FALSE; - if (tracing) - LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE); - + //LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE); + LogTrace(receivedAnswer, Demod.len, (Demod.startTime<<4) - DELAY_AIR2ARM_AS_READER, (Demod.endTime<<4) - DELAY_AIR2ARM_AS_READER, parity, FALSE); return Demod.len; } @@ -1888,9 +1881,8 @@ int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity) if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) return FALSE; - if (tracing) - LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE); - + //LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE); + LogTrace(receivedAnswer, Demod.len, (Demod.startTime<<4) - DELAY_AIR2ARM_AS_READER, (Demod.endTime<<4) - DELAY_AIR2ARM_AS_READER, parity, FALSE); return Demod.len; } @@ -1904,10 +1896,10 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u uint8_t sel_all[] = { 0x93,0x20 }; uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00}; uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0 - uint8_t resp[MAX_FRAME_SIZE]; // theoretically. A usual RATS will be much smaller - uint8_t resp_par[MAX_PARITY_SIZE]; - byte_t uid_resp[4]; - size_t uid_resp_len; + uint8_t resp[MAX_FRAME_SIZE] = {0}; // theoretically. A usual RATS will be much smaller + uint8_t resp_par[MAX_PARITY_SIZE] = {0}; + byte_t uid_resp[4] = {0}; + size_t uid_resp_len = 0; uint8_t sak = 0x04; // cascade uid int cascade_level = 0; @@ -1926,16 +1918,13 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u } if (anticollision) { - // clear uid - if (uid_ptr) { - memset(uid_ptr,0,10); - } + // clear uid + if (uid_ptr) + memset(uid_ptr,0,10); } // check for proprietary anticollision: - if ((resp[0] & 0x1F) == 0) { - return 3; - } + if ((resp[0] & 0x1F) == 0) return 3; // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in // which case we need to make a cascade 2 request and select - this is a long UID @@ -1946,40 +1935,41 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u if (anticollision) { // SELECT_ALL - ReaderTransmit(sel_all, sizeof(sel_all), NULL); - if (!ReaderReceive(resp, resp_par)) return 0; - - if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit - memset(uid_resp, 0, 4); - uint16_t uid_resp_bits = 0; - uint16_t collision_answer_offset = 0; - // anti-collision-loop: - while (Demod.collisionPos) { - Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos); - for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point - uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01; - uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8); + ReaderTransmit(sel_all, sizeof(sel_all), NULL); + if (!ReaderReceive(resp, resp_par)) return 0; + + if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit + memset(uid_resp, 0, 4); + uint16_t uid_resp_bits = 0; + uint16_t collision_answer_offset = 0; + // anti-collision-loop: + while (Demod.collisionPos) { + Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos); + for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point + uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01; + uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8); + } + uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position + uid_resp_bits++; + // construct anticollosion command: + sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits + for (uint16_t i = 0; i <= uid_resp_bits/8; i++) { + sel_uid[2+i] = uid_resp[i]; + } + collision_answer_offset = uid_resp_bits%8; + ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL); + if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0; } - uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position - uid_resp_bits++; - // construct anticollosion command: - sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits - for (uint16_t i = 0; i <= uid_resp_bits/8; i++) { - sel_uid[2+i] = uid_resp[i]; + // finally, add the last bits and BCC of the UID + for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) { + uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01; + uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8); } - collision_answer_offset = uid_resp_bits%8; - ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL); - if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0; - } - // finally, add the last bits and BCC of the UID - for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) { - uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01; - uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8); - } - } else { // no collision, use the response to SELECT_ALL as current uid - memcpy(uid_resp, resp, 4); - } + } else { // no collision, use the response to SELECT_ALL as current uid + memcpy(uid_resp, resp, 4); + } + } else { if (cascade_level < num_cascades - 1) { uid_resp[0] = 0x88; @@ -1991,9 +1981,8 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u uid_resp_len = 4; // calculate crypto UID. Always use last 4 Bytes. - if(cuid_ptr) { + if(cuid_ptr) *cuid_ptr = bytes_to_num(uid_resp, 4); - } // Construct SELECT UID command sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC) @@ -2004,9 +1993,10 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u // Receive the SAK if (!ReaderReceive(resp, resp_par)) return 0; + sak = resp[0]; - // Test if more parts of the uid are coming + // Test if more parts of the uid are coming if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) { // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of: // http://www.nxp.com/documents/application_note/AN10927.pdf @@ -2016,9 +2006,8 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u uid_resp_len = 3; } - if(uid_ptr && anticollision) { + if(uid_ptr && anticollision) memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len); - } if(p_hi14a_card) { memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len); @@ -2039,7 +2028,6 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u ReaderTransmit(rats, sizeof(rats), NULL); if (!(len = ReaderReceive(resp, resp_par))) return 0; - if(p_hi14a_card) { memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats)); @@ -2081,7 +2069,7 @@ void iso14443a_setup(uint8_t fpga_minor_mode) { } int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) { - uint8_t parity[MAX_PARITY_SIZE]; + uint8_t parity[MAX_PARITY_SIZE] = {0x00}; uint8_t real_cmd[cmd_len+4]; real_cmd[0] = 0x0a; //I-Block // put block number into the PCB @@ -2120,20 +2108,19 @@ void ReaderIso14443a(UsbCommand *c) size_t lenbits = c->arg[1] >> 16; uint32_t timeout = c->arg[2]; uint32_t arg0 = 0; - byte_t buf[USB_CMD_DATA_SIZE]; - uint8_t par[MAX_PARITY_SIZE]; + byte_t buf[USB_CMD_DATA_SIZE] = {0x00}; + uint8_t par[MAX_PARITY_SIZE] = {0x00}; - if(param & ISO14A_CONNECT) { + if (param & ISO14A_CONNECT) clear_trace(); - } set_tracing(TRUE); - if(param & ISO14A_REQUEST_TRIGGER) { + if (param & ISO14A_REQUEST_TRIGGER) iso14a_set_trigger(TRUE); - } - if(param & ISO14A_CONNECT) { + + if (param & ISO14A_CONNECT) { iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); if(!(param & ISO14A_NO_SELECT)) { iso14a_card_select_t *card = (iso14a_card_select_t*)buf; @@ -2142,16 +2129,15 @@ void ReaderIso14443a(UsbCommand *c) } } - if(param & ISO14A_SET_TIMEOUT) { + if (param & ISO14A_SET_TIMEOUT) iso14a_set_timeout(timeout); - } - if(param & ISO14A_APDU) { + if (param & ISO14A_APDU) { arg0 = iso14_apdu(cmd, len, buf); cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf)); } - if(param & ISO14A_RAW) { + if (param & ISO14A_RAW) { if(param & ISO14A_APPEND_CRC) { if(param & ISO14A_TOPAZMODE) { AppendCrc14443b(cmd,len); @@ -2190,13 +2176,12 @@ void ReaderIso14443a(UsbCommand *c) cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf)); } - if(param & ISO14A_REQUEST_TRIGGER) { + if (param & ISO14A_REQUEST_TRIGGER) iso14a_set_trigger(FALSE); - } - if(param & ISO14A_NO_DISCONNECT) { + + if (param & ISO14A_NO_DISCONNECT) return; - } FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); set_tracing(FALSE); @@ -2209,20 +2194,59 @@ void ReaderIso14443a(UsbCommand *c) // Therefore try in alternating directions. int32_t dist_nt(uint32_t nt1, uint32_t nt2) { - uint16_t i; - uint32_t nttmp1, nttmp2; - if (nt1 == nt2) return 0; - nttmp1 = nt1; - nttmp2 = nt2; + uint16_t i; + uint32_t nttmp1 = nt1; + uint32_t nttmp2 = nt2; - for (i = 1; i < 0xFFFF; i++) { - nttmp1 = prng_successor(nttmp1, 1); - if (nttmp1 == nt2) return i; - nttmp2 = prng_successor(nttmp2, 1); - if (nttmp2 == nt1) return -i; - } + for (i = 1; i < 0xFFFF; i += 8) { + nttmp1 = prng_successor_one(nttmp1); if (nttmp1 == nt2) return i; + nttmp2 = prng_successor_one(nttmp2); if (nttmp2 == nt1) return -i; + + nttmp1 = prng_successor_one(nttmp1); if (nttmp1 == nt2) return i+1; + nttmp2 = prng_successor_one(nttmp2); if (nttmp2 == nt1) return -i-1; + + nttmp1 = prng_successor_one(nttmp1); if (nttmp1 == nt2) return i+2; + nttmp2 = prng_successor_one(nttmp2); if (nttmp2 == nt1) return -i-2; + + nttmp1 = prng_successor_one(nttmp1); if (nttmp1 == nt2) return i+3; + nttmp2 = prng_successor_one(nttmp2); if (nttmp2 == nt1) return -i-3; + + nttmp1 = prng_successor_one(nttmp1); if (nttmp1 == nt2) return i+4; + nttmp2 = prng_successor_one(nttmp2); if (nttmp2 == nt1) return -i-4; + + nttmp1 = prng_successor_one(nttmp1); if (nttmp1 == nt2) return i+5; + nttmp2 = prng_successor_one(nttmp2); if (nttmp2 == nt1) return -i-5; + + nttmp1 = prng_successor_one(nttmp1); if (nttmp1 == nt2) return i+6; + nttmp2 = prng_successor_one(nttmp2); if (nttmp2 == nt1) return -i-6; + + nttmp1 = prng_successor_one(nttmp1); if (nttmp1 == nt2) return i+7; + nttmp2 = prng_successor_one(nttmp2); if (nttmp2 == nt1) return -i-7; +/* + if ( prng_successor(nttmp1, i) == nt2) return i; + if ( prng_successor(nttmp2, i) == nt1) return -i; + + if ( prng_successor(nttmp1, i+2) == nt2) return i+2; + if ( prng_successor(nttmp2, i+2) == nt1) return -(i+2); + + if ( prng_successor(nttmp1, i+3) == nt2) return i+3; + if ( prng_successor(nttmp2, i+3) == nt1) return -(i+3); + + if ( prng_successor(nttmp1, i+4) == nt2) return i+4; + if ( prng_successor(nttmp2, i+4) == nt1) return -(i+4); + + if ( prng_successor(nttmp1, i+5) == nt2) return i+5; + if ( prng_successor(nttmp2, i+5) == nt1) return -(i+5); + + if ( prng_successor(nttmp1, i+6) == nt2) return i+6; + if ( prng_successor(nttmp2, i+6) == nt1) return -(i+6); + + if ( prng_successor(nttmp1, i+7) == nt2) return i+7; + if ( prng_successor(nttmp2, i+7) == nt1) return -(i+7); +*/ + } return(-99999); // either nt1 or nt2 are invalid nonces } @@ -2234,80 +2258,80 @@ int32_t dist_nt(uint32_t nt1, uint32_t nt2) { // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime" // (article by Nicolas T. Courtois, 2009) //----------------------------------------------------------------------------- -void ReaderMifare(bool first_try) +void ReaderMifare(bool first_try, uint8_t block ) { // Mifare AUTH - uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b }; - uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }; - static uint8_t mf_nr_ar3; - + //uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b }; + //uint8_t mf_auth[] = { 0x60,0x05, 0x58, 0x2c }; + uint8_t mf_auth[] = { 0x60,0x00, 0x00, 0x00 }; + uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }; + uint8_t uid[10] = {0,0,0,0,0,0,0,0,0,0}; + uint8_t par_list[8] = {0,0,0,0,0,0,0,0}; + uint8_t ks_list[8] = {0,0,0,0,0,0,0,0}; uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0x00}; uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE] = {0x00}; - - if (first_try) - iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD); + uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough - // free eventually allocated BigBuf memory. We want all for tracing. - BigBuf_free(); - clear_trace(); - set_tracing(TRUE); + mf_auth[1] = block; + AppendCrc14443a(mf_auth, 2); byte_t nt_diff = 0; - uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough - static byte_t par_low = 0; - bool led_on = TRUE; - uint8_t uid[10] = {0}; - uint32_t cuid = 0; uint32_t nt = 0; - uint32_t previous_nt = 0; - static uint32_t nt_attacked = 0; - byte_t par_list[8] = {0x00}; - byte_t ks_list[8] = {0x00}; - - #define PRNG_SEQUENCE_LENGTH (1 << 16); - static uint32_t sync_time = 0; - static int32_t sync_cycles = 0; + uint32_t previous_nt = 0; + uint32_t halt_time = 0; + uint32_t cuid = 0; + int catch_up_cycles = 0; int last_catch_up = 0; - uint16_t elapsed_prng_sequences = 0; - uint16_t consecutive_resyncs = 0; int isOK = 0; + + uint16_t elapsed_prng_sequences = 1; + uint16_t consecutive_resyncs = 0; + uint16_t unexpected_random = 0; + uint16_t sync_tries = 0; + uint16_t strategy = 0; + + static uint32_t nt_attacked = 0; + static uint32_t sync_time = 0; + static int32_t sync_cycles = 0; + static uint8_t par_low = 0; + static uint8_t mf_nr_ar3 = 0; + + #define PRNG_SEQUENCE_LENGTH (1 << 16) + #define MAX_UNEXPECTED_RANDOM 4 // maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up. + #define MAX_SYNC_TRIES 32 + #define MAX_STRATEGY 3 + + clear_trace(); + set_tracing(TRUE); + + LED_A_ON(); + + if (first_try) + iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD); + + // free eventually allocated BigBuf memory. We want all for tracing. + BigBuf_free(); if (first_try) { - mf_nr_ar3 = 0; sync_time = GetCountSspClk() & 0xfffffff8; - sync_cycles = PRNG_SEQUENCE_LENGTH; //65536; //0x10000 // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces). + sync_cycles = PRNG_SEQUENCE_LENGTH + 1100; //65536; //0x10000 // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces). + mf_nr_ar3 = 0; nt_attacked = 0; - par[0] = 0; - } - else { - // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same) - mf_nr_ar3++; + + } else { + // we were unsuccessful on a previous call. + // Try another READER nonce (first 3 parity bits remain the same) + ++mf_nr_ar3; mf_nr_ar[3] = mf_nr_ar3; par[0] = par_low; } - - LED_A_ON(); - LED_B_OFF(); - LED_C_OFF(); - - - #define MAX_UNEXPECTED_RANDOM 4 // maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up. - #define MAX_SYNC_TRIES 32 - #define NUM_DEBUG_INFOS 8 // per strategy - #define MAX_STRATEGY 3 - uint16_t unexpected_random = 0; - uint16_t sync_tries = 0; - int16_t debug_info_nr = -1; - uint16_t strategy = 0; - int32_t debug_info[MAX_STRATEGY][NUM_DEBUG_INFOS]; - uint32_t select_time = 0; - uint32_t halt_time = 0; - - for(uint16_t i = 0; TRUE; ++i) { - LED_C_ON(); + LED_A_ON(); + LED_C_ON(); + for(uint16_t i = 0; TRUE; ++i) { + WDT_HIT(); // Test if the action was cancelled @@ -2317,12 +2341,12 @@ void ReaderMifare(bool first_try) } if (strategy == 2) { - // test with additional hlt command + // test with additional halt command halt_time = 0; int len = mifare_sendcmd_short(NULL, false, 0x50, 0x00, receivedAnswer, receivedAnswerPar, &halt_time); - if (len && MF_DBGLEVEL >= 3) { - Dbprintf("Unexpected response of %d bytes to hlt command (additional debugging).", len); - } + + if (len && MF_DBGLEVEL >= 3) + Dbprintf("Unexpected response of %d bytes to halt command.", len); } if (strategy == 3) { @@ -2331,60 +2355,40 @@ void ReaderMifare(bool first_try) SpinDelay(200); iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD); SpinDelay(100); + sync_time = GetCountSspClk() & 0xfffffff8; WDT_HIT(); } - if(!iso14443a_select_card(uid, NULL, &cuid, true, 0)) { - if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card"); + if (!iso14443a_select_card(uid, NULL, &cuid, true, 0)) { + if (MF_DBGLEVEL >= 2) Dbprintf("Mifare: Can't select card\n"); continue; } - select_time = GetCountSspClk(); - - elapsed_prng_sequences = 1; - if (debug_info_nr == -1) { - sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles; - catch_up_cycles = 0; - // if we missed the sync time already, advance to the next nonce repeat - while(GetCountSspClk() > sync_time) { - elapsed_prng_sequences++; - sync_time = (sync_time & 0xfffffff8) + sync_cycles; - } - - // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked) - ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time); - - } else { - // collect some information on tag nonces for debugging: - #define DEBUG_FIXED_SYNC_CYCLES PRNG_SEQUENCE_LENGTH - if (strategy == 0) { - // nonce distances at fixed time after card select: - sync_time = select_time + DEBUG_FIXED_SYNC_CYCLES; - } else if (strategy == 1) { - // nonce distances at fixed time between authentications: - sync_time = sync_time + DEBUG_FIXED_SYNC_CYCLES; - } else if (strategy == 2) { - // nonce distances at fixed time after halt: - sync_time = halt_time + DEBUG_FIXED_SYNC_CYCLES; - } else { - // nonce_distances at fixed time after power on - sync_time = DEBUG_FIXED_SYNC_CYCLES; - } - ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time); - } + // Sending timeslot of ISO14443a frame + + sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles; + catch_up_cycles = 0; + + //catch_up_cycles = 0; + + // if we missed the sync time already, advance to the next nonce repeat + while(GetCountSspClk() > sync_time) { + ++elapsed_prng_sequences; + sync_time = (sync_time & 0xfffffff8) + sync_cycles; + } + // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked) + ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time); // Receive the (4 Byte) "random" nonce - if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) { - if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Couldn't receive tag nonce"); + if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) continue; - } - - previous_nt = nt; - nt = bytes_to_num(receivedAnswer, 4); // Transmit reader nonce with fake par ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL); + previous_nt = nt; + nt = bytes_to_num(receivedAnswer, 4); + if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet int nt_distance = dist_nt(previous_nt, nt); if (nt_distance == 0) { @@ -2399,51 +2403,54 @@ void ReaderMifare(bool first_try) continue; // continue trying... } } + if (++sync_tries > MAX_SYNC_TRIES) { if (strategy > MAX_STRATEGY || MF_DBGLEVEL < 3) { isOK = -4; // Card's PRNG runs at an unexpected frequency or resets unexpectedly break; - } else { // continue for a while, just to collect some debug info - ++debug_info_nr; - debug_info[strategy][debug_info_nr] = nt_distance; - if (debug_info_nr == NUM_DEBUG_INFOS) { - ++strategy; - debug_info_nr = 0; - } + } else { continue; - } } - sync_cycles = (sync_cycles - nt_distance/elapsed_prng_sequences); - if (sync_cycles <= 0) { - sync_cycles += PRNG_SEQUENCE_LENGTH; } - if (MF_DBGLEVEL >= 3) { + + sync_cycles = (sync_cycles - nt_distance)/elapsed_prng_sequences; + if (sync_cycles <= 0) + sync_cycles += PRNG_SEQUENCE_LENGTH; + + if (MF_DBGLEVEL >= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, elapsed_prng_sequences=%d, new sync_cycles: %d\n", i, nt_distance, elapsed_prng_sequences, sync_cycles); - } + continue; } } if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again... + catch_up_cycles = -dist_nt(nt_attacked, nt); if (catch_up_cycles == 99999) { // invalid nonce received. Don't resync on that one. catch_up_cycles = 0; continue; } + + // average? catch_up_cycles /= elapsed_prng_sequences; + if (catch_up_cycles == last_catch_up) { ++consecutive_resyncs; - } - else { + } else { last_catch_up = catch_up_cycles; consecutive_resyncs = 0; - } + } + if (consecutive_resyncs < 3) { - if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs); - } - else { - sync_cycles = sync_cycles + catch_up_cycles; - if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles); + if (MF_DBGLEVEL >= 3) + Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs); + } else { + sync_cycles += catch_up_cycles; + + if (MF_DBGLEVEL >= 3) + Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles); + last_catch_up = 0; catch_up_cycles = 0; consecutive_resyncs = 0; @@ -2451,8 +2458,6 @@ void ReaderMifare(bool first_try) continue; } - consecutive_resyncs = 0; - // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding if (ReaderReceive(receivedAnswer, receivedAnswerPar)) { catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer @@ -2460,9 +2465,6 @@ void ReaderMifare(bool first_try) if (nt_diff == 0) par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change - led_on = !led_on; - if(led_on) LED_B_ON(); else LED_B_OFF(); - par_list[nt_diff] = SwapBits(par[0], 8); ks_list[nt_diff] = receivedAnswer[0] ^ 0x05; @@ -2475,7 +2477,9 @@ void ReaderMifare(bool first_try) nt_diff = (nt_diff + 1) & 0x07; mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5); par[0] = par_low; + } else { + // No NACK. if (nt_diff == 0 && first_try) { par[0]++; if (par[0] == 0x00) { // tried all 256 possible parities without success. Card doesn't send NACK. @@ -2483,27 +2487,29 @@ void ReaderMifare(bool first_try) break; } } else { + // Why this? par[0] = ((par[0] & 0x1F) + 1) | par_low; } } + + consecutive_resyncs = 0; } mf_nr_ar[3] &= 0x1F; WDT_HIT(); - - if (isOK == -4) { - if (MF_DBGLEVEL >= 3) { - for (uint16_t i = 0; i <= MAX_STRATEGY; ++i) { - for(uint16_t j = 0; j < NUM_DEBUG_INFOS; ++j) { - Dbprintf("collected debug info[%d][%d] = %d", i, j, debug_info[i][j]); - } - } - } + + // reset sync_time. + if ( isOK == 1) { + sync_time = 0; + sync_cycles = 0; + mf_nr_ar3 = 0; + nt_attacked = 0; + par[0] = 0; } - byte_t buf[28] = {0x00}; - memcpy(buf + 0, uid, 4); + uint8_t buf[28] = {0x00}; + num_to_bytes(cuid, 4, buf); num_to_bytes(nt, 4, buf + 4); memcpy(buf + 8, par_list, 8); memcpy(buf + 16, ks_list, 8); @@ -2511,10 +2517,8 @@ void ReaderMifare(bool first_try) cmd_send(CMD_ACK,isOK,0,0,buf,28); - // Thats it... FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); - set_tracing(FALSE); } @@ -3006,15 +3010,14 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); - if(flags & FLAG_INTERACTIVE)// Interactive mode flag, means we need to send ACK - { + // Interactive mode flag, means we need to send ACK + if(flags & FLAG_INTERACTIVE) { //May just aswell send the collected ar_nr in the response aswell uint8_t len = ar_nr_collected*5*4; cmd_send(CMD_ACK, CMD_SIMULATE_MIFARE_CARD, len, 0, &ar_nr_responses, len); } - if(flags & FLAG_NR_AR_ATTACK && MF_DBGLEVEL >= 1 ) - { + if(flags & FLAG_NR_AR_ATTACK && MF_DBGLEVEL >= 1 ) { if(ar_nr_collected > 1 ) { Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:"); Dbprintf("../tools/mfkey/mfkey32 %06x%08x %08x %08x %08x %08x %08x", @@ -3063,9 +3066,8 @@ void RAMFUNC SniffMifare(uint8_t param) { // param: // bit 0 - trigger from first card answer // bit 1 - trigger from first reader 7-bit request - - // C(red) A(yellow) B(green) LEDsoff(); + // init trace buffer clear_trace(); set_tracing(TRUE); @@ -3073,8 +3075,9 @@ void RAMFUNC SniffMifare(uint8_t param) { // The command (reader -> tag) that we're receiving. // The length of a received command will in most cases be no more than 18 bytes. // So 32 should be enough! - uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE] = {0x00}; + uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE] = {0x00}; uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE] = {0x00}; + // The response (tag -> reader) that we're receiving. uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE] = {0x00}; uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE] = {0x00}; @@ -3083,6 +3086,7 @@ void RAMFUNC SniffMifare(uint8_t param) { // free eventually allocated BigBuf memory BigBuf_free(); + // allocate the DMA buffer, used to stream samples from the FPGA uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE); uint8_t *data = dmaBuf;