X-Git-Url: http://cvs.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/6f5cb60c46af439ef5d0246f1b34d65bc19eb44d..e57c8b2e5601aacd3655a7c1a5c47a7cab66d914:/armsrc/lfops.c diff --git a/armsrc/lfops.c b/armsrc/lfops.c index 6c9a36f7..566ba1d4 100644 --- a/armsrc/lfops.c +++ b/armsrc/lfops.c @@ -1,990 +1,1765 @@ -//----------------------------------------------------------------------------- -// Miscellaneous routines for low frequency tag operations. -// Tags supported here so far are Texas Instruments (TI), HID -// Also routines for raw mode reading/simulating of LF waveform -// -//----------------------------------------------------------------------------- -#include -#include "apps.h" -#include "hitag2.h" -#include "../common/crc16.c" - -int sprintf(char *dest, const char *fmt, ...); - -void AcquireRawAdcSamples125k(BOOL at134khz) -{ - if(at134khz) { - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); - } else { - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); - } - - // Connect the A/D to the peak-detected low-frequency path. - SetAdcMuxFor(GPIO_MUXSEL_LOPKD); - - // Give it a bit of time for the resonant antenna to settle. - SpinDelay(50); - - // Now set up the SSC to get the ADC samples that are now streaming at us. - FpgaSetupSsc(); - - // Now call the acquisition routine - DoAcquisition125k(at134khz); -} - -// split into two routines so we can avoid timing issues after sending commands // -void DoAcquisition125k(BOOL at134khz) -{ - BYTE *dest = (BYTE *)BigBuf; - int n = sizeof(BigBuf); - int i; - char output_string[64]; - - memset(dest,0,n); - i = 0; - for(;;) { - if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { - AT91C_BASE_SSC->SSC_THR = 0x43; - LED_D_ON(); - } - if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { - dest[i] = (BYTE)AT91C_BASE_SSC->SSC_RHR; - i++; - LED_D_OFF(); - if (i >= n) break; - } - } - sprintf(output_string, "read samples, dest[0]=%x dest[1]=%x at134khz=%d", - dest[0], dest[1], at134khz); - DbpString(output_string); -} - -void ModThenAcquireRawAdcSamples125k(int delay_off,int period_0,int period_1,BYTE *command) -{ - BOOL at134khz; - - /* Make sure the tag is reset */ - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); - SpinDelay(2500); - - // see if 'h' was specified - if(command[strlen((char *) command) - 1] == 'h') - at134khz= TRUE; - else - at134khz= FALSE; - - if(at134khz) { - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); - } else { - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); - } - - // Give it a bit of time for the resonant antenna to settle. - SpinDelay(50); - // And a little more time for the tag to fully power up - SpinDelay(2000); - - // Now set up the SSC to get the ADC samples that are now streaming at us. - FpgaSetupSsc(); - - // now modulate the reader field - while(*command != '\0' && *command != ' ') - { - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); - LED_D_OFF(); - SpinDelayUs(delay_off); - if(at134khz) { - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); - } else { - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); - } - LED_D_ON(); - if(*(command++) == '0') { - SpinDelayUs(period_0); - } else { - SpinDelayUs(period_1); - } - } - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); - LED_D_OFF(); - SpinDelayUs(delay_off); - if(at134khz) { - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); - } else { - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); - } - - // now do the read - DoAcquisition125k(at134khz); -} - -/* blank r/w tag data stream -...0000000000000000 01111111 -1010101010101010101010101010101010101010101010101010101010101010 -0011010010100001 -01111111 -101010101010101[0]000... - -[5555fe852c5555555555555555fe0000] -*/ -void ReadTItag() -{ - // some hardcoded initial params - // when we read a TI tag we sample the zerocross line at 2Mhz - // TI tags modulate a 1 as 16 cycles of 123.2Khz - // TI tags modulate a 0 as 16 cycles of 134.2Khz - #define FSAMPLE 2000000 - #define FREQLO 123200 - #define FREQHI 134200 - - signed char *dest = (signed char *)BigBuf; - int n = sizeof(BigBuf); -// int *dest = GraphBuffer; -// int n = GraphTraceLen; - - // 128 bit shift register [shift3:shift2:shift1:shift0] - DWORD shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0; - - int i, cycles=0, samples=0; - // how many sample points fit in 16 cycles of each frequency - DWORD sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI; - // when to tell if we're close enough to one freq or another - DWORD threshold = (sampleslo - sampleshi + 1)>>1; - - // TI tags charge at 134.2Khz - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz - - // Place FPGA in passthrough mode, in this mode the CROSS_LO line - // connects to SSP_DIN and the SSP_DOUT logic level controls - // whether we're modulating the antenna (high) - // or listening to the antenna (low) - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); - - // get TI tag data into the buffer - AcquireTiType(); - - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); - - for (i=0; i0) ) { - cycles++; - // after 16 cycles, measure the frequency - if (cycles>15) { - cycles=0; - samples=i-samples; // number of samples in these 16 cycles - - // TI bits are coming to us lsb first so shift them - // right through our 128 bit right shift register - shift0 = (shift0>>1) | (shift1 << 31); - shift1 = (shift1>>1) | (shift2 << 31); - shift2 = (shift2>>1) | (shift3 << 31); - shift3 >>= 1; - - // check if the cycles fall close to the number - // expected for either the low or high frequency - if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) { - // low frequency represents a 1 - shift3 |= (1<<31); - } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) { - // high frequency represents a 0 - } else { - // probably detected a gay waveform or noise - // use this as gaydar or discard shift register and start again - shift3 = shift2 = shift1 = shift0 = 0; - } - samples = i; - - // for each bit we receive, test if we've detected a valid tag - - // if we see 17 zeroes followed by 6 ones, we might have a tag - // remember the bits are backwards - if ( ((shift0 & 0x7fffff) == 0x7e0000) ) { - // if start and end bytes match, we have a tag so break out of the loop - if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) { - cycles = 0xF0B; //use this as a flag (ugly but whatever) - break; - } - } - } - } - } - - // if flag is set we have a tag - if (cycles!=0xF0B) { - DbpString("Info: No valid tag detected."); - } else { - // put 64 bit data into shift1 and shift0 - shift0 = (shift0>>24) | (shift1 << 8); - shift1 = (shift1>>24) | (shift2 << 8); - - // align 16 bit crc into lower half of shift2 - shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff; - - // if r/w tag, check ident match - if ( shift3&(1<<15) ) { - DbpString("Info: TI tag is rewriteable"); - // only 15 bits compare, last bit of ident is not valid - if ( ((shift3>>16)^shift0)&0x7fff ) { - DbpString("Error: Ident mismatch!"); - } else { - DbpString("Info: TI tag ident is valid"); - } - } else { - DbpString("Info: TI tag is readonly"); - } - - // WARNING the order of the bytes in which we calc crc below needs checking - // i'm 99% sure the crc algorithm is correct, but it may need to eat the - // bytes in reverse or something - // calculate CRC - DWORD crc=0; - - crc = update_crc16(crc, (shift0)&0xff); - crc = update_crc16(crc, (shift0>>8)&0xff); - crc = update_crc16(crc, (shift0>>16)&0xff); - crc = update_crc16(crc, (shift0>>24)&0xff); - crc = update_crc16(crc, (shift1)&0xff); - crc = update_crc16(crc, (shift1>>8)&0xff); - crc = update_crc16(crc, (shift1>>16)&0xff); - crc = update_crc16(crc, (shift1>>24)&0xff); - - char output_string[64]; - sprintf(output_string, "Info: Tag data_hi=%x, data_lo=%x, crc=%x", - (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF); - DbpString(output_string); - if (crc != (shift2&0xffff)) { - sprintf(output_string, "Error: CRC mismatch, expected %x", (unsigned int)crc); - DbpString(output_string); - } else { - DbpString("Info: CRC is good"); - } - } -} - -void WriteTIbyte(BYTE b) -{ - int i = 0; - - // modulate 8 bits out to the antenna - for (i=0; i<8; i++) - { - if (b&(1<PIO_PDR = GPIO_SSC_DIN; - AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN; - - // steal this pin from the SSP and use it to control the modulation - AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; - AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; - - AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST; - AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN; - - // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long - // 48/2 = 24 MHz clock must be divided by 12 - AT91C_BASE_SSC->SSC_CMR = 12; - - AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0); - AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF; - AT91C_BASE_SSC->SSC_TCMR = 0; - AT91C_BASE_SSC->SSC_TFMR = 0; - - LED_D_ON(); - - // modulate antenna - HIGH(GPIO_SSC_DOUT); - - // Charge TI tag for 50ms. - SpinDelay(50); - - // stop modulating antenna and listen - LOW(GPIO_SSC_DOUT); - - LED_D_OFF(); - - i = 0; - for(;;) { - if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { - BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer - i++; if(i >= TIBUFLEN) break; - } - WDT_HIT(); - } - - // return stolen pin to SSP - AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT; - AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT; - - char *dest = (char *)BigBuf; - n = TIBUFLEN*32; - // unpack buffer - for (i=TIBUFLEN-1; i>=0; i--) { -// DbpIntegers(0, 0, BigBuf[i]); - for (j=0; j<32; j++) { - if(BigBuf[i] & (1 << j)) { - dest[--n] = 1; - } else { - dest[--n] = -1; - } - } - } -} - -// arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc -// if crc provided, it will be written with the data verbatim (even if bogus) -// if not provided a valid crc will be computed from the data and written. -void WriteTItag(DWORD idhi, DWORD idlo, WORD crc) -{ - - // WARNING the order of the bytes in which we calc crc below needs checking - // i'm 99% sure the crc algorithm is correct, but it may need to eat the - // bytes in reverse or something - - if(crc == 0) { - crc = update_crc16(crc, (idlo)&0xff); - crc = update_crc16(crc, (idlo>>8)&0xff); - crc = update_crc16(crc, (idlo>>16)&0xff); - crc = update_crc16(crc, (idlo>>24)&0xff); - crc = update_crc16(crc, (idhi)&0xff); - crc = update_crc16(crc, (idhi>>8)&0xff); - crc = update_crc16(crc, (idhi>>16)&0xff); - crc = update_crc16(crc, (idhi>>24)&0xff); - } - char output_string[64]; - sprintf(output_string, "Writing the following data to tag: %x, %x, %x", - (unsigned int) idhi, (unsigned int) idlo, crc); - DbpString(output_string); - - // TI tags charge at 134.2Khz - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz - // Place FPGA in passthrough mode, in this mode the CROSS_LO line - // connects to SSP_DIN and the SSP_DOUT logic level controls - // whether we're modulating the antenna (high) - // or listening to the antenna (low) - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); - LED_A_ON(); - - // steal this pin from the SSP and use it to control the modulation - AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; - AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; - - // writing algorithm: - // a high bit consists of a field off for 1ms and field on for 1ms - // a low bit consists of a field off for 0.3ms and field on for 1.7ms - // initiate a charge time of 50ms (field on) then immediately start writing bits - // start by writing 0xBB (keyword) and 0xEB (password) - // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer) - // finally end with 0x0300 (write frame) - // all data is sent lsb firts - // finish with 15ms programming time - - // modulate antenna - HIGH(GPIO_SSC_DOUT); - SpinDelay(50); // charge time - - WriteTIbyte(0xbb); // keyword - WriteTIbyte(0xeb); // password - WriteTIbyte( (idlo )&0xff ); - WriteTIbyte( (idlo>>8 )&0xff ); - WriteTIbyte( (idlo>>16)&0xff ); - WriteTIbyte( (idlo>>24)&0xff ); - WriteTIbyte( (idhi )&0xff ); - WriteTIbyte( (idhi>>8 )&0xff ); - WriteTIbyte( (idhi>>16)&0xff ); - WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo - WriteTIbyte( (crc )&0xff ); // crc lo - WriteTIbyte( (crc>>8 )&0xff ); // crc hi - WriteTIbyte(0x00); // write frame lo - WriteTIbyte(0x03); // write frame hi - HIGH(GPIO_SSC_DOUT); - SpinDelay(50); // programming time - - LED_A_OFF(); - - // get TI tag data into the buffer - AcquireTiType(); - - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); - DbpString("Now use tiread to check"); -} - -void SimulateTagLowFrequency(int period, int ledcontrol) -{ - int i; - BYTE *tab = (BYTE *)BigBuf; - - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR); - - AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK; - - AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; - AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK; - -#define SHORT_COIL() LOW(GPIO_SSC_DOUT) -#define OPEN_COIL() HIGH(GPIO_SSC_DOUT) - - i = 0; - for(;;) { - while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) { - if(BUTTON_PRESS()) { - DbpString("Stopped"); - return; - } - WDT_HIT(); - } - - if (ledcontrol) - LED_D_ON(); - - if(tab[i]) - OPEN_COIL(); - else - SHORT_COIL(); - - if (ledcontrol) - LED_D_OFF(); - - while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) { - if(BUTTON_PRESS()) { - DbpString("Stopped"); - return; - } - WDT_HIT(); - } - - i++; - if(i == period) i = 0; - } -} - -/* Provides a framework for bidirectional LF tag communication - * Encoding is currently Hitag2, but the general idea can probably - * be transferred to other encodings. - * - * The new FPGA code will, for the LF simulator mode, give on SSC_FRAME - * (PA15) a thresholded version of the signal from the ADC. Setting the - * ADC path to the low frequency peak detection signal, will enable a - * somewhat reasonable receiver for modulation on the carrier signal - * that is generated by the reader. The signal is low when the reader - * field is switched off, and high when the reader field is active. Due - * to the way that the signal looks like, mostly only the rising edge is - * useful, your mileage may vary. - * - * Neat perk: PA15 can not only be used as a bit-banging GPIO, but is also - * TIOA1, which can be used as the capture input for timer 1. This should - * make it possible to measure the exact edge-to-edge time, without processor - * intervention. - * - * Arguments: divisor is the divisor to be sent to the FPGA (e.g. 95 for 125kHz) - * t0 is the carrier frequency cycle duration in terms of MCK (384 for 125kHz) - * - * The following defines are in carrier periods: - */ -#define HITAG_T_0_MIN 15 /* T[0] should be 18..22 */ -#define HITAG_T_1_MIN 24 /* T[1] should be 26..30 */ -#define HITAG_T_EOF 40 /* T_EOF should be > 36 */ -#define HITAG_T_WRESP 208 /* T_wresp should be 204..212 */ - -static void hitag_handle_frame(int t0, int frame_len, char *frame); -//#define DEBUG_RA_VALUES 1 -#define DEBUG_FRAME_CONTENTS 1 -void SimulateTagLowFrequencyBidir(int divisor, int t0) -{ -#if DEBUG_RA_VALUES || DEBUG_FRAME_CONTENTS - int i = 0; -#endif - char frame[10]; - int frame_pos=0; - - DbpString("Starting Hitag2 emulator, press button to end"); - hitag2_init(); - - /* Set up simulator mode, frequency divisor which will drive the FPGA - * and analog mux selection. - */ - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR); - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor); - SetAdcMuxFor(GPIO_MUXSEL_LOPKD); - RELAY_OFF(); - - /* Set up Timer 1: - * Capture mode, timer source MCK/2 (TIMER_CLOCK1), TIOA is external trigger, - * external trigger rising edge, load RA on rising edge of TIOA, load RB on rising - * edge of TIOA. Assign PA15 to TIOA1 (peripheral B) - */ - - AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1); - AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME; - AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; - AT91C_BASE_TC1->TC_CMR = TC_CMR_TCCLKS_TIMER_CLOCK1 | - AT91C_TC_ETRGEDG_RISING | - AT91C_TC_ABETRG | - AT91C_TC_LDRA_RISING | - AT91C_TC_LDRB_RISING; - AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | - AT91C_TC_SWTRG; - - /* calculate the new value for the carrier period in terms of TC1 values */ - t0 = t0/2; - - int overflow = 0; - while(!BUTTON_PRESS()) { - WDT_HIT(); - if(AT91C_BASE_TC1->TC_SR & AT91C_TC_LDRAS) { - int ra = AT91C_BASE_TC1->TC_RA; - if((ra > t0*HITAG_T_EOF) | overflow) ra = t0*HITAG_T_EOF+1; -#if DEBUG_RA_VALUES - if(ra > 255 || overflow) ra = 255; - ((char*)BigBuf)[i] = ra; - i = (i+1) % 8000; -#endif - - if(overflow || (ra > t0*HITAG_T_EOF) || (ra < t0*HITAG_T_0_MIN)) { - /* Ignore */ - } else if(ra >= t0*HITAG_T_1_MIN ) { - /* '1' bit */ - if(frame_pos < 8*sizeof(frame)) { - frame[frame_pos / 8] |= 1<<( 7-(frame_pos%8) ); - frame_pos++; - } - } else if(ra >= t0*HITAG_T_0_MIN) { - /* '0' bit */ - if(frame_pos < 8*sizeof(frame)) { - frame[frame_pos / 8] |= 0<<( 7-(frame_pos%8) ); - frame_pos++; - } - } - - overflow = 0; - LED_D_ON(); - } else { - if(AT91C_BASE_TC1->TC_CV > t0*HITAG_T_EOF) { - /* Minor nuisance: In Capture mode, the timer can not be - * stopped by a Compare C. There's no way to stop the clock - * in software, so we'll just have to note the fact that an - * overflow happened and the next loaded timer value might - * have wrapped. Also, this marks the end of frame, and the - * still running counter can be used to determine the correct - * time for the start of the reply. - */ - overflow = 1; - - if(frame_pos > 0) { - /* Have a frame, do something with it */ -#if DEBUG_FRAME_CONTENTS - ((char*)BigBuf)[i++] = frame_pos; - memcpy( ((char*)BigBuf)+i, frame, 7); - i+=7; - i = i % sizeof(BigBuf); -#endif - hitag_handle_frame(t0, frame_pos, frame); - memset(frame, 0, sizeof(frame)); - } - frame_pos = 0; - - } - LED_D_OFF(); - } - } - DbpString("All done"); -} - -static void hitag_send_bit(int t0, int bit) { - if(bit == 1) { - /* Manchester: Loaded, then unloaded */ - LED_A_ON(); - SHORT_COIL(); - while(AT91C_BASE_TC1->TC_CV < t0*15); - OPEN_COIL(); - while(AT91C_BASE_TC1->TC_CV < t0*31); - LED_A_OFF(); - } else if(bit == 0) { - /* Manchester: Unloaded, then loaded */ - LED_B_ON(); - OPEN_COIL(); - while(AT91C_BASE_TC1->TC_CV < t0*15); - SHORT_COIL(); - while(AT91C_BASE_TC1->TC_CV < t0*31); - LED_B_OFF(); - } - AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG; /* Reset clock for the next bit */ - -} -static void hitag_send_frame(int t0, int frame_len, const char const * frame, int fdt) -{ - OPEN_COIL(); - AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; - - /* Wait for HITAG_T_WRESP carrier periods after the last reader bit, - * not that since the clock counts since the rising edge, but T_wresp is - * with respect to the falling edge, we need to wait actually (T_wresp - T_g) - * periods. The gap time T_g varies (4..10). - */ - while(AT91C_BASE_TC1->TC_CV < t0*(fdt-8)); - - int saved_cmr = AT91C_BASE_TC1->TC_CMR; - AT91C_BASE_TC1->TC_CMR &= ~AT91C_TC_ETRGEDG; /* Disable external trigger for the clock */ - AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG; /* Reset the clock and use it for response timing */ - - int i; - for(i=0; i<5; i++) - hitag_send_bit(t0, 1); /* Start of frame */ - - for(i=0; iTC_CMR = saved_cmr; -} - -/* Callback structure to cleanly separate tag emulation code from the radio layer. */ -static int hitag_cb(const char* response_data, const int response_length, const int fdt, void *cb_cookie) -{ - hitag_send_frame(*(int*)cb_cookie, response_length, response_data, fdt); - return 0; -} -/* Frame length in bits, frame contents in MSBit first format */ -static void hitag_handle_frame(int t0, int frame_len, char *frame) -{ - hitag2_handle_command(frame, frame_len, hitag_cb, &t0); -} - -// compose fc/8 fc/10 waveform -static void fc(int c, int *n) { - BYTE *dest = (BYTE *)BigBuf; - int idx; - - // for when we want an fc8 pattern every 4 logical bits - if(c==0) { - dest[((*n)++)]=1; - dest[((*n)++)]=1; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - } - // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples - if(c==8) { - for (idx=0; idx<6; idx++) { - dest[((*n)++)]=1; - dest[((*n)++)]=1; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - } - } - - // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples - if(c==10) { - for (idx=0; idx<5; idx++) { - dest[((*n)++)]=1; - dest[((*n)++)]=1; - dest[((*n)++)]=1; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - } - } -} - -// prepare a waveform pattern in the buffer based on the ID given then -// simulate a HID tag until the button is pressed -void CmdHIDsimTAG(int hi, int lo, int ledcontrol) -{ - int n=0, i=0; - /* - HID tag bitstream format - The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits - A 1 bit is represented as 6 fc8 and 5 fc10 patterns - A 0 bit is represented as 5 fc10 and 6 fc8 patterns - A fc8 is inserted before every 4 bits - A special start of frame pattern is used consisting a0b0 where a and b are neither 0 - nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10) - */ - - if (hi>0xFFF) { - DbpString("Tags can only have 44 bits."); - return; - } - fc(0,&n); - // special start of frame marker containing invalid bit sequences - fc(8, &n); fc(8, &n); // invalid - fc(8, &n); fc(10, &n); // logical 0 - fc(10, &n); fc(10, &n); // invalid - fc(8, &n); fc(10, &n); // logical 0 - - WDT_HIT(); - // manchester encode bits 43 to 32 - for (i=11; i>=0; i--) { - if ((i%4)==3) fc(0,&n); - if ((hi>>i)&1) { - fc(10, &n); fc(8, &n); // low-high transition - } else { - fc(8, &n); fc(10, &n); // high-low transition - } - } - - WDT_HIT(); - // manchester encode bits 31 to 0 - for (i=31; i>=0; i--) { - if ((i%4)==3) fc(0,&n); - if ((lo>>i)&1) { - fc(10, &n); fc(8, &n); // low-high transition - } else { - fc(8, &n); fc(10, &n); // high-low transition - } - } - - if (ledcontrol) - LED_A_ON(); - SimulateTagLowFrequency(n, ledcontrol); - - if (ledcontrol) - LED_A_OFF(); -} - - -// loop to capture raw HID waveform then FSK demodulate the TAG ID from it -void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol) -{ - BYTE *dest = (BYTE *)BigBuf; - int m=0, n=0, i=0, idx=0, found=0, lastval=0; - DWORD hi=0, lo=0; - - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); - - // Connect the A/D to the peak-detected low-frequency path. - SetAdcMuxFor(GPIO_MUXSEL_LOPKD); - - // Give it a bit of time for the resonant antenna to settle. - SpinDelay(50); - - // Now set up the SSC to get the ADC samples that are now streaming at us. - FpgaSetupSsc(); - - for(;;) { - WDT_HIT(); - if (ledcontrol) - LED_A_ON(); - if(BUTTON_PRESS()) { - DbpString("Stopped"); - if (ledcontrol) - LED_A_OFF(); - return; - } - - i = 0; - m = sizeof(BigBuf); - memset(dest,128,m); - for(;;) { - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { - AT91C_BASE_SSC->SSC_THR = 0x43; - if (ledcontrol) - LED_D_ON(); - } - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { - dest[i] = (BYTE)AT91C_BASE_SSC->SSC_RHR; - // we don't care about actual value, only if it's more or less than a - // threshold essentially we capture zero crossings for later analysis - if(dest[i] < 127) dest[i] = 0; else dest[i] = 1; - i++; - if (ledcontrol) - LED_D_OFF(); - if(i >= m) { - break; - } - } - } - - // FSK demodulator - - // sync to first lo-hi transition - for( idx=1; idx>1) & 0xFFFF); - DbpString(output_string); - /* if we're only looking for one tag */ - if (findone) - { - *high = hi; - *low = lo; - return; - } - hi=0; - lo=0; - found=0; - } - } - if (found) { - if (dest[idx] && (!dest[idx+1]) ) { - hi=(hi<<1)|(lo>>31); - lo=(lo<<1)|0; - } else if ( (!dest[idx]) && dest[idx+1]) { - hi=(hi<<1)|(lo>>31); - lo=(lo<<1)|1; - } else { - found=0; - hi=0; - lo=0; - } - idx++; - } - if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) ) - { - found=1; - idx+=6; - if (found && (hi|lo)) { - char output_string[64]; - sprintf(output_string, "TAG ID: %x %x %x", - (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); - DbpString(output_string); - /* if we're only looking for one tag */ - if (findone) - { - *high = hi; - *low = lo; - return; - } - hi=0; - lo=0; - found=0; - } - } - } - WDT_HIT(); - } -} +//----------------------------------------------------------------------------- +// This code is licensed to you under the terms of the GNU GPL, version 2 or, +// at your option, any later version. See the LICENSE.txt file for the text of +// the license. +//----------------------------------------------------------------------------- +// Miscellaneous routines for low frequency tag operations. +// Tags supported here so far are Texas Instruments (TI), HID +// Also routines for raw mode reading/simulating of LF waveform +//----------------------------------------------------------------------------- + +#include "proxmark3.h" +#include "apps.h" +#include "util.h" +#include "hitag2.h" +#include "crc16.h" +#include "string.h" +#include "lfdemod.h" +#include "lfsampling.h" +#include "protocols.h" +#include "usb_cdc.h" // for usb_poll_validate_length + +/** + * Function to do a modulation and then get samples. + * @param delay_off + * @param period_0 + * @param period_1 + * @param command + */ +void ModThenAcquireRawAdcSamples125k(uint32_t delay_off, uint32_t period_0, uint32_t period_1, uint8_t *command) +{ + + int divisor_used = 95; // 125 KHz + // see if 'h' was specified + + if (command[strlen((char *) command) - 1] == 'h') + divisor_used = 88; // 134.8 KHz + + sample_config sc = { 0,0,1, divisor_used, 0}; + setSamplingConfig(&sc); + //clear read buffer + BigBuf_Clear_keep_EM(); + + /* Make sure the tag is reset */ + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + SpinDelay(2500); + + LFSetupFPGAForADC(sc.divisor, 1); + + // And a little more time for the tag to fully power up + SpinDelay(2000); + + // now modulate the reader field + while(*command != '\0' && *command != ' ') { + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + LED_D_OFF(); + SpinDelayUs(delay_off); + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor); + + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); + LED_D_ON(); + if(*(command++) == '0') + SpinDelayUs(period_0); + else + SpinDelayUs(period_1); + } + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + LED_D_OFF(); + SpinDelayUs(delay_off); + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor); + + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); + + // now do the read + DoAcquisition_config(false, 0); +} + +/* blank r/w tag data stream +...0000000000000000 01111111 +1010101010101010101010101010101010101010101010101010101010101010 +0011010010100001 +01111111 +101010101010101[0]000... + +[5555fe852c5555555555555555fe0000] +*/ +void ReadTItag(void) +{ + // some hardcoded initial params + // when we read a TI tag we sample the zerocross line at 2Mhz + // TI tags modulate a 1 as 16 cycles of 123.2Khz + // TI tags modulate a 0 as 16 cycles of 134.2Khz + #define FSAMPLE 2000000 + #define FREQLO 123200 + #define FREQHI 134200 + + signed char *dest = (signed char *)BigBuf_get_addr(); + uint16_t n = BigBuf_max_traceLen(); + // 128 bit shift register [shift3:shift2:shift1:shift0] + uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0; + + int i, cycles=0, samples=0; + // how many sample points fit in 16 cycles of each frequency + uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI; + // when to tell if we're close enough to one freq or another + uint32_t threshold = (sampleslo - sampleshi + 1)>>1; + + // TI tags charge at 134.2Khz + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz + + // Place FPGA in passthrough mode, in this mode the CROSS_LO line + // connects to SSP_DIN and the SSP_DOUT logic level controls + // whether we're modulating the antenna (high) + // or listening to the antenna (low) + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); + + // get TI tag data into the buffer + AcquireTiType(); + + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + + for (i=0; i0) ) { + cycles++; + // after 16 cycles, measure the frequency + if (cycles>15) { + cycles=0; + samples=i-samples; // number of samples in these 16 cycles + + // TI bits are coming to us lsb first so shift them + // right through our 128 bit right shift register + shift0 = (shift0>>1) | (shift1 << 31); + shift1 = (shift1>>1) | (shift2 << 31); + shift2 = (shift2>>1) | (shift3 << 31); + shift3 >>= 1; + + // check if the cycles fall close to the number + // expected for either the low or high frequency + if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) { + // low frequency represents a 1 + shift3 |= (1<<31); + } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) { + // high frequency represents a 0 + } else { + // probably detected a gay waveform or noise + // use this as gaydar or discard shift register and start again + shift3 = shift2 = shift1 = shift0 = 0; + } + samples = i; + + // for each bit we receive, test if we've detected a valid tag + + // if we see 17 zeroes followed by 6 ones, we might have a tag + // remember the bits are backwards + if ( ((shift0 & 0x7fffff) == 0x7e0000) ) { + // if start and end bytes match, we have a tag so break out of the loop + if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) { + cycles = 0xF0B; //use this as a flag (ugly but whatever) + break; + } + } + } + } + } + + // if flag is set we have a tag + if (cycles!=0xF0B) { + DbpString("Info: No valid tag detected."); + } else { + // put 64 bit data into shift1 and shift0 + shift0 = (shift0>>24) | (shift1 << 8); + shift1 = (shift1>>24) | (shift2 << 8); + + // align 16 bit crc into lower half of shift2 + shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff; + + // if r/w tag, check ident match + if (shift3 & (1<<15) ) { + DbpString("Info: TI tag is rewriteable"); + // only 15 bits compare, last bit of ident is not valid + if (((shift3 >> 16) ^ shift0) & 0x7fff ) { + DbpString("Error: Ident mismatch!"); + } else { + DbpString("Info: TI tag ident is valid"); + } + } else { + DbpString("Info: TI tag is readonly"); + } + + // WARNING the order of the bytes in which we calc crc below needs checking + // i'm 99% sure the crc algorithm is correct, but it may need to eat the + // bytes in reverse or something + // calculate CRC + uint32_t crc=0; + + crc = update_crc16(crc, (shift0)&0xff); + crc = update_crc16(crc, (shift0>>8)&0xff); + crc = update_crc16(crc, (shift0>>16)&0xff); + crc = update_crc16(crc, (shift0>>24)&0xff); + crc = update_crc16(crc, (shift1)&0xff); + crc = update_crc16(crc, (shift1>>8)&0xff); + crc = update_crc16(crc, (shift1>>16)&0xff); + crc = update_crc16(crc, (shift1>>24)&0xff); + + Dbprintf("Info: Tag data: %x%08x, crc=%x", + (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF); + if (crc != (shift2&0xffff)) { + Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc); + } else { + DbpString("Info: CRC is good"); + } + } +} + +void WriteTIbyte(uint8_t b) +{ + int i = 0; + + // modulate 8 bits out to the antenna + for (i=0; i<8; i++) + { + if (b&(1<PIO_PDR = GPIO_SSC_DIN; + AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN; + + // steal this pin from the SSP and use it to control the modulation + AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; + AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; + + AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST; + AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN; + + // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long + // 48/2 = 24 MHz clock must be divided by 12 + AT91C_BASE_SSC->SSC_CMR = 12; + + AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0); + AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF; + AT91C_BASE_SSC->SSC_TCMR = 0; + AT91C_BASE_SSC->SSC_TFMR = 0; + + LED_D_ON(); + + // modulate antenna + HIGH(GPIO_SSC_DOUT); + + // Charge TI tag for 50ms. + SpinDelay(50); + + // stop modulating antenna and listen + LOW(GPIO_SSC_DOUT); + + LED_D_OFF(); + + i = 0; + for(;;) { + if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { + BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer + i++; if(i >= TIBUFLEN) break; + } + WDT_HIT(); + } + + // return stolen pin to SSP + AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT; + AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT; + + char *dest = (char *)BigBuf_get_addr(); + n = TIBUFLEN*32; + // unpack buffer + for (i=TIBUFLEN-1; i>=0; i--) { + for (j=0; j<32; j++) { + if(BigBuf[i] & (1 << j)) { + dest[--n] = 1; + } else { + dest[--n] = -1; + } + } + } +} + +// arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc +// if crc provided, it will be written with the data verbatim (even if bogus) +// if not provided a valid crc will be computed from the data and written. +void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc) +{ + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); + if(crc == 0) { + crc = update_crc16(crc, (idlo)&0xff); + crc = update_crc16(crc, (idlo>>8)&0xff); + crc = update_crc16(crc, (idlo>>16)&0xff); + crc = update_crc16(crc, (idlo>>24)&0xff); + crc = update_crc16(crc, (idhi)&0xff); + crc = update_crc16(crc, (idhi>>8)&0xff); + crc = update_crc16(crc, (idhi>>16)&0xff); + crc = update_crc16(crc, (idhi>>24)&0xff); + } + Dbprintf("Writing to tag: %x%08x, crc=%x", + (unsigned int) idhi, (unsigned int) idlo, crc); + + // TI tags charge at 134.2Khz + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz + // Place FPGA in passthrough mode, in this mode the CROSS_LO line + // connects to SSP_DIN and the SSP_DOUT logic level controls + // whether we're modulating the antenna (high) + // or listening to the antenna (low) + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); + LED_A_ON(); + + // steal this pin from the SSP and use it to control the modulation + AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; + AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; + + // writing algorithm: + // a high bit consists of a field off for 1ms and field on for 1ms + // a low bit consists of a field off for 0.3ms and field on for 1.7ms + // initiate a charge time of 50ms (field on) then immediately start writing bits + // start by writing 0xBB (keyword) and 0xEB (password) + // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer) + // finally end with 0x0300 (write frame) + // all data is sent lsb firts + // finish with 15ms programming time + + // modulate antenna + HIGH(GPIO_SSC_DOUT); + SpinDelay(50); // charge time + + WriteTIbyte(0xbb); // keyword + WriteTIbyte(0xeb); // password + WriteTIbyte( (idlo )&0xff ); + WriteTIbyte( (idlo>>8 )&0xff ); + WriteTIbyte( (idlo>>16)&0xff ); + WriteTIbyte( (idlo>>24)&0xff ); + WriteTIbyte( (idhi )&0xff ); + WriteTIbyte( (idhi>>8 )&0xff ); + WriteTIbyte( (idhi>>16)&0xff ); + WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo + WriteTIbyte( (crc )&0xff ); // crc lo + WriteTIbyte( (crc>>8 )&0xff ); // crc hi + WriteTIbyte(0x00); // write frame lo + WriteTIbyte(0x03); // write frame hi + HIGH(GPIO_SSC_DOUT); + SpinDelay(50); // programming time + + LED_A_OFF(); + + // get TI tag data into the buffer + AcquireTiType(); + + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + DbpString("Now use `lf ti read` to check"); +} + +void SimulateTagLowFrequency(int period, int gap, int ledcontrol) +{ + int i; + uint8_t *tab = BigBuf_get_addr(); + + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT); + + AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK; + + AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; + AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK; + + #define SHORT_COIL() LOW(GPIO_SSC_DOUT) + #define OPEN_COIL() HIGH(GPIO_SSC_DOUT) + + i = 0; + for(;;) { + //wait until SSC_CLK goes HIGH + while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) { + if(BUTTON_PRESS() || (usb_poll_validate_length() )) { + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + DbpString("Stopped"); + return; + } + WDT_HIT(); + } + if (ledcontrol) + LED_D_ON(); + + if(tab[i]) + OPEN_COIL(); + else + SHORT_COIL(); + + if (ledcontrol) + LED_D_OFF(); + //wait until SSC_CLK goes LOW + while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) { + if(BUTTON_PRESS() || (usb_poll_validate_length() )) { + DbpString("Stopped"); + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + return; + } + WDT_HIT(); + } + + i++; + if(i == period) { + + i = 0; + if (gap) { + SHORT_COIL(); + SpinDelayUs(gap); + } + } + + } +} + +#define DEBUG_FRAME_CONTENTS 1 +void SimulateTagLowFrequencyBidir(int divisor, int t0) +{ +} + +// compose fc/8 fc/10 waveform (FSK2) +static void fc(int c, int *n) +{ + uint8_t *dest = BigBuf_get_addr(); + int idx; + + // for when we want an fc8 pattern every 4 logical bits + if(c==0) { + dest[((*n)++)]=1; + dest[((*n)++)]=1; + dest[((*n)++)]=1; + dest[((*n)++)]=1; + dest[((*n)++)]=0; + dest[((*n)++)]=0; + dest[((*n)++)]=0; + dest[((*n)++)]=0; + } + + // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples + if(c==8) { + for (idx=0; idx<6; idx++) { + dest[((*n)++)]=1; + dest[((*n)++)]=1; + dest[((*n)++)]=1; + dest[((*n)++)]=1; + dest[((*n)++)]=0; + dest[((*n)++)]=0; + dest[((*n)++)]=0; + dest[((*n)++)]=0; + } + } + + // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples + if(c==10) { + for (idx=0; idx<5; idx++) { + dest[((*n)++)]=1; + dest[((*n)++)]=1; + dest[((*n)++)]=1; + dest[((*n)++)]=1; + dest[((*n)++)]=1; + dest[((*n)++)]=0; + dest[((*n)++)]=0; + dest[((*n)++)]=0; + dest[((*n)++)]=0; + dest[((*n)++)]=0; + } + } +} +// compose fc/X fc/Y waveform (FSKx) +static void fcAll(uint8_t fc, int *n, uint8_t clock, uint16_t *modCnt) +{ + uint8_t *dest = BigBuf_get_addr(); + uint8_t halfFC = fc/2; + uint8_t wavesPerClock = clock/fc; + uint8_t mod = clock % fc; //modifier + uint8_t modAdj = fc/mod; //how often to apply modifier + bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk=TRUE; + // loop through clock - step field clock + for (uint8_t idx=0; idx < wavesPerClock; idx++){ + // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave) + memset(dest+(*n), 0, fc-halfFC); //in case of odd number use extra here + memset(dest+(*n)+(fc-halfFC), 1, halfFC); + *n += fc; + } + if (mod>0) (*modCnt)++; + if ((mod>0) && modAdjOk){ //fsk2 + if ((*modCnt % modAdj) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave + memset(dest+(*n), 0, fc-halfFC); + memset(dest+(*n)+(fc-halfFC), 1, halfFC); + *n += fc; + } + } + if (mod>0 && !modAdjOk){ //fsk1 + memset(dest+(*n), 0, mod-(mod/2)); + memset(dest+(*n)+(mod-(mod/2)), 1, mod/2); + *n += mod; + } +} + +// prepare a waveform pattern in the buffer based on the ID given then +// simulate a HID tag until the button is pressed +void CmdHIDsimTAG(int hi, int lo, int ledcontrol) +{ + int n=0, i=0; + /* + HID tag bitstream format + The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits + A 1 bit is represented as 6 fc8 and 5 fc10 patterns + A 0 bit is represented as 5 fc10 and 6 fc8 patterns + A fc8 is inserted before every 4 bits + A special start of frame pattern is used consisting a0b0 where a and b are neither 0 + nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10) + */ + + if (hi>0xFFF) { + DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags"); + return; + } + fc(0,&n); + // special start of frame marker containing invalid bit sequences + fc(8, &n); fc(8, &n); // invalid + fc(8, &n); fc(10, &n); // logical 0 + fc(10, &n); fc(10, &n); // invalid + fc(8, &n); fc(10, &n); // logical 0 + + WDT_HIT(); + // manchester encode bits 43 to 32 + for (i=11; i>=0; i--) { + if ((i%4)==3) fc(0,&n); + if ((hi>>i)&1) { + fc(10, &n); fc(8, &n); // low-high transition + } else { + fc(8, &n); fc(10, &n); // high-low transition + } + } + + WDT_HIT(); + // manchester encode bits 31 to 0 + for (i=31; i>=0; i--) { + if ((i%4)==3) fc(0,&n); + if ((lo>>i)&1) { + fc(10, &n); fc(8, &n); // low-high transition + } else { + fc(8, &n); fc(10, &n); // high-low transition + } + } + + if (ledcontrol) + LED_A_ON(); + SimulateTagLowFrequency(n, 0, ledcontrol); + + if (ledcontrol) + LED_A_OFF(); +} + +// prepare a waveform pattern in the buffer based on the ID given then +// simulate a FSK tag until the button is pressed +// arg1 contains fcHigh and fcLow, arg2 contains invert and clock +void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream) +{ + int ledcontrol=1; + int n=0, i=0; + uint8_t fcHigh = arg1 >> 8; + uint8_t fcLow = arg1 & 0xFF; + uint16_t modCnt = 0; + uint8_t clk = arg2 & 0xFF; + uint8_t invert = (arg2 >> 8) & 1; + + for (i=0; i> 8) & 0xFF; + uint8_t encoding = arg1 & 0xFF; + uint8_t separator = arg2 & 1; + uint8_t invert = (arg2 >> 8) & 1; + + if (encoding==2){ //biphase + uint8_t phase=0; + for (i=0; i> 8; + uint8_t carrier = arg1 & 0xFF; + uint8_t invert = arg2 & 0xFF; + uint8_t curPhase = 0; + for (i=0; i0 && lo>0 && (size==96 || size==192)){ + // go over previously decoded manchester data and decode into usable tag ID + if (hi2 != 0){ //extra large HID tags 88/192 bits + Dbprintf("TAG ID: %x%08x%08x (%d)", + (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); + }else { //standard HID tags 44/96 bits + //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd + uint8_t bitlen = 0; + uint32_t fc = 0; + uint32_t cardnum = 0; + if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used + uint32_t lo2=0; + lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit + uint8_t idx3 = 1; + while(lo2 > 1){ //find last bit set to 1 (format len bit) + lo2=lo2 >> 1; + idx3++; + } + bitlen = idx3+19; + fc =0; + cardnum=0; + if(bitlen == 26){ + cardnum = (lo>>1)&0xFFFF; + fc = (lo>>17)&0xFF; + } + if(bitlen == 37){ + cardnum = (lo>>1)&0x7FFFF; + fc = ((hi&0xF)<<12)|(lo>>20); + } + if(bitlen == 34){ + cardnum = (lo>>1)&0xFFFF; + fc= ((hi&1)<<15)|(lo>>17); + } + if(bitlen == 35){ + cardnum = (lo>>1)&0xFFFFF; + fc = ((hi&1)<<11)|(lo>>21); + } + } + else { //if bit 38 is not set then 37 bit format is used + bitlen= 37; + fc =0; + cardnum=0; + if(bitlen==37){ + cardnum = (lo>>1)&0x7FFFF; + fc = ((hi&0xF)<<12)|(lo>>20); + } + } + //Dbprintf("TAG ID: %x%08x (%d)", + // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); + Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d", + (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF, + (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum); + } + if (findone){ + if (ledcontrol) LED_A_OFF(); + *high = hi; + *low = lo; + break; + } + // reset + } + hi2 = hi = lo = idx = 0; + WDT_HIT(); + } + + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + DbpString("Stopped"); + if (ledcontrol) LED_A_OFF(); +} + +// loop to get raw HID waveform then FSK demodulate the TAG ID from it +void CmdAWIDdemodFSK(int findone, int *high, int *low, int ledcontrol) +{ + uint8_t *dest = BigBuf_get_addr(); + size_t size; + int idx=0, dummyIdx=0; + //clear read buffer + BigBuf_Clear_keep_EM(); + // Configure to go in 125Khz listen mode + LFSetupFPGAForADC(95, true); + + while(!BUTTON_PRESS() && !usb_poll_validate_length()) { + + WDT_HIT(); + if (ledcontrol) LED_A_ON(); + + DoAcquisition_default(-1,true); + // FSK demodulator + size = 50*128*2; //big enough to catch 2 sequences of largest format + idx = AWIDdemodFSK(dest, &size, &dummyIdx); + + if (idx<=0 || size!=96) continue; + // Index map + // 0 10 20 30 40 50 60 + // | | | | | | | + // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96 + // ----------------------------------------------------------------------------- + // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1 + // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96 + // |---26 bit---| |-----117----||-------------142-------------| + // b = format bit len, o = odd parity of last 3 bits + // f = facility code, c = card number + // w = wiegand parity + // (26 bit format shown) + + //get raw ID before removing parities + uint32_t rawLo = bytebits_to_byte(dest+idx+64,32); + uint32_t rawHi = bytebits_to_byte(dest+idx+32,32); + uint32_t rawHi2 = bytebits_to_byte(dest+idx,32); + + size = removeParity(dest, idx+8, 4, 1, 88); + if (size != 66) continue; + // ok valid card found! + + // Index map + // 0 10 20 30 40 50 60 + // | | | | | | | + // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456 + // ----------------------------------------------------------------------------- + // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000 + // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx + // |26 bit| |-117--| |-----142------| + // b = format bit len, o = odd parity of last 3 bits + // f = facility code, c = card number + // w = wiegand parity + // (26 bit format shown) + + uint32_t fc = 0; + uint32_t cardnum = 0; + uint32_t code1 = 0; + uint32_t code2 = 0; + uint8_t fmtLen = bytebits_to_byte(dest,8); + if (fmtLen==26){ + fc = bytebits_to_byte(dest+9, 8); + cardnum = bytebits_to_byte(dest+17, 16); + code1 = bytebits_to_byte(dest+8,fmtLen); + Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo); + } else { + cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16); + if (fmtLen>32){ + code1 = bytebits_to_byte(dest+8,fmtLen-32); + code2 = bytebits_to_byte(dest+8+(fmtLen-32),32); + Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo); + } else{ + code1 = bytebits_to_byte(dest+8,fmtLen); + Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo); + } + } + if (findone){ + if (ledcontrol) LED_A_OFF(); + break; + } + // reset + idx = 0; + WDT_HIT(); + } + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + DbpString("Stopped"); + if (ledcontrol) LED_A_OFF(); +} + +void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol) +{ + uint8_t *dest = BigBuf_get_addr(); + + size_t size=0, idx=0; + int clk=0, invert=0, errCnt=0, maxErr=20; + uint32_t hi=0; + uint64_t lo=0; + //clear read buffer + BigBuf_Clear_keep_EM(); + // Configure to go in 125Khz listen mode + LFSetupFPGAForADC(95, true); + + while(!BUTTON_PRESS() && !usb_poll_validate_length()) { + + WDT_HIT(); + if (ledcontrol) LED_A_ON(); + + DoAcquisition_default(-1,true); + size = BigBuf_max_traceLen(); + //askdemod and manchester decode + if (size > 16385) size = 16385; //big enough to catch 2 sequences of largest format + errCnt = askdemod(dest, &size, &clk, &invert, maxErr, 0, 1); + WDT_HIT(); + + if (errCnt<0) continue; + + errCnt = Em410xDecode(dest, &size, &idx, &hi, &lo); + if (errCnt){ + if (size>64){ + Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)", + hi, + (uint32_t)(lo>>32), + (uint32_t)lo, + (uint32_t)(lo&0xFFFF), + (uint32_t)((lo>>16LL) & 0xFF), + (uint32_t)(lo & 0xFFFFFF)); + } else { + Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)", + (uint32_t)(lo>>32), + (uint32_t)lo, + (uint32_t)(lo&0xFFFF), + (uint32_t)((lo>>16LL) & 0xFF), + (uint32_t)(lo & 0xFFFFFF)); + } + + if (findone){ + if (ledcontrol) LED_A_OFF(); + *high=lo>>32; + *low=lo & 0xFFFFFFFF; + break; + } + } + WDT_HIT(); + hi = lo = size = idx = 0; + clk = invert = errCnt = 0; + } + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + DbpString("Stopped"); + if (ledcontrol) LED_A_OFF(); +} + +void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol) +{ + uint8_t *dest = BigBuf_get_addr(); + int idx=0; + uint32_t code=0, code2=0; + uint8_t version=0; + uint8_t facilitycode=0; + uint16_t number=0; + int dummyIdx=0; + //clear read buffer + BigBuf_Clear_keep_EM(); + // Configure to go in 125Khz listen mode + LFSetupFPGAForADC(95, true); + + while(!BUTTON_PRESS() && !usb_poll_validate_length()) { + WDT_HIT(); + if (ledcontrol) LED_A_ON(); + DoAcquisition_default(-1,true); + //fskdemod and get start index + WDT_HIT(); + idx = IOdemodFSK(dest, BigBuf_max_traceLen(), &dummyIdx); + if (idx<0) continue; + //valid tag found + + //Index map + //0 10 20 30 40 50 60 + //| | | | | | | + //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 + //----------------------------------------------------------------------------- + //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11 + // + //XSF(version)facility:codeone+codetwo + //Handle the data + if(findone){ //only print binary if we are doing one + Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]); + Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]); + Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]); + Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]); + Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]); + Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]); + Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]); + } + code = bytebits_to_byte(dest+idx,32); + code2 = bytebits_to_byte(dest+idx+32,32); + version = bytebits_to_byte(dest+idx+27,8); //14,4 + facilitycode = bytebits_to_byte(dest+idx+18,8); + number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9 + + Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2); + // if we're only looking for one tag + if (findone){ + if (ledcontrol) LED_A_OFF(); + //LED_A_OFF(); + *high=code; + *low=code2; + break; + } + code=code2=0; + version=facilitycode=0; + number=0; + idx=0; + + WDT_HIT(); + } + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + DbpString("Stopped"); + if (ledcontrol) LED_A_OFF(); +} + +/*------------------------------ + * T5555/T5557/T5567/T5577 routines + *------------------------------ + * NOTE: T55x7/T5555 configuration register definitions moved to protocols.h + * + * Relevant communication times in microsecond + * To compensate antenna falling times shorten the write times + * and enlarge the gap ones. + * Q5 tags seems to have issues when these values changes. + */ +#define START_GAP 31*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (or 15fc) +#define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (or 10fc) +#define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc) +#define WRITE_1 50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc) 432 for T55x7; 448 for E5550 +#define READ_GAP 15*8 + +void TurnReadLFOn(int delay) { + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); + // Give it a bit of time for the resonant antenna to settle. + WaitUS(delay); //155*8 //50*8 +} + +// Write one bit to card +void T55xxWriteBit(int bit) { + if (!bit) + TurnReadLFOn(WRITE_0); + else + TurnReadLFOn(WRITE_1); + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + WaitUS(WRITE_GAP); +} + +// Send T5577 reset command then read stream (see if we can identify the start of the stream) +void T55xxResetRead(void) { + LED_A_ON(); + //clear buffer now so it does not interfere with timing later + BigBuf_Clear_keep_EM(); + + // Set up FPGA, 125kHz + LFSetupFPGAForADC(95, true); + StartTicks(); + // make sure tag is fully powered up... + WaitMS(5); + + // Trigger T55x7 in mode. + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + WaitUS(START_GAP); + + // reset tag - op code 00 + T55xxWriteBit(0); + T55xxWriteBit(0); + + TurnReadLFOn(READ_GAP); + + // Acquisition + DoPartialAcquisition(0, true, BigBuf_max_traceLen()); + + // Turn the field off + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off + cmd_send(CMD_ACK,0,0,0,0,0); + LED_A_OFF(); +} + +// Write one card block in page 0, no lock +void T55xxWriteBlockExt(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t arg) { + LED_A_ON(); + bool PwdMode = arg & 0x1; + uint8_t Page = (arg & 0x2)>>1; + bool testMode = arg & 0x4; + uint32_t i = 0; + + // Set up FPGA, 125kHz + LFSetupFPGAForADC(95, true); + StartTicks(); + // make sure tag is fully powered up... + WaitMS(5); + // Trigger T55x7 in mode. + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + WaitUS(START_GAP); + + if (testMode) Dbprintf("TestMODE"); + // Std Opcode 10 + T55xxWriteBit(testMode ? 0 : 1); + T55xxWriteBit(testMode ? 1 : Page); //Page 0 + + if (PwdMode) { + // Send Pwd + for (i = 0x80000000; i != 0; i >>= 1) + T55xxWriteBit(Pwd & i); + } + // Send Lock bit + T55xxWriteBit(0); + + // Send Data + for (i = 0x80000000; i != 0; i >>= 1) + T55xxWriteBit(Data & i); + + // Send Block number + for (i = 0x04; i != 0; i >>= 1) + T55xxWriteBit(Block & i); + + // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550, + // so wait a little more) + + // "there is a clock delay before programming" + // - programming takes ~5.6ms for t5577 ~18ms for E5550 or t5567 + // so we should wait 1 clock + 5.6ms then read response? + // but we need to know we are dealing with t5577 vs t5567 vs e5550 (or q5) marshmellow... + if (testMode) { + //TESTMODE TIMING TESTS: + // <566us does nothing + // 566-568 switches between wiping to 0s and doing nothing + // 5184 wipes and allows 1 block to be programmed. + // indefinite power on wipes and then programs all blocks with bitshifted data sent. + TurnReadLFOn(5184); + + } else { + TurnReadLFOn(20 * 1000); + //could attempt to do a read to confirm write took + // as the tag should repeat back the new block + // until it is reset, but to confirm it we would + // need to know the current block 0 config mode for + // modulation clock an other details to demod the response... + // response should be (for t55x7) a 0 bit then (ST if on) + // block data written in on repeat until reset. + + //DoPartialAcquisition(20, true, 12000); + } + + // turn field off + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + LED_A_OFF(); +} + +// Write one card block in page 0, no lock +void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t arg) { + T55xxWriteBlockExt(Data, Block, Pwd, arg); + cmd_send(CMD_ACK,0,0,0,0,0); +} + +// Read one card block in page [page] +void T55xxReadBlock(uint16_t arg0, uint8_t Block, uint32_t Pwd) { + LED_A_ON(); + bool PwdMode = arg0 & 0x1; + uint8_t Page = (arg0 & 0x2) >> 1; + uint32_t i = 0; + bool RegReadMode = (Block == 0xFF);//regular read mode + + //clear buffer now so it does not interfere with timing later + BigBuf_Clear_ext(false); + + //make sure block is at max 7 + Block &= 0x7; + + // Set up FPGA, 125kHz to power up the tag + LFSetupFPGAForADC(95, true); + StartTicks(); + // make sure tag is fully powered up... + WaitMS(5); + // Trigger T55x7 Direct Access Mode with start gap + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + WaitUS(START_GAP); + + // Opcode 1[page] + T55xxWriteBit(1); + T55xxWriteBit(Page); //Page 0 + + if (PwdMode){ + // Send Pwd + for (i = 0x80000000; i != 0; i >>= 1) + T55xxWriteBit(Pwd & i); + } + // Send a zero bit separation + T55xxWriteBit(0); + + // Send Block number (if direct access mode) + if (!RegReadMode) + for (i = 0x04; i != 0; i >>= 1) + T55xxWriteBit(Block & i); + + // Turn field on to read the response + // 137*8 seems to get to the start of data pretty well... + // but we want to go past the start and let the repeating data settle in... + TurnReadLFOn(210*8); + + // Acquisition + // Now do the acquisition + DoPartialAcquisition(0, true, 12000); + + // Turn the field off + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off + cmd_send(CMD_ACK,0,0,0,0,0); + LED_A_OFF(); +} + +void T55xxWakeUp(uint32_t Pwd){ + LED_B_ON(); + uint32_t i = 0; + + // Set up FPGA, 125kHz + LFSetupFPGAForADC(95, true); + StartTicks(); + // make sure tag is fully powered up... + WaitMS(5); + + // Trigger T55x7 Direct Access Mode + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + WaitUS(START_GAP); + + // Opcode 10 + T55xxWriteBit(1); + T55xxWriteBit(0); //Page 0 + + // Send Pwd + for (i = 0x80000000; i != 0; i >>= 1) + T55xxWriteBit(Pwd & i); + + // Turn and leave field on to let the begin repeating transmission + TurnReadLFOn(20*1000); +} + +/*-------------- Cloning routines -----------*/ + +void WriteT55xx(uint32_t *blockdata, uint8_t startblock, uint8_t numblocks) { + // write last block first and config block last (if included) + for (uint8_t i = numblocks+startblock; i > startblock; i--) { + T55xxWriteBlockExt(blockdata[i-1],i-1,0,0); + } +} + +// Copy HID id to card and setup block 0 config +void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) { + uint32_t data[] = {0,0,0,0,0,0,0}; + uint8_t last_block = 0; + + if (longFMT) { + // Ensure no more than 84 bits supplied + if (hi2>0xFFFFF) { + DbpString("Tags can only have 84 bits."); + return; + } + // Build the 6 data blocks for supplied 84bit ID + last_block = 6; + // load preamble (1D) & long format identifier (9E manchester encoded) + data[1] = 0x1D96A900 | (manchesterEncode2Bytes((hi2 >> 16) & 0xF) & 0xFF); + // load raw id from hi2, hi, lo to data blocks (manchester encoded) + data[2] = manchesterEncode2Bytes(hi2 & 0xFFFF); + data[3] = manchesterEncode2Bytes(hi >> 16); + data[4] = manchesterEncode2Bytes(hi & 0xFFFF); + data[5] = manchesterEncode2Bytes(lo >> 16); + data[6] = manchesterEncode2Bytes(lo & 0xFFFF); + } else { + // Ensure no more than 44 bits supplied + if (hi>0xFFF) { + DbpString("Tags can only have 44 bits."); + return; + } + // Build the 3 data blocks for supplied 44bit ID + last_block = 3; + // load preamble + data[1] = 0x1D000000 | (manchesterEncode2Bytes(hi) & 0xFFFFFF); + data[2] = manchesterEncode2Bytes(lo >> 16); + data[3] = manchesterEncode2Bytes(lo & 0xFFFF); + } + // load chip config block + data[0] = T55x7_BITRATE_RF_50 | T55x7_MODULATION_FSK2a | last_block << T55x7_MAXBLOCK_SHIFT; + + //TODO add selection of chip for Q5 or T55x7 + // data[0] = (((50-2)/2)<>1)<>= 1; + } else { + rev_id = (rev_id << 1) | (id_hi & 1); + id_hi >>= 1; + } + } + + for (i = 0; i < EM410X_ID_LENGTH; ++i) { + id_bit = rev_id & 1; + + if (i % 4 == 0) { + // Don't write row parity bit at start of parsing + if (i) + id = (id << 1) | r_parity; + // Start counting parity for new row + r_parity = id_bit; + } else { + // Count row parity + r_parity ^= id_bit; + } + + // First elements in column? + if (i < 4) + // Fill out first elements + c_parity[i] = id_bit; + else + // Count column parity + c_parity[i % 4] ^= id_bit; + + // Insert ID bit + id = (id << 1) | id_bit; + rev_id >>= 1; + } + + // Insert parity bit of last row + id = (id << 1) | r_parity; + + // Fill out column parity at the end of tag + for (i = 0; i < 4; ++i) + id = (id << 1) | c_parity[i]; + + // Add stop bit + id <<= 1; + + Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555"); + LED_D_ON(); + + // Write EM410x ID + uint32_t data[] = {0, (uint32_t)(id>>32), (uint32_t)(id & 0xFFFFFFFF)}; + + clock = (card & 0xFF00) >> 8; + clock = (clock == 0) ? 64 : clock; + Dbprintf("Clock rate: %d", clock); + if (card & 0xFF) { //t55x7 + clock = GetT55xxClockBit(clock); + if (clock == 0) { + Dbprintf("Invalid clock rate: %d", clock); + return; + } + data[0] = clock | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT); + } else { //t5555 (Q5) + data[0] = T5555_SET_BITRATE(clock) | T5555_MODULATION_MANCHESTER | (2 << T5555_MAXBLOCK_SHIFT); + } + + WriteT55xx(data, 0, 3); + + LED_D_OFF(); + Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555", + (uint32_t)(id >> 32), (uint32_t)id); +} + +//----------------------------------- +// EM4469 / EM4305 routines +//----------------------------------- +#define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored +#define FWD_CMD_WRITE 0xA +#define FWD_CMD_READ 0x9 +#define FWD_CMD_DISABLE 0x5 + +uint8_t forwardLink_data[64]; //array of forwarded bits +uint8_t * forward_ptr; //ptr for forward message preparation +uint8_t fwd_bit_sz; //forwardlink bit counter +uint8_t * fwd_write_ptr; //forwardlink bit pointer + +//==================================================================== +// prepares command bits +// see EM4469 spec +//==================================================================== +//-------------------------------------------------------------------- +// VALUES TAKEN FROM EM4x function: SendForward +// START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle) +// WRITE_GAP = 128; (16*8) +// WRITE_1 = 256 32*8; (32*8) + +// These timings work for 4469/4269/4305 (with the 55*8 above) +// WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8); + +uint8_t Prepare_Cmd( uint8_t cmd ) { + + *forward_ptr++ = 0; //start bit + *forward_ptr++ = 0; //second pause for 4050 code + + *forward_ptr++ = cmd; + cmd >>= 1; + *forward_ptr++ = cmd; + cmd >>= 1; + *forward_ptr++ = cmd; + cmd >>= 1; + *forward_ptr++ = cmd; + + return 6; //return number of emited bits +} + +//==================================================================== +// prepares address bits +// see EM4469 spec +//==================================================================== +uint8_t Prepare_Addr( uint8_t addr ) { + + register uint8_t line_parity; + + uint8_t i; + line_parity = 0; + for(i=0;i<6;i++) { + *forward_ptr++ = addr; + line_parity ^= addr; + addr >>= 1; + } + + *forward_ptr++ = (line_parity & 1); + + return 7; //return number of emited bits +} + +//==================================================================== +// prepares data bits intreleaved with parity bits +// see EM4469 spec +//==================================================================== +uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) { + + register uint8_t line_parity; + register uint8_t column_parity; + register uint8_t i, j; + register uint16_t data; + + data = data_low; + column_parity = 0; + + for(i=0; i<4; i++) { + line_parity = 0; + for(j=0; j<8; j++) { + line_parity ^= data; + column_parity ^= (data & 1) << j; + *forward_ptr++ = data; + data >>= 1; + } + *forward_ptr++ = line_parity; + if(i == 1) + data = data_hi; + } + + for(j=0; j<8; j++) { + *forward_ptr++ = column_parity; + column_parity >>= 1; + } + *forward_ptr = 0; + + return 45; //return number of emited bits +} + +//==================================================================== +// Forward Link send function +// Requires: forwarLink_data filled with valid bits (1 bit per byte) +// fwd_bit_count set with number of bits to be sent +//==================================================================== +void SendForward(uint8_t fwd_bit_count) { + + fwd_write_ptr = forwardLink_data; + fwd_bit_sz = fwd_bit_count; + + // Set up FPGA, 125kHz or 95 divisor + LFSetupFPGAForADC(95, true); + + // force 1st mod pulse (start gap must be longer for 4305) + fwd_bit_sz--; //prepare next bit modulation + fwd_write_ptr++; + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off + WaitUS(55*8); //55 cycles off (8us each)for 4305 //another reader has 37 here... + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on + WaitUS(18*8); //18 cycles on (8us each) + + // now start writting + while(fwd_bit_sz-- > 0) { //prepare next bit modulation + if(((*fwd_write_ptr++) & 1) == 1) + WaitUS(32*8); //32 cycles at 125Khz (8us each) + else { + //These timings work for 4469/4269/4305 (with the 55*8 above) + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off + WaitUS(23*8); //23 cycles off (8us each) + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on + WaitUS(18*8); //18 cycles on (8us each) + } + } +} + +void EM4xLogin(uint32_t Password) { + + uint8_t fwd_bit_count; + + forward_ptr = forwardLink_data; + fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN ); + fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 ); + + SendForward(fwd_bit_count); + + //Wait for command to complete + SpinDelay(20); +} + +void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) { + + uint8_t fwd_bit_count; + + // Clear destination buffer before sending the command + BigBuf_Clear_ext(false); + + LED_A_ON(); + StartTicks(); + //If password mode do login + if (PwdMode == 1) EM4xLogin(Pwd); + + forward_ptr = forwardLink_data; + fwd_bit_count = Prepare_Cmd( FWD_CMD_READ ); + fwd_bit_count += Prepare_Addr( Address ); + + SendForward(fwd_bit_count); + WaitUS(400); + // Now do the acquisition + DoPartialAcquisition(20, true, 6000); + + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off + LED_A_OFF(); + cmd_send(CMD_ACK,0,0,0,0,0); +} + +void EM4xWriteWord(uint32_t flag, uint32_t Data, uint32_t Pwd) { + + bool PwdMode = (flag & 0xF); + uint8_t Address = (flag >> 8) & 0xFF; + uint8_t fwd_bit_count; + + //clear buffer now so it does not interfere with timing later + BigBuf_Clear_ext(false); + + LED_A_ON(); + StartTicks(); + //If password mode do login + if (PwdMode) EM4xLogin(Pwd); + + forward_ptr = forwardLink_data; + fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE ); + fwd_bit_count += Prepare_Addr( Address ); + fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 ); + + SendForward(fwd_bit_count); + + //Wait for write to complete + //SpinDelay(10); + + WaitUS(6500); + //Capture response if one exists + DoPartialAcquisition(20, true, 6000); + + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off + LED_A_OFF(); + cmd_send(CMD_ACK,0,0,0,0,0); +} +/* +Reading a COTAG. + +COTAG needs the reader to send a startsequence and the card has an extreme slow datarate. +because of this, we can "sample" the data signal but we interpreate it to Manchester direct. + +READER START SEQUENCE: +burst 800 us, gap 2.2 msecs +burst 3.6 msecs gap 2.2 msecs +burst 800 us gap 2.2 msecs +pulse 3.6 msecs + +This triggers a COTAG tag to response +*/ +void Cotag(uint32_t arg0) { + +#define OFF { FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); WaitUS(2035); } +#define ON(x) { FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); WaitUS((x)); } + + uint8_t rawsignal = arg0 & 0xF; + + LED_A_ON(); + + // Switching to LF image on FPGA. This might empty BigBuff + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); + + //clear buffer now so it does not interfere with timing later + BigBuf_Clear_ext(false); + + // Set up FPGA, 132kHz to power up the tag + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 89); + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); + + // Connect the A/D to the peak-detected low-frequency path. + SetAdcMuxFor(GPIO_MUXSEL_LOPKD); + + // Now set up the SSC to get the ADC samples that are now streaming at us. + FpgaSetupSsc(); + + // start clock - 1.5ticks is 1us + StartTicks(); + + //send COTAG start pulse + ON(740) OFF + ON(3330) OFF + ON(740) OFF + ON(1000) + + switch(rawsignal) { + case 0: doCotagAcquisition(50000); break; + case 1: doCotagAcquisitionManchester(); break; + case 2: DoAcquisition_config(true, 0); break; + } + + // Turn the field off + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off + cmd_send(CMD_ACK,0,0,0,0,0); + LED_A_OFF(); +}