X-Git-Url: http://cvs.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/72e930ef3206224ae0ff0696a8a146a0b26268f7..a0048c69679ed103397a03cca940dfca4db5f4ab:/client/ui.c?ds=sidebyside

diff --git a/client/ui.c b/client/ui.c
index 59ca72dc..0dc9118b 100644
--- a/client/ui.c
+++ b/client/ui.c
@@ -18,14 +18,15 @@
 #include <pthread.h>
 #include "loclass/cipherutils.h"
 #include "ui.h"
-
-//#include <liquid/liquid.h>
+#include "cmdmain.h"
+#include "cmddata.h"
+#include "graph.h"
 #define M_PI 3.14159265358979323846264338327
 
 double CursorScaleFactor;
 int PlotGridX, PlotGridY, PlotGridXdefault= 64, PlotGridYdefault= 64;
 int offline;
-int flushAfterWrite = 0;  //buzzy
+int flushAfterWrite = 0;
 extern pthread_mutex_t print_lock;
 
 static char *logfilename = "proxmark3.log";
@@ -36,13 +37,13 @@ void PrintAndLog(char *fmt, ...)
 	int saved_point;
 	va_list argptr, argptr2;
 	static FILE *logfile = NULL;
-	static int logging=1;
+	static int logging = 1;
 
 	// lock this section to avoid interlacing prints from different threats
 	pthread_mutex_lock(&print_lock);
   
 	if (logging && !logfile) {
-		logfile=fopen(logfilename, "a");
+		logfile = fopen(logfilename, "a");
 		if (!logfile) {
 			fprintf(stderr, "Can't open logfile, logging disabled!\n");
 			logging=0;
@@ -81,442 +82,38 @@ void PrintAndLog(char *fmt, ...)
 	}
 	va_end(argptr2);
 
-	if (flushAfterWrite == 1)  //buzzy
-	{
+	if (flushAfterWrite == 1) {
 		fflush(NULL);
 	}
 	//release lock
 	pthread_mutex_unlock(&print_lock);  
 }
 
-void SetLogFilename(char *fn)
-{
+void SetLogFilename(char *fn) {
   logfilename = fn;
 }
-
-int manchester_decode( int * data, const size_t len, uint8_t * dataout){
-	
-	int bitlength = 0;
-	int i, clock, high, low, startindex;
-	low = startindex = 0;
-	high = 1;
-	uint8_t bitStream[len];
-	
-	memset(bitStream, 0x00, len);
-	
-	/* Detect high and lows */
-	for (i = 0; i < len; i++) {
-		if (data[i] > high)
-			high = data[i];
-		else if (data[i] < low)
-			low = data[i];
-	}
-	
-	/* get clock */
-	clock = GetT55x7Clock( data, len, high );	
-	startindex = DetectFirstTransition(data, len, high);
-  
-	PrintAndLog(" Clock       : %d", clock);
-	PrintAndLog(" startindex  : %d", startindex);
-	
-	if (high != 1)
-		bitlength = ManchesterConvertFrom255(data, len, bitStream, high, low, clock, startindex);
-	else
-		bitlength= ManchesterConvertFrom1(data, len, bitStream, clock, startindex);
-
-	memcpy(dataout, bitStream, bitlength);
-	return bitlength;
-}
-
- int GetT55x7Clock( const int * data, const size_t len, int peak ){ 
- 
- 	int i,lastpeak,clock;
-	clock = 0xFFFF;
-	lastpeak = 0;
-	
-	/* Detect peak if we don't have one */
-	if (!peak) {
-		for (i = 0; i < len; ++i) {
-			if (data[i] > peak) {
-				peak = data[i];
-			}
-		}
-	}
-	
-	for (i = 1; i < len; ++i) {
-		/* if this is the beginning of a peak */
-		if ( data[i-1] != data[i] &&  data[i] == peak) {
-		  /* find lowest difference between peaks */
-			if (lastpeak && i - lastpeak < clock)
-				clock = i - lastpeak;
-			lastpeak = i;
-		}
-	}
-	//return clock;  
- 	//defaults clock to precise values.
-	switch(clock){
-		case 8:
-		case 16:
-		case 32:
-		case 40:
-		case 50:
-		case 64:
-		case 100:
-		case 128:
-		return clock;
-		break;
-		default:  break;
-	}
-	
-	//PrintAndLog(" Found Clock : %d  - trying to adjust", clock);
-	
-	// When detected clock is 31 or 33 then then return 
-	int clockmod = clock%8;
-	if ( clockmod == 7 ) 
-		clock += 1;
-	else if ( clockmod == 1 )
-		clock -= 1;
-	
-	return clock;
- }
- 
- int DetectFirstTransition(const int * data, const size_t len, int threshold){
-
-	int i =0;
-	/* now look for the first threshold */
-	for (; i < len; ++i) {
-		if (data[i] == threshold) {
-			break;
-		}
-	}
-	return i;
- }
-
- int ManchesterConvertFrom255(const int * data, const size_t len, uint8_t * dataout, int high, int low, int clock, int startIndex){
-
-	int i, j, z, hithigh, hitlow, bitIndex, startType;
-	i = 0;
-	bitIndex = 0;
-	
-	int isDamp = 0;
-	int damplimit = (int)((high / 2) * 0.3);
-	int dampHi =  (high/2)+damplimit;
-	int dampLow = (high/2)-damplimit;
-	int firstST = 0;
-
-	// i = clock frame of data
-	for (; i < (int)(len / clock); i++)
-	{
-		hithigh = 0;
-		hitlow = 0;
-		startType = -1;
-		z = startIndex + (i*clock);
-		isDamp = 0;
-			
-		/* Find out if we hit both high and low peaks */
-		for (j = 0; j < clock; j++)
-		{		
-			if (data[z+j] == high){
-				hithigh = 1;
-				if ( startType == -1)
-					startType = 1;
-			}
-			
-			if (data[z+j] == low ){
-				hitlow = 1;
-				if ( startType == -1)
-					startType = 0;
-			} 
-		
-			if (hithigh && hitlow)
-			  break;
-		}
-		
-		// No high value found, are we in a dampening field?
-		if ( !hithigh ) {
-			//PrintAndLog(" # Entering damp test at index : %d (%d)", z+j, j);
-			for (j = 0; j < clock; j++)
-			{
-				if ( 
-				     (data[z+j] <= dampHi && data[z+j] >= dampLow)
-				   ){
-				   isDamp++;
-				}
-			}
-		}
-
-		/*  Manchester Switching..
-			0: High -> Low   
-			1: Low -> High  
-		*/
-		if (startType == 0)
-			dataout[bitIndex++] = 1;
-		else if (startType == 1) 
-			dataout[bitIndex++] = 0;
-		else
-			dataout[bitIndex++] = 2;
-			
-		if ( isDamp > clock/2 ) {
-			firstST++;
-		}
-		
-		if ( firstST == 4)
-			break;
-	}
-	return bitIndex;
- }
- 
- int ManchesterConvertFrom1(const int * data, const size_t len, uint8_t * dataout, int clock, int startIndex){
-
-	PrintAndLog(" Path B");
- 
-	int i,j, bitindex, lc, tolerance, warnings;
-	warnings = 0;
-	int upperlimit = len*2/clock+8;
-	i = startIndex;
-	j = 0;
-	tolerance = clock/4;
-	uint8_t decodedArr[len];
-	
-	/* Detect duration between 2 successive transitions */
-	for (bitindex = 1; i < len; i++) {
-	
-		if (data[i-1] != data[i]) {
-			lc = i - startIndex;
-			startIndex = i;
-
-			// Error check: if bitindex becomes too large, we do not
-			// have a Manchester encoded bitstream or the clock is really wrong!
-			if (bitindex > upperlimit ) {
-				PrintAndLog("Error: the clock you gave is probably wrong, aborting.");
-				return 0;
-			}
-			// Then switch depending on lc length:
-			// Tolerance is 1/4 of clock rate (arbitrary)
-			if (abs((lc-clock)/2) < tolerance) {
-				// Short pulse : either "1" or "0"
-				decodedArr[bitindex++] = data[i-1];
-			} else if (abs(lc-clock) < tolerance) {
-				// Long pulse: either "11" or "00"
-				decodedArr[bitindex++] = data[i-1];
-				decodedArr[bitindex++] = data[i-1];
-			} else {
-				++warnings;
-				PrintAndLog("Warning: Manchester decode error for pulse width detection.");
-				if (warnings > 10) {
-					PrintAndLog("Error: too many detection errors, aborting.");
-					return 0; 
-				}
-			}
-		}
-	}
-	
-	/* 
-	* We have a decodedArr of "01" ("1") or "10" ("0")
-	* parse it into final decoded dataout
-    */ 
-    for (i = 0; i < bitindex; i += 2) {
-
-	    if ((decodedArr[i] == 0) && (decodedArr[i+1] == 1)) {
-			dataout[j++] = 1;
-		} else if ((decodedArr[i] == 1) && (decodedArr[i+1] == 0)) {
-			dataout[j++] = 0;
-		} else {
-			i++;
-			warnings++;
-			PrintAndLog("Unsynchronized, resync...");
-			PrintAndLog("(too many of those messages mean the stream is not Manchester encoded)");
-
-			if (warnings > 10) {	
-				PrintAndLog("Error: too many decode errors, aborting.");
-				return 0;
-			}
-		}
-    }
-	
-	PrintAndLog("%s", sprint_hex(dataout, j));
-	return j;
- }
- 
- void ManchesterDiffDecodedString(const uint8_t* bitstream, size_t len, uint8_t invert){
-	/* 
-	* We have a bitstream of "01" ("1") or "10" ("0")
-	* parse it into final decoded bitstream
-    */ 
-	int i, j, warnings; 
-	uint8_t decodedArr[(len/2)+1];
-
-	j = warnings = 0;
-	
-	uint8_t lastbit = 0;
-	
-    for (i = 0; i < len; i += 2) {
-	
-		uint8_t first = bitstream[i];
-		uint8_t second = bitstream[i+1];
-
-		if ( first == second ) {
-			++i;
-			++warnings;
-			if (warnings > 10) {
-				PrintAndLog("Error: too many decode errors, aborting.");
-				return;
-			}
-		} 
-		else if ( lastbit != first ) {
-			decodedArr[j++] = 0 ^ invert;
-		}
-		else {
-			decodedArr[j++] = 1 ^ invert;
-		}
-		lastbit = second;
-    }
-	
-	PrintAndLog("%s", sprint_hex(decodedArr, j));
-}
  
-void PrintPaddedManchester( uint8_t* bitStream, size_t len, size_t blocksize){
-
-	PrintAndLog(" Manchester decoded  : %d bits", len);
-	  
-	uint8_t mod = len % blocksize;
-	uint8_t div = len / blocksize;
-	int i;
-  
-	// Now output the bitstream to the scrollback by line of 16 bits
-	for (i = 0; i < div*blocksize; i+=blocksize) {
-		PrintAndLog(" %s", sprint_bin(bitStream+i,blocksize) );
-	}
-	
-	if ( mod > 0 )
-		PrintAndLog(" %s", sprint_bin(bitStream+i, mod) );	
-}
-
-void iceFsk(int * data, const size_t len){
-
-	//34359738  == 125khz   (2^32 / 125) =
-	
-    // parameters
-    float phase_offset      = 0.00f;   // carrier phase offset
-    float frequency_offset  = 0.30f;   // carrier frequency offset
-    float wn                = 0.01f;   // pll bandwidth
-    float zeta              = 0.707f;  // pll damping factor
-    float K                 = 1000;    // pll loop gain
-    size_t n                = len;     // number of samples
-
-    // generate loop filter parameters (active PI design)
-    float t1 = K/(wn*wn);   // tau_1
-    float t2 = 2*zeta/wn;   // tau_2
-
-    // feed-forward coefficients (numerator)
-    float b0 = (4*K/t1)*(1.+t2/2.0f);
-    float b1 = (8*K/t1);
-    float b2 = (4*K/t1)*(1.-t2/2.0f);
-
-    // feed-back coefficients (denominator)
-    //    a0 =  1.0  is implied
-    float a1 = -2.0f;
-    float a2 =  1.0f;
-
-    // filter buffer
-    float v0=0.0f, v1=0.0f, v2=0.0f;
-    
-    // initialize states
-    float phi     = phase_offset;  // input signal's initial phase
-    float phi_hat = 0.0f;      // PLL's initial phase
-    
-    unsigned int i;
-    float complex x,y;
-	float complex output[n];
-	
-	for (i=0; i<n; i++) {
-		// INPUT SIGNAL
-		x = data[i];
-		phi += frequency_offset;
-		
-		// generate complex sinusoid
-		y = cosf(phi_hat) + _Complex_I*sinf(phi_hat);
-
-		output[i] = y;
-
-		// compute error estimate
-		float delta_phi = cargf( x * conjf(y) );
-
-		
-        // print results to standard output
-        printf("  %6u %12.8f %12.8f %12.8f %12.8f %12.8f\n",
-                  i,
-                  crealf(x), cimagf(x),
-                  crealf(y), cimagf(y),
-                  delta_phi);
-	
-		// push result through loop filter, updating phase estimate
-
-		// advance buffer
-		v2 = v1;  // shift center register to upper register
-		v1 = v0;  // shift lower register to center register
-
-		// compute new lower register
-		v0 = delta_phi - v1*a1 - v2*a2;
-
-		// compute new output
-		phi_hat = v0*b0 + v1*b1 + v2*b2;
-
-	}
-
-	for (i=0; i<len; ++i){
-		data[i] = (int)crealf(output[i]);
-	}
-}
-
-/* Sliding DFT
-   Smooths out 
-*/ 
-void iceFsk2(int * data, const size_t len){
-
-	int i, j;
-	int output[len];
-	
-	// for (i=0; i<len-5; ++i){
-		// for ( j=1; j <=5; ++j) {
-			// output[i] += data[i*j];
-		// }
-		// output[i] /= 5;
-	// }
-	int rest = 127;
-	int tmp =0;
-	for (i=0; i<len; ++i){
-		if ( data[i] < 127)
-			output[i] = 0;
-		else {
-			tmp =  (100 * (data[i]-rest)) / rest;
-			output[i] = (tmp > 60)? 100:0;
-		}
-	}
-	
-	for (j=0; j<len; ++j)
-		data[j] = output[j];
-}
-
 void iceFsk3(int * data, const size_t len){
 
 	int i,j;
-	int output[len];
-    float fc            = 0.1125f;          // center frequency
-
+	
+	int * output =  (int* ) malloc(sizeof(int) * len);	
+	memset(output, 0x00, len);
+	float fc           = 0.1125f;          // center frequency
+	size_t adjustedLen = len;
+	
     // create very simple low-pass filter to remove images (2nd-order Butterworth)
     float complex iir_buf[3] = {0,0,0};
     float b[3] = {0.003621681514929,  0.007243363029857, 0.003621681514929};
     float a[3] = {1.000000000000000, -1.822694925196308, 0.837181651256023};
     
-    // process entire input file one sample at a time
-    float         sample      = 0;      // input sample read from file
-    float complex x_prime     = 1.0f;   // save sample for estimating frequency
+    float sample           = 0;      // input sample read from file
+    float complex x_prime  = 1.0f;   // save sample for estimating frequency
     float complex x;
 		
-	for (i=0; i<len; ++i) {
+	for (i=0; i<adjustedLen; ++i) {
 
-		sample = data[i];
+		sample = data[i]+128;
 		
         // remove DC offset and mix to complex baseband
         x = (sample - 127.5f) * cexpf( _Complex_I * 2 * M_PI * fc * i );
@@ -538,18 +135,19 @@ void iceFsk3(int * data, const size_t len){
     } 
 
 	// show data
-	for (j=0; j<len; ++j)
+	for (j=0; j<adjustedLen; ++j)
 		data[j] = output[j];
 		
 	CmdLtrim("30");
+	adjustedLen -= 30;
 	
 	// zero crossings.
-	for (j=0; j<len; ++j){
+	for (j=0; j<adjustedLen; ++j){
 		if ( data[j] == 10) break;
 	}
 	int startOne =j;
 	
-	for (;j<len; ++j){
+	for (;j<adjustedLen; ++j){
 		if ( data[j] == -10 ) break;
 	}
 	int stopOne = j-1;
@@ -560,13 +158,14 @@ void iceFsk3(int * data, const size_t len){
 	fieldlen = (fieldlen == 59 || fieldlen == 51)? 50 : fieldlen;
 	if ( fieldlen != 40 && fieldlen != 50){
 		printf("Detected field Length: %d \n", fieldlen);
-		printf("Can only handle len 40 or 50.  Aborting...");
+		printf("Can only handle 40 or 50.  Aborting...\n");
+		free(output);
 		return;
 	}
 	
 	// FSK sequence start == 000111
 	int startPos = 0;
-	for (i =0; i<len; ++i){
+	for (i =0; i<adjustedLen; ++i){
 		int dec = 0;
 		for ( j = 0; j < 6*fieldlen; ++j){
 			dec += data[i + j];
@@ -584,18 +183,19 @@ void iceFsk3(int * data, const size_t len){
 	int bit =0;
 	printf("BINARY\n");
 	printf("R/40 :  ");
-	for (i =startPos ; i < len; i += 40){
+	for (i =startPos ; i < adjustedLen; i += 40){
 		bit = data[i]>0 ? 1:0;
 		printf("%d", bit );
 	}
 	printf("\n");	
 	
 	printf("R/50 :  ");
-	for (i =startPos ; i < len; i += 50){
+	for (i =startPos ; i < adjustedLen; i += 50){
 		bit = data[i]>0 ? 1:0;
 		printf("%d", bit );	}
 	printf("\n");	
 	
+	free(output);
 }
 
 float complex cexpf (float complex Z)