X-Git-Url: http://cvs.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/75465377b93c9a27450a186342e9cfd2a84b4173..7444d916c680c4a5b93306c21f008b3096ed66cc:/client/ui.c

diff --git a/client/ui.c b/client/ui.c
index 4f1b5d85..6645a99e 100644
--- a/client/ui.c
+++ b/client/ui.c
@@ -12,16 +12,22 @@
 #include <stdarg.h>
 #include <stdlib.h>
 #include <stdio.h>
+#include <stdbool.h>
 #include <time.h>
 #include <readline/readline.h>
 #include <pthread.h>
-
+#include "loclass/cipherutils.h"
 #include "ui.h"
+#include "cmdmain.h"
+#include "cmddata.h"
+#include "graph.h"
+//#include <liquid/liquid.h>
+#define M_PI 3.14159265358979323846264338327
 
 double CursorScaleFactor;
 int PlotGridX, PlotGridY, PlotGridXdefault= 64, PlotGridYdefault= 64;
 int offline;
-int flushAfterWrite = 0;  //buzzy
+int flushAfterWrite = 0;
 extern pthread_mutex_t print_lock;
 
 static char *logfilename = "proxmark3.log";
@@ -32,13 +38,13 @@ void PrintAndLog(char *fmt, ...)
 	int saved_point;
 	va_list argptr, argptr2;
 	static FILE *logfile = NULL;
-	static int logging=1;
+	static int logging = 1;
 
 	// lock this section to avoid interlacing prints from different threats
 	pthread_mutex_lock(&print_lock);
   
 	if (logging && !logfile) {
-		logfile=fopen(logfilename, "a");
+		logfile = fopen(logfilename, "a");
 		if (!logfile) {
 			fprintf(stderr, "Can't open logfile, logging disabled!\n");
 			logging=0;
@@ -77,173 +83,135 @@ void PrintAndLog(char *fmt, ...)
 	}
 	va_end(argptr2);
 
-	if (flushAfterWrite == 1)  //buzzy
-	{
+	if (flushAfterWrite == 1) {
 		fflush(NULL);
 	}
 	//release lock
 	pthread_mutex_unlock(&print_lock);  
 }
 
-
 void SetLogFilename(char *fn)
 {
   logfilename = fn;
 }
 
-
-int manchester_decode(const int * data, const size_t len, uint8_t * dataout){
+int manchester_decode( int * data, const size_t len, uint8_t * dataout,  size_t dataoutlen){
 	
 	int bitlength = 0;
-	int i, clock, high, low, startindex;
+	int clock, high, low, startindex;
 	low = startindex = 0;
 	high = 1;
-	uint8_t bitStream[len];
-
-	memset(bitStream, 0x00, len);	
+	uint8_t * bitStream =  (uint8_t* ) malloc(sizeof(uint8_t) * dataoutlen);	
+	memset(bitStream, 0x00, dataoutlen);	
 	
 	/* Detect high and lows */
-	for (i = 0; i < len; i++) {
-		if (data[i] > high)
-			high = data[i];
-		else if (data[i] < low)
-			low = data[i];
-	}
-	
+	DetectHighLowInGraph(&high, &low, TRUE); 
+
 	/* get clock */
-	clock = GetT55x7Clock( data, len, high );	
-	startindex = DetectFirstTransition(data, len, high, low);
+	clock = GetAskClock("",false, false);
+
+	startindex = DetectFirstTransition(data, len, high);
   
-	PrintAndLog(" Clock      : %d", clock);
-	PrintAndLog(" startindex : %d", startindex);
-	
 	if (high != 1)
-		bitlength = ManchesterConvertFrom255(data, len, bitStream, high, low, clock, startindex);
+		// decode "raw"
+		bitlength = ManchesterConvertFrom255(data, len, bitStream, dataoutlen, high, low, clock, startindex);
 	else
-		bitlength= ManchesterConvertFrom1(data, len, bitStream, clock, startindex);
-
-	if ( bitlength > 0 ){
-		PrintPaddedManchester(bitStream, bitlength, clock);
-	}
+		// decode manchester
+		bitlength = ManchesterConvertFrom1(data, len, bitStream, dataoutlen, clock, startindex);
 
 	memcpy(dataout, bitStream, bitlength);
-	
 	free(bitStream);
 	return bitlength;
 }
-
- int GetT55x7Clock( const int * data, const size_t len, int peak ){ 
  
- 	int i,lastpeak,clock;
-	clock = 0xFFFF;
-	lastpeak = 0;
-	
-	/* Detect peak if we don't have one */
-	if (!peak) {
-		for (i = 0; i < len; ++i) {
-			if (data[i] > peak) {
-				peak = data[i];
-			}
-		}
-	}
-	
-	for (i = 1; i < len; ++i) {
-		/* if this is the beginning of a peak */
-		if ( data[i-1] != data[i] &&  data[i] == peak) {
-		  /* find lowest difference between peaks */
-			if (lastpeak && i - lastpeak < clock)
-				clock = i - lastpeak;
-			lastpeak = i;
-		}
-	}
-	//return clock;  
- 	//defaults clock to precise values.
-	switch(clock){
-		case 8:
-		case 16:
-		case 32:
-		case 40:
-		case 50:
-		case 64:
-		case 100:
-		case 128:
-		return clock;
-		break;
-		default:  break;
-	}
-	return 32;
- }
- 
- int DetectFirstTransition(const int * data, const size_t len, int high, int low){
+ int DetectFirstTransition(const int * data, const size_t len, int threshold){
 
-	int i, retval;
-	retval = 0;
-	/* 
-		Detect first transition Lo-Hi (arbitrary)       
-		skip to the first high
-	*/
-	  for (i = 0; i < len; ++i)
-		if (data[i] == high)
-		  break;
-		  
-	  /* now look for the first low */
-	  for (; i < len; ++i) {
-		if (data[i] == low) {
-			retval = i;
+	int i = 0;
+	/* now look for the first threshold */
+	for (; i < len; ++i) {
+		if (data[i] == threshold) {
 			break;
 		}
-	  }
-	return retval;
+	}
+	return i;
  }
 
- int ManchesterConvertFrom255(const int * data, const size_t len, uint8_t * dataout, int high, int low, int clock, int startIndex){
+ int ManchesterConvertFrom255(const int * data, const size_t len, uint8_t * dataout, int dataoutlen, int high, int low, int clock, int startIndex){
 
-	int i, j, hithigh, hitlow, first, bit, bitIndex;
-	i = startIndex;
+	int i, j, z, hithigh, hitlow, bitIndex, startType;
+	i = 0;
 	bitIndex = 0;
-
-	/*
-	* We assume the 1st bit is zero, it may not be
-	* the case: this routine (I think) has an init problem.
-	* Ed.
-	*/
-	bit = 0; 
-
-	for (; i < (int)(len / clock); i++)
+	
+	int isDamp = 0;
+	int damplimit = (int)((high / 2) * 0.3);
+	int dampHi =  (high/2)+damplimit;
+	int dampLow = (high/2)-damplimit;
+	int firstST = 0;
+
+	// i = clock frame of data
+	for (; i < (int)(len/clock); i++)
 	{
 		hithigh = 0;
 		hitlow = 0;
-		first = 1;
-
+		startType = -1;
+		z = startIndex + (i*clock);
+		isDamp = 0;
+			
 		/* Find out if we hit both high and low peaks */
 		for (j = 0; j < clock; j++)
-		{
-			if (data[(i * clock) + j] == high)
+		{		
+			if (data[z+j] == high){
 				hithigh = 1;
-			else if (data[(i * clock) + j] == low)
+				if ( startType == -1)
+					startType = 1;
+			}
+			
+			if (data[z+j] == low ){
 				hitlow = 1;
-
-			/* it doesn't count if it's the first part of our read
-			   because it's really just trailing from the last sequence */
-			if (first && (hithigh || hitlow))
-			  hithigh = hitlow = 0;
-			else
-			  first = 0;
-
+				if ( startType == -1)
+					startType = 0;
+			} 
+		
 			if (hithigh && hitlow)
 			  break;
 		}
+		
+		// No high value found, are we in a dampening field?
+		if ( !hithigh ) {
+			//PrintAndLog(" # Entering damp test at index : %d (%d)", z+j, j);
+			for (j = 0; j < clock; j++) {
+				if ( 
+				     (data[z+j] <= dampHi && data[z+j] >= dampLow)
+				   ){
+				   isDamp++;
+				}
+			}
+		}
 
-		/* If we didn't hit both high and low peaks, we had a bit transition */
-		if (!hithigh || !hitlow)
-			bit ^= 1;
-
-		dataout[bitIndex++] = bit;
+		/*  Manchester Switching..
+			0: High -> Low   
+			1: Low -> High  
+		*/
+		if (startType == 0)
+			dataout[bitIndex++] = 1;
+		else if (startType == 1) 
+			dataout[bitIndex++] = 0;
+		else
+			dataout[bitIndex++] = 2;
+			
+		if ( isDamp > clock/2 ) {
+			firstST++;
+		}
+		
+		if ( firstST == 4)
+			break;
+		if ( bitIndex >= dataoutlen-1 )
+			break;
 	}
 	return bitIndex;
  }
  
- int ManchesterConvertFrom1(const int * data, const size_t len, uint8_t * dataout, int clock, int startIndex){
+ int ManchesterConvertFrom1(const int * data, const size_t len, uint8_t * dataout,int dataoutlen, int clock, int startIndex){
 
 	int i,j, bitindex, lc, tolerance, warnings;
 	warnings = 0;
@@ -253,7 +221,7 @@ int manchester_decode(const int * data, const size_t len, uint8_t * dataout){
 	tolerance = clock/4;
 	uint8_t decodedArr[len];
 	
-	/* Then detect duration between 2 successive transitions */
+	/* Detect duration between 2 successive transitions */
 	for (bitindex = 1; i < len; i++) {
 	
 		if (data[i-1] != data[i]) {
@@ -350,19 +318,164 @@ int manchester_decode(const int * data, const size_t len, uint8_t * dataout){
 	PrintAndLog("%s", sprint_hex(decodedArr, j));
 }
  
- 
 void PrintPaddedManchester( uint8_t* bitStream, size_t len, size_t blocksize){
 
-	  PrintAndLog(" Manchester decoded bitstream : %d bits", len);
+	PrintAndLog(" Manchester decoded  : %d bits", len);
 	  
-	  uint8_t mod = len % blocksize;
-	  uint8_t div = len / blocksize;
-	  int i;
-	  // Now output the bitstream to the scrollback by line of 16 bits
-	  for (i = 0; i < div*blocksize; i+=blocksize) {
+	uint8_t mod = len % blocksize;
+	uint8_t div = len / blocksize;
+	int i;
+  
+	// Now output the bitstream to the scrollback by line of 16 bits
+	for (i = 0; i < div*blocksize; i+=blocksize) {
 		PrintAndLog(" %s", sprint_bin(bitStream+i,blocksize) );
-	  }
-	  if ( mod > 0 ){
-		PrintAndLog(" %s", sprint_bin(bitStream+i, mod) );
-	  }
+	}
+	
+	if ( mod > 0 )
+		PrintAndLog(" %s", sprint_bin(bitStream+i, mod) );	
+}
+
+/* Sliding DFT
+   Smooths out 
+*/ 
+void iceFsk2(int * data, const size_t len){
+
+	int i, j;
+	int * output =  (int* ) malloc(sizeof(int) * len);	
+	memset(output, 0x00, len);
+
+	// for (i=0; i<len-5; ++i){
+		// for ( j=1; j <=5; ++j) {
+			// output[i] += data[i*j];
+		// }
+		// output[i] /= 5;
+	// }
+	int rest = 127;
+	int tmp =0;
+	for (i=0; i<len; ++i){
+		if ( data[i] < 127)
+			output[i] = 0;
+		else {
+			tmp =  (100 * (data[i]-rest)) / rest;
+			output[i] = (tmp > 60)? 100:0;
+		}
+	}
+	
+	for (j=0; j<len; ++j)
+		data[j] = output[j];
+		
+	free(output);
+}
+
+void iceFsk3(int * data, const size_t len){
+
+	int i,j;
+	
+	int * output =  (int* ) malloc(sizeof(int) * len);	
+	memset(output, 0x00, len);
+	float fc           = 0.1125f;          // center frequency
+	size_t adjustedLen = len;
+	
+    // create very simple low-pass filter to remove images (2nd-order Butterworth)
+    float complex iir_buf[3] = {0,0,0};
+    float b[3] = {0.003621681514929,  0.007243363029857, 0.003621681514929};
+    float a[3] = {1.000000000000000, -1.822694925196308, 0.837181651256023};
+    
+    float sample           = 0;      // input sample read from file
+    float complex x_prime  = 1.0f;   // save sample for estimating frequency
+    float complex x;
+		
+	for (i=0; i<adjustedLen; ++i) {
+
+		sample = data[i]+128;
+		
+        // remove DC offset and mix to complex baseband
+        x = (sample - 127.5f) * cexpf( _Complex_I * 2 * M_PI * fc * i );
+
+        // apply low-pass filter, removing spectral image (IIR using direct-form II)
+        iir_buf[2] = iir_buf[1];
+        iir_buf[1] = iir_buf[0];
+        iir_buf[0] = x - a[1]*iir_buf[1] - a[2]*iir_buf[2];
+        x          = b[0]*iir_buf[0] +
+                     b[1]*iir_buf[1] +
+                     b[2]*iir_buf[2];
+					 
+        // compute instantaneous frequency by looking at phase difference
+        // between adjacent samples
+        float freq = cargf(x*conjf(x_prime));
+        x_prime = x;    // retain this sample for next iteration
+
+		output[i] =(freq > 0)? 10 : -10;
+    } 
+
+	// show data
+	for (j=0; j<adjustedLen; ++j)
+		data[j] = output[j];
+		
+	CmdLtrim("30");
+	adjustedLen -= 30;
+	
+	// zero crossings.
+	for (j=0; j<adjustedLen; ++j){
+		if ( data[j] == 10) break;
+	}
+	int startOne =j;
+	
+	for (;j<adjustedLen; ++j){
+		if ( data[j] == -10 ) break;
+	}
+	int stopOne = j-1;
+	
+	int fieldlen = stopOne-startOne;
+	
+	fieldlen = (fieldlen == 39 || fieldlen == 41)? 40 : fieldlen;
+	fieldlen = (fieldlen == 59 || fieldlen == 51)? 50 : fieldlen;
+	if ( fieldlen != 40 && fieldlen != 50){
+		printf("Detected field Length: %d \n", fieldlen);
+		printf("Can only handle 40 or 50.  Aborting...\n");
+		return;
+	}
+	
+	// FSK sequence start == 000111
+	int startPos = 0;
+	for (i =0; i<adjustedLen; ++i){
+		int dec = 0;
+		for ( j = 0; j < 6*fieldlen; ++j){
+			dec += data[i + j];
+		}
+		if (dec == 0) {
+			startPos = i;
+			break;
+		}
+	}
+	
+	printf("000111 position: %d \n", startPos);
+
+	startPos += 6*fieldlen+5;
+	
+	int bit =0;
+	printf("BINARY\n");
+	printf("R/40 :  ");
+	for (i =startPos ; i < adjustedLen; i += 40){
+		bit = data[i]>0 ? 1:0;
+		printf("%d", bit );
+	}
+	printf("\n");	
+	
+	printf("R/50 :  ");
+	for (i =startPos ; i < adjustedLen; i += 50){
+		bit = data[i]>0 ? 1:0;
+		printf("%d", bit );	}
+	printf("\n");	
+	
+	free(output);
+}
+
+float complex cexpf (float complex Z)
+{
+  float complex  Res;
+  double rho = exp (__real__ Z);
+  __real__ Res = rho * cosf(__imag__ Z);
+  __imag__ Res = rho * sinf(__imag__ Z);
+  return Res;
 }