X-Git-Url: http://cvs.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/758f1fd1f37d52678af1e9b1f72d58aecf41cac4..e1c6e9e8f1d6e0266f79b5ec40a0bd93cd96b14a:/armsrc/iso14443a.c diff --git a/armsrc/iso14443a.c b/armsrc/iso14443a.c index d326be2c..5c7367a1 100644 --- a/armsrc/iso14443a.c +++ b/armsrc/iso14443a.c @@ -20,12 +20,9 @@ #include "iso14443a.h" #include "crapto1.h" #include "mifareutil.h" - +#include "BigBuf.h" static uint32_t iso14a_timeout; -uint8_t *trace = (uint8_t *) BigBuf+TRACE_OFFSET; int rsamples = 0; -int traceLen = 0; -int tracing = TRUE; uint8_t trigger = 0; // the block number for the ISO14443-4 PCB static uint8_t iso14_pcb_blocknum = 0; @@ -144,23 +141,40 @@ const uint8_t OddByteParity[256] = { 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1 }; + void iso14a_set_trigger(bool enable) { trigger = enable; } -void iso14a_clear_trace() { - memset(trace, 0x44, TRACE_SIZE); - traceLen = 0; -} - -void iso14a_set_tracing(bool enable) { - tracing = enable; -} void iso14a_set_timeout(uint32_t timeout) { iso14a_timeout = timeout; + if(MF_DBGLEVEL >= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", iso14a_timeout, iso14a_timeout / 106); +} + + +void iso14a_set_ATS_timeout(uint8_t *ats) { + + uint8_t tb1; + uint8_t fwi; + uint32_t fwt; + + if (ats[0] > 1) { // there is a format byte T0 + if ((ats[1] & 0x20) == 0x20) { // there is an interface byte TB(1) + if ((ats[1] & 0x10) == 0x10) { // there is an interface byte TA(1) preceding TB(1) + tb1 = ats[3]; + } else { + tb1 = ats[2]; + } + fwi = (tb1 & 0xf0) >> 4; // frame waiting indicator (FWI) + fwt = 256 * 16 * (1 << fwi); // frame waiting time (FWT) in 1/fc + + iso14a_set_timeout(fwt/(8*16)); + } + } } + //----------------------------------------------------------------------------- // Generate the parity value for a byte sequence // @@ -199,61 +213,6 @@ void AppendCrc14443a(uint8_t* data, int len) ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1); } -// The function LogTrace() is also used by the iClass implementation in iClass.c -bool RAMFUNC LogTrace(const uint8_t *btBytes, uint16_t iLen, uint32_t timestamp_start, uint32_t timestamp_end, uint8_t *parity, bool readerToTag) -{ - if (!tracing) return FALSE; - - uint16_t num_paritybytes = (iLen-1)/8 + 1; // number of valid paritybytes in *parity - uint16_t duration = timestamp_end - timestamp_start; - - // Return when trace is full - if (traceLen + sizeof(iLen) + sizeof(timestamp_start) + sizeof(duration) + num_paritybytes + iLen >= TRACE_SIZE) { - tracing = FALSE; // don't trace any more - return FALSE; - } - - // Traceformat: - // 32 bits timestamp (little endian) - // 16 bits duration (little endian) - // 16 bits data length (little endian, Highest Bit used as readerToTag flag) - // y Bytes data - // x Bytes parity (one byte per 8 bytes data) - - // timestamp (start) - trace[traceLen++] = ((timestamp_start >> 0) & 0xff); - trace[traceLen++] = ((timestamp_start >> 8) & 0xff); - trace[traceLen++] = ((timestamp_start >> 16) & 0xff); - trace[traceLen++] = ((timestamp_start >> 24) & 0xff); - - // duration - trace[traceLen++] = ((duration >> 0) & 0xff); - trace[traceLen++] = ((duration >> 8) & 0xff); - - // data length - trace[traceLen++] = ((iLen >> 0) & 0xff); - trace[traceLen++] = ((iLen >> 8) & 0xff); - - // readerToTag flag - if (!readerToTag) { - trace[traceLen - 1] |= 0x80; - } - - // data bytes - if (btBytes != NULL && iLen != 0) { - memcpy(trace + traceLen, btBytes, iLen); - } - traceLen += iLen; - - // parity bytes - if (parity != NULL && iLen != 0) { - memcpy(trace + traceLen, parity, num_paritybytes); - } - traceLen += num_paritybytes; - - return TRUE; -} - //============================================================================= // ISO 14443 Type A - Miller decoder //============================================================================= @@ -308,26 +267,27 @@ static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time) Uart.twoBits = (Uart.twoBits << 8) | bit; - if (Uart.state == STATE_UNSYNCD) { // not yet synced + if (Uart.state == STATE_UNSYNCD) { // not yet synced - if (Uart.highCnt < 7) { // wait for a stable unmodulated signal + if (Uart.highCnt < 2) { // wait for a stable unmodulated signal if (Uart.twoBits == 0xffff) { Uart.highCnt++; } else { Uart.highCnt = 0; } } else { - Uart.syncBit = 0xFFFF; // not set - // look for 00xx1111 (the start bit) - if ((Uart.twoBits & 0x6780) == 0x0780) Uart.syncBit = 7; - else if ((Uart.twoBits & 0x33C0) == 0x03C0) Uart.syncBit = 6; - else if ((Uart.twoBits & 0x19E0) == 0x01E0) Uart.syncBit = 5; - else if ((Uart.twoBits & 0x0CF0) == 0x00F0) Uart.syncBit = 4; - else if ((Uart.twoBits & 0x0678) == 0x0078) Uart.syncBit = 3; - else if ((Uart.twoBits & 0x033C) == 0x003C) Uart.syncBit = 2; - else if ((Uart.twoBits & 0x019E) == 0x001E) Uart.syncBit = 1; - else if ((Uart.twoBits & 0x00CF) == 0x000F) Uart.syncBit = 0; - if (Uart.syncBit != 0xFFFF) { + Uart.syncBit = 0xFFFF; // not set + // we look for a ...1111111100x11111xxxxxx pattern (the start bit) + if ((Uart.twoBits & 0xDF00) == 0x1F00) Uart.syncBit = 8; // mask is 11x11111 xxxxxxxx, + // check for 00x11111 xxxxxxxx + else if ((Uart.twoBits & 0xEF80) == 0x8F80) Uart.syncBit = 7; // both masks shifted right one bit, left padded with '1' + else if ((Uart.twoBits & 0xF7C0) == 0xC7C0) Uart.syncBit = 6; // ... + else if ((Uart.twoBits & 0xFBE0) == 0xE3E0) Uart.syncBit = 5; + else if ((Uart.twoBits & 0xFDF0) == 0xF1F0) Uart.syncBit = 4; + else if ((Uart.twoBits & 0xFEF8) == 0xF8F8) Uart.syncBit = 3; + else if ((Uart.twoBits & 0xFF7C) == 0xFC7C) Uart.syncBit = 2; + else if ((Uart.twoBits & 0xFFBE) == 0xFE3E) Uart.syncBit = 1; + if (Uart.syncBit != 0xFFFF) { // found a sync bit Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8); Uart.startTime -= Uart.syncBit; Uart.endTime = Uart.startTime; @@ -340,11 +300,9 @@ static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time) if (IsMillerModulationNibble1(Uart.twoBits >> Uart.syncBit)) { if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) { // Modulation in both halves - error UartReset(); - Uart.highCnt = 6; } else { // Modulation in first half = Sequence Z = logic "0" if (Uart.state == STATE_MILLER_X) { // error - must not follow after X UartReset(); - Uart.highCnt = 6; } else { Uart.bitCount++; Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg @@ -399,12 +357,13 @@ static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time) if (Uart.len) { return TRUE; // we are finished with decoding the raw data sequence } else { - UartReset(); // Nothing receiver - start over + UartReset(); // Nothing received - start over + Uart.highCnt = 1; } } if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC UartReset(); - Uart.highCnt = 6; + Uart.highCnt = 1; } else { // a logic "0" Uart.bitCount++; Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg @@ -591,32 +550,28 @@ void RAMFUNC SnoopIso14443a(uint8_t param) { // bit 1 - trigger from first reader 7-bit request LEDsoff(); - // init trace buffer - iso14a_clear_trace(); - iso14a_set_tracing(TRUE); - // We won't start recording the frames that we acquire until we trigger; - // a good trigger condition to get started is probably when we see a - // response from the tag. - // triggered == FALSE -- to wait first for card - bool triggered = !(param & 0x03); - + iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER); + + // Allocate memory from BigBuf for some buffers + // free all previous allocations first + BigBuf_free(); + // The command (reader -> tag) that we're receiving. - // The length of a received command will in most cases be no more than 18 bytes. - // So 32 should be enough! - uint8_t *receivedCmd = ((uint8_t *)BigBuf) + RECV_CMD_OFFSET; - uint8_t *receivedCmdPar = ((uint8_t *)BigBuf) + RECV_CMD_PAR_OFFSET; + uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE); + uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE); // The response (tag -> reader) that we're receiving. - uint8_t *receivedResponse = ((uint8_t *)BigBuf) + RECV_RESP_OFFSET; - uint8_t *receivedResponsePar = ((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET; - - // As we receive stuff, we copy it from receivedCmd or receivedResponse - // into trace, along with its length and other annotations. - //uint8_t *trace = (uint8_t *)BigBuf; + uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE); + uint8_t *receivedResponsePar = BigBuf_malloc(MAX_PARITY_SIZE); // The DMA buffer, used to stream samples from the FPGA - uint8_t *dmaBuf = ((uint8_t *)BigBuf) + DMA_BUFFER_OFFSET; + uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE); + + // init trace buffer + clear_trace(); + set_tracing(TRUE); + uint8_t *data = dmaBuf; uint8_t previous_data = 0; int maxDataLen = 0; @@ -624,8 +579,6 @@ void RAMFUNC SnoopIso14443a(uint8_t param) { bool TagIsActive = FALSE; bool ReaderIsActive = FALSE; - iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER); - // Set up the demodulator for tag -> reader responses. DemodInit(receivedResponse, receivedResponsePar); @@ -635,6 +588,12 @@ void RAMFUNC SnoopIso14443a(uint8_t param) { // Setup and start DMA. FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); + // We won't start recording the frames that we acquire until we trigger; + // a good trigger condition to get started is probably when we see a + // response from the tag. + // triggered == FALSE -- to wait first for card + bool triggered = !(param & 0x03); + // And now we loop, receiving samples. for(uint32_t rsamples = 0; TRUE; ) { @@ -656,7 +615,7 @@ void RAMFUNC SnoopIso14443a(uint8_t param) { // test for length of buffer if(dataLen > maxDataLen) { maxDataLen = dataLen; - if(dataLen > 400) { + if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) { Dbprintf("blew circular buffer! dataLen=%d", dataLen); break; } @@ -739,7 +698,7 @@ void RAMFUNC SnoopIso14443a(uint8_t param) { FpgaDisableSscDma(); Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len); - Dbprintf("traceLen=%d, Uart.output[0]=%08x", traceLen, (uint32_t)Uart.output[0]); + Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart.output[0]); LEDsoff(); } @@ -885,7 +844,7 @@ int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par); bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity, uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity); -static uint8_t* free_buffer_pointer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET); +static uint8_t* free_buffer_pointer; typedef struct { uint8_t* response; @@ -895,10 +854,6 @@ typedef struct { uint32_t ProxToAirDuration; } tag_response_info_t; -void reset_free_buffer() { - free_buffer_pointer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET); -} - bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) { // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes // This will need the following byte array for a modulation sequence @@ -910,7 +865,8 @@ bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffe // ----------- + // 166 bytes, since every bit that needs to be send costs us a byte // - + + // Prepare the tag modulation bits from the message CodeIso14443aAsTag(response_info->response,response_info->response_n); @@ -931,15 +887,22 @@ bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffe return true; } + +// "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit. +// Coded responses need one byte per bit to transfer (data, parity, start, stop, correction) +// 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits +// -> need 273 bytes buffer +#define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 273 + bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) { // Retrieve and store the current buffer index response_info->modulation = free_buffer_pointer; // Determine the maximum size we can use from our buffer - size_t max_buffer_size = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + FREE_BUFFER_SIZE) - free_buffer_pointer; + size_t max_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE; // Forward the prepare tag modulation function to the inner function - if (prepare_tag_modulation(response_info,max_buffer_size)) { + if (prepare_tag_modulation(response_info, max_buffer_size)) { // Update the free buffer offset free_buffer_pointer += ToSendMax; return true; @@ -954,10 +917,6 @@ bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) { //----------------------------------------------------------------------------- void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) { - // Enable and clear the trace - iso14a_clear_trace(); - iso14a_set_tracing(TRUE); - uint8_t sak; // The first response contains the ATQA (note: bytes are transmitted in reverse order). @@ -1001,10 +960,11 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) } // The second response contains the (mandatory) first 24 bits of the UID - uint8_t response2[5]; + uint8_t response2[5] = {0x00}; // Check if the uid uses the (optional) part - uint8_t response2a[5]; + uint8_t response2a[5] = {0x00}; + if (uid_2nd) { response2[0] = 0x88; num_to_bytes(uid_1st,3,response2+1); @@ -1025,12 +985,12 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3]; // Prepare the mandatory SAK (for 4 and 7 byte UID) - uint8_t response3[3]; + uint8_t response3[3] = {0x00}; response3[0] = sak; ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]); // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit - uint8_t response3a[3]; + uint8_t response3a[3] = {0x00}; response3a[0] = sak & 0xFB; ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]); @@ -1066,9 +1026,20 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) .modulation_n = 0 }; - // Reset the offset pointer of the free buffer - reset_free_buffer(); - + // We need to listen to the high-frequency, peak-detected path. + iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN); + + BigBuf_free_keep_EM(); + + // allocate buffers: + uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE); + uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE); + free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE); + + // clear trace + clear_trace(); + set_tracing(TRUE); + // Prepare the responses of the anticollision phase // there will be not enough time to do this at the moment the reader sends it REQA for (size_t i=0; iADC_CR = AT91C_ADC_SWRST; AT91C_BASE_ADC->ADC_MR = - ADC_MODE_PRESCALE(32) | - ADC_MODE_STARTUP_TIME(16) | - ADC_MODE_SAMPLE_HOLD_TIME(8); + ADC_MODE_PRESCALE(63) | + ADC_MODE_STARTUP_TIME(1) | + ADC_MODE_SAMPLE_HOLD_TIME(15); AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF); // start ADC AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; @@ -1451,7 +1417,7 @@ static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity) // Clear RXRDY: uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; - + for(;;) { WDT_HIT(); @@ -1463,7 +1429,7 @@ static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity) analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF]; AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; if (analogCnt >= 32) { - if ((33000 * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) { + if ((MAX_ADC_HF_VOLTAGE * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) { vtime = GetTickCount(); if (!timer) timer = vtime; // 50ms no field --> card to idle state @@ -1526,7 +1492,7 @@ static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNe AT91C_BASE_SSC->SSC_THR = SEC_F; // send cycle - for(; i <= respLen; ) { + for(; i < respLen; ) { if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { AT91C_BASE_SSC->SSC_THR = resp[i++]; FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR; @@ -1538,14 +1504,15 @@ static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNe } // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again: - for (i = 0; i < 2 ; ) { + uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3; + for (i = 0; i <= fpga_queued_bits/8 + 1; ) { if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { AT91C_BASE_SSC->SSC_THR = SEC_F; FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR; i++; } } - + LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0); return 0; @@ -1647,7 +1614,7 @@ static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receive // clear RXRDY: uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; - + c = 0; for(;;) { WDT_HIT(); @@ -1657,7 +1624,7 @@ static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receive if(ManchesterDecoding(b, offset, 0)) { NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD); return TRUE; - } else if (c++ > iso14a_timeout) { + } else if (c++ > iso14a_timeout && Demod.state == DEMOD_UNSYNCD) { return FALSE; } } @@ -1726,8 +1693,8 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u uint8_t sel_all[] = { 0x93,0x20 }; uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00}; uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0 - uint8_t *resp = ((uint8_t *)BigBuf) + RECV_RESP_OFFSET; - uint8_t *resp_par = ((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET; + uint8_t resp[MAX_FRAME_SIZE]; // theoretically. A usual RATS will be much smaller + uint8_t resp_par[MAX_PARITY_SIZE]; byte_t uid_resp[4]; size_t uid_resp_len; @@ -1855,6 +1822,10 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u // reset the PCB block number iso14_pcb_blocknum = 0; + + // set default timeout based on ATS + iso14a_set_ATS_timeout(resp); + return 1; } @@ -1919,17 +1890,18 @@ void ReaderIso14443a(UsbCommand *c) { iso14a_command_t param = c->arg[0]; uint8_t *cmd = c->d.asBytes; - size_t len = c->arg[1]; - size_t lenbits = c->arg[2]; + size_t len = c->arg[1] & 0xffff; + size_t lenbits = c->arg[1] >> 16; + uint32_t timeout = c->arg[2]; uint32_t arg0 = 0; byte_t buf[USB_CMD_DATA_SIZE]; uint8_t par[MAX_PARITY_SIZE]; if(param & ISO14A_CONNECT) { - iso14a_clear_trace(); + clear_trace(); } - iso14a_set_tracing(TRUE); + set_tracing(TRUE); if(param & ISO14A_REQUEST_TRIGGER) { iso14a_set_trigger(TRUE); @@ -1945,7 +1917,7 @@ void ReaderIso14443a(UsbCommand *c) } if(param & ISO14A_SET_TIMEOUT) { - iso14a_set_timeout(c->arg[2]); + iso14a_set_timeout(timeout); } if(param & ISO14A_APDU) { @@ -1999,7 +1971,7 @@ int32_t dist_nt(uint32_t nt1, uint32_t nt2) { nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i; nttmp2 = prng_successor(nttmp2, 1); - if (nttmp2 == nt1) return -i; + if (nttmp2 == nt1) return -i; } return(-99999); // either nt1 or nt2 are invalid nonces @@ -2019,11 +1991,18 @@ void ReaderMifare(bool first_try) uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }; static uint8_t mf_nr_ar3; - uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + RECV_RESP_OFFSET); - uint8_t* receivedAnswerPar = (((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET); + uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE]; + uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE]; - iso14a_clear_trace(); - iso14a_set_tracing(TRUE); + if (first_try) { + iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD); + } + + // free eventually allocated BigBuf memory. We want all for tracing. + BigBuf_free(); + + clear_trace(); + set_tracing(TRUE); byte_t nt_diff = 0; uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough @@ -2047,7 +2026,6 @@ void ReaderMifare(bool first_try) if (first_try) { mf_nr_ar3 = 0; - iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD); sync_time = GetCountSspClk() & 0xfffffff8; sync_cycles = 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces). nt_attacked = 0; @@ -2065,18 +2043,21 @@ void ReaderMifare(bool first_try) LED_B_OFF(); LED_C_OFF(); - + + #define DARKSIDE_MAX_TRIES 32 // number of tries to sync on PRNG cycle. Then give up. + uint16_t unsuccessfull_tries = 0; + for(uint16_t i = 0; TRUE; i++) { + LED_C_ON(); WDT_HIT(); // Test if the action was cancelled if(BUTTON_PRESS()) { + isOK = -1; break; } - LED_C_ON(); - if(!iso14443a_select_card(uid, NULL, &cuid)) { if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card"); continue; @@ -2111,8 +2092,14 @@ void ReaderMifare(bool first_try) nt_attacked = nt; } else { - if (nt_distance == -99999) { // invalid nonce received, try again - continue; + if (nt_distance == -99999) { // invalid nonce received + unsuccessfull_tries++; + if (!nt_attacked && unsuccessfull_tries > DARKSIDE_MAX_TRIES) { + isOK = -3; // Card has an unpredictable PRNG. Give up + break; + } else { + continue; // continue trying... + } } sync_cycles = (sync_cycles - nt_distance); if (MF_DBGLEVEL >= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i, nt_distance, sync_cycles); @@ -2174,6 +2161,10 @@ void ReaderMifare(bool first_try) if (nt_diff == 0 && first_try) { par[0]++; + if (par[0] == 0x00) { // tried all 256 possible parities without success. Card doesn't send NACK. + isOK = -2; + break; + } } else { par[0] = ((par[0] & 0x1F) + 1) | par_low; } @@ -2190,13 +2181,13 @@ void ReaderMifare(bool first_try) memcpy(buf + 16, ks_list, 8); memcpy(buf + 24, mf_nr_ar, 4); - cmd_send(CMD_ACK,isOK,0,0,buf,28); + cmd_send(CMD_ACK, isOK, 0, 0, buf, 28); // Thats it... FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); - iso14a_set_tracing(FALSE); + set_tracing(FALSE); } /** @@ -2231,10 +2222,10 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * struct Crypto1State *pcs; pcs = &mpcs; uint32_t numReads = 0;//Counts numer of times reader read a block - uint8_t* receivedCmd = get_bigbufptr_recvcmdbuf(); - uint8_t* receivedCmd_par = receivedCmd + MAX_FRAME_SIZE; - uint8_t* response = get_bigbufptr_recvrespbuf(); - uint8_t* response_par = response + MAX_FRAME_SIZE; + uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE]; + uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE]; + uint8_t response[MAX_MIFARE_FRAME_SIZE]; + uint8_t response_par[MAX_MIFARE_PARITY_SIZE]; uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; @@ -2251,10 +2242,6 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0}; uint8_t ar_nr_collected = 0; - // clear trace - iso14a_clear_trace(); - iso14a_set_tracing(TRUE); - // Authenticate response - nonce uint32_t nonce = bytes_to_num(rAUTH_NT, 4); @@ -2292,13 +2279,10 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * if (_7BUID) { rATQA[0] = 0x44; rUIDBCC1[0] = 0x88; + rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3]; } - // We need to listen to the high-frequency, peak-detected path. - iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN); - - if (MF_DBGLEVEL >= 1) { if (!_7BUID) { Dbprintf("4B UID: %02x%02x%02x%02x", @@ -2310,15 +2294,24 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * } } + // We need to listen to the high-frequency, peak-detected path. + iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN); + + // free eventually allocated BigBuf memory but keep Emulator Memory + BigBuf_free_keep_EM(); + + // clear trace + clear_trace(); + set_tracing(TRUE); + + bool finished = FALSE; while (!BUTTON_PRESS() && !finished) { WDT_HIT(); // find reader field - // Vref = 3300mV, and an 10:1 voltage divider on the input - // can measure voltages up to 33000 mV if (cardSTATE == MFEMUL_NOFIELD) { - vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10; + vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10; if (vHf > MF_MINFIELDV) { cardSTATE_TO_IDLE(); LED_A_ON(); @@ -2393,6 +2386,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); break; } + uint32_t ar = bytes_to_num(receivedCmd, 4); uint32_t nr = bytes_to_num(&receivedCmd[4], 4); @@ -2499,6 +2493,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0); num_to_bytes(ans, 4, rAUTH_AT); } + EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT)); //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]); cardSTATE = MFEMUL_AUTH1; @@ -2531,13 +2526,13 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * || receivedCmd[0] == 0xB0) { // transfer if (receivedCmd[1] >= 16 * 4) { EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); - if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]); + if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02x) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]); break; } if (receivedCmd[1] / 4 != cardAUTHSC) { EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); - if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC); + if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02x) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC); break; } } @@ -2679,7 +2674,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * if(ar_nr_collected > 1) { Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:"); Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x", - ar_nr_responses[0], // UID + ar_nr_responses[0], // UID ar_nr_responses[1], //NT ar_nr_responses[2], //AR1 ar_nr_responses[3], //NR1 @@ -2698,7 +2693,8 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * } } } - if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, traceLen); + if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, BigBuf_get_traceLen()); + } @@ -2715,24 +2711,24 @@ void RAMFUNC SniffMifare(uint8_t param) { // C(red) A(yellow) B(green) LEDsoff(); // init trace buffer - iso14a_clear_trace(); - iso14a_set_tracing(TRUE); + clear_trace(); + set_tracing(TRUE); // The command (reader -> tag) that we're receiving. // The length of a received command will in most cases be no more than 18 bytes. // So 32 should be enough! - uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET); - uint8_t *receivedCmdPar = ((uint8_t *)BigBuf) + RECV_CMD_PAR_OFFSET; + uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE]; + uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE]; // The response (tag -> reader) that we're receiving. - uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RESP_OFFSET); - uint8_t *receivedResponsePar = ((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET; + uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE]; + uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE]; - // As we receive stuff, we copy it from receivedCmd or receivedResponse - // into trace, along with its length and other annotations. - //uint8_t *trace = (uint8_t *)BigBuf; - - // The DMA buffer, used to stream samples from the FPGA - uint8_t *dmaBuf = ((uint8_t *)BigBuf) + DMA_BUFFER_OFFSET; + iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER); + + // free eventually allocated BigBuf memory + BigBuf_free(); + // allocate the DMA buffer, used to stream samples from the FPGA + uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE); uint8_t *data = dmaBuf; uint8_t previous_data = 0; int maxDataLen = 0; @@ -2740,8 +2736,6 @@ void RAMFUNC SniffMifare(uint8_t param) { bool ReaderIsActive = FALSE; bool TagIsActive = FALSE; - iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER); - // Set up the demodulator for tag -> reader responses. DemodInit(receivedResponse, receivedResponsePar); @@ -2791,7 +2785,7 @@ void RAMFUNC SniffMifare(uint8_t param) { // test for length of buffer if(dataLen > maxDataLen) { // we are more behind than ever... maxDataLen = dataLen; - if(dataLen > 400) { + if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) { Dbprintf("blew circular buffer! dataLen=0x%x", dataLen); break; }