X-Git-Url: http://cvs.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/7f3480429ba8a8fecc9768aceb11c74db7f186ae..d78792f51535f469f4ba55b9ff8fa874c5fd34e0:/armsrc/appmain.c?ds=sidebyside

diff --git a/armsrc/appmain.c b/armsrc/appmain.c
index 27a7551d..4477a120 100644
--- a/armsrc/appmain.c
+++ b/armsrc/appmain.c
@@ -1,22 +1,34 @@
 //-----------------------------------------------------------------------------
-// The main application code. This is the first thing called after start.c
-// executes.
 // Jonathan Westhues, Mar 2006
 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
+//
+// This code is licensed to you under the terms of the GNU GPL, version 2 or,
+// at your option, any later version. See the LICENSE.txt file for the text of
+// the license.
+//-----------------------------------------------------------------------------
+// The main application code. This is the first thing called after start.c
+// executes.
 //-----------------------------------------------------------------------------
 
+#include "usb_cdc.h"
+#include "cmd.h"
 
-#include <proxmark3.h>
-#include <stdlib.h>
+#include "proxmark3.h"
 #include "apps.h"
+#include "util.h"
+#include "printf.h"
+#include "string.h"
+
+#include <stdarg.h>
+
+#include "legicrf.h"
+#include <hitag2.h>
+
 #ifdef WITH_LCD
-#include "fonts.h"
-#include "LCD.h"
+ #include "LCD.h"
 #endif
 
-// The large multi-purpose buffer, typically used to hold A/D samples,
-// maybe pre-processed in some way.
-DWORD BigBuf[16000];
+#define abs(x) ( ((x)<0) ? -(x) : (x) )
 
 //=============================================================================
 // A buffer where we can queue things up to be sent through the FPGA, for
@@ -24,15 +36,15 @@ DWORD BigBuf[16000];
 // is the order in which they go out on the wire.
 //=============================================================================
 
-BYTE ToSend[256];
+uint8_t ToSend[512];
 int ToSendMax;
 static int ToSendBit;
-
+struct common_area common_area __attribute__((section(".commonarea")));
 
 void BufferClear(void)
 {
 	memset(BigBuf,0,sizeof(BigBuf));
-	DbpString("Buffer cleared");
+	Dbprintf("Buffer cleared (%i bytes)",sizeof(BigBuf));
 }
 
 void ToSendReset(void)
@@ -67,134 +79,82 @@ void ToSendStuffBit(int b)
 
 void DbpString(char *str)
 {
-	UsbCommand c;
-	c.cmd = CMD_DEBUG_PRINT_STRING;
-	c.ext1 = strlen(str);
-	memcpy(c.d.asBytes, str, c.ext1);
-
-	UsbSendPacket((BYTE *)&c, sizeof(c));
-	// TODO fix USB so stupid things like this aren't req'd
-	SpinDelay(50);
+  byte_t len = strlen(str);
+  cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(byte_t*)str,len);
+//	/* this holds up stuff unless we're connected to usb */
+//	if (!UsbConnected())
+//		return;
+//
+//	UsbCommand c;
+//	c.cmd = CMD_DEBUG_PRINT_STRING;
+//	c.arg[0] = strlen(str);
+//	if(c.arg[0] > sizeof(c.d.asBytes)) {
+//		c.arg[0] = sizeof(c.d.asBytes);
+//	}
+//	memcpy(c.d.asBytes, str, c.arg[0]);
+//
+//	UsbSendPacket((uint8_t *)&c, sizeof(c));
+//	// TODO fix USB so stupid things like this aren't req'd
+//	SpinDelay(50);
 }
 
+#if 0
 void DbpIntegers(int x1, int x2, int x3)
 {
-	UsbCommand c;
-	c.cmd = CMD_DEBUG_PRINT_INTEGERS;
-	c.ext1 = x1;
-	c.ext2 = x2;
-	c.ext3 = x3;
-
-	UsbSendPacket((BYTE *)&c, sizeof(c));
-	// XXX
-	SpinDelay(50);
+  cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
+//	/* this holds up stuff unless we're connected to usb */
+//	if (!UsbConnected())
+//		return;
+//
+//	UsbCommand c;
+//	c.cmd = CMD_DEBUG_PRINT_INTEGERS;
+//	c.arg[0] = x1;
+//	c.arg[1] = x2;
+//	c.arg[2] = x3;
+//
+//	UsbSendPacket((uint8_t *)&c, sizeof(c));
+//	// XXX
+//	SpinDelay(50);
 }
+#endif
 
-void AcquireRawAdcSamples125k(BOOL at134khz)
-{
-	if(at134khz) {
-		FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
-		FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ);
-	} else {
-		FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-		FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ);
-	}
-
-	// Connect the A/D to the peak-detected low-frequency path.
-	SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
-
-	// Give it a bit of time for the resonant antenna to settle.
-	SpinDelay(50);
+void Dbprintf(const char *fmt, ...) {
+// should probably limit size here; oh well, let's just use a big buffer
+	char output_string[128];
+	va_list ap;
 
-	// Now set up the SSC to get the ADC samples that are now streaming at us.
-	FpgaSetupSsc();
+	va_start(ap, fmt);
+	kvsprintf(fmt, output_string, 10, ap);
+	va_end(ap);
 
-	// Now call the acquisition routine
-	DoAcquisition125k(at134khz);
+	DbpString(output_string);
 }
 
-// split into two routines so we can avoid timing issues after sending commands //
-void DoAcquisition125k(BOOL at134khz)
-{
-	BYTE *dest = (BYTE *)BigBuf;
-	int n = sizeof(BigBuf);
-	int i;
-
-	memset(dest,0,n);
-	i = 0;
-	for(;;) {
-		if(SSC_STATUS & (SSC_STATUS_TX_READY)) {
-			SSC_TRANSMIT_HOLDING = 0x43;
-			LED_D_ON();
-		}
-		if(SSC_STATUS & (SSC_STATUS_RX_READY)) {
-			dest[i] = (BYTE)SSC_RECEIVE_HOLDING;
-			i++;
-			LED_D_OFF();
-			if(i >= n) {
-				break;
-			}
-		}
-	}
-	DbpIntegers(dest[0], dest[1], at134khz);
-}
-
-void ModThenAcquireRawAdcSamples125k(int delay_off,int period_0,int period_1,BYTE *command)
-{
-	BOOL at134khz;
-
-	// see if 'h' was specified
-	if(command[strlen(command) - 1] == 'h')
-		at134khz= TRUE;
-	else
-		at134khz= FALSE;
-	
-	if(at134khz) {
-		FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
-		FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ);
-	} else {
-		FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-		FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ);
-	}
-
-	// Give it a bit of time for the resonant antenna to settle.
-	SpinDelay(50);
-
-	// Now set up the SSC to get the ADC samples that are now streaming at us.
-	FpgaSetupSsc();
-
-	// now modulate the reader field
-	while(*command != '\0' && *command != ' ')
-		{
-		FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
-		LED_D_OFF();
-		SpinDelayUs(delay_off);
-		if(at134khz) {
-			FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
-			FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ);
+// prints HEX & ASCII
+void Dbhexdump(int len, uint8_t *d, bool bAsci) {
+	int l=0,i;
+	char ascii[9];
+    
+	while (len>0) {
+		if (len>8) l=8;
+		else l=len;
+		
+		memcpy(ascii,d,l);
+		ascii[l]=0;
+		
+		// filter safe ascii
+		for (i=0;i<l;i++)
+			if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
+        
+		if (bAsci) {
+			Dbprintf("%-8s %*D",ascii,l,d," ");
 		} else {
-			FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-			FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ);
-		}
-		LED_D_ON();
-		if(*(command++) == '0')
-			SpinDelayUs(period_0);
-		else
-			SpinDelayUs(period_1);
+			Dbprintf("%*D",l,d," ");
 		}
-	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
-	LED_D_OFF();
-	SpinDelayUs(delay_off);
-	if(at134khz) {
-		FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
-		FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ);
-	} else {
-		FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-		FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ);
+        
+		len-=8;
+		d+=8;		
 	}
-
-	// now do the read
-	DoAcquisition125k(at134khz);
 }
 
 //-----------------------------------------------------------------------------
@@ -204,22 +164,24 @@ void ModThenAcquireRawAdcSamples125k(int delay_off,int period_0,int period_1,BYT
 //-----------------------------------------------------------------------------
 static int ReadAdc(int ch)
 {
-	DWORD d;
+	uint32_t d;
 
-	ADC_CONTROL = ADC_CONTROL_RESET;
-	ADC_MODE = ADC_MODE_PRESCALE(32) | ADC_MODE_STARTUP_TIME(16) |
+	AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
+	AT91C_BASE_ADC->ADC_MR =
+		ADC_MODE_PRESCALE(32) |
+		ADC_MODE_STARTUP_TIME(16) |
 		ADC_MODE_SAMPLE_HOLD_TIME(8);
-	ADC_CHANNEL_ENABLE = ADC_CHANNEL(ch);
+	AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
 
-	ADC_CONTROL = ADC_CONTROL_START;
-	while(!(ADC_STATUS & ADC_END_OF_CONVERSION(ch)))
+	AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
+	while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))
 		;
-	d = ADC_CHANNEL_DATA(ch);
+	d = AT91C_BASE_ADC->ADC_CDR[ch];
 
 	return d;
 }
 
-static int AvgAdc(int ch)
+int AvgAdc(int ch) // was static - merlok
 {
 	int i;
 	int a = 0;
@@ -231,513 +193,671 @@ static int AvgAdc(int ch)
 	return (a + 15) >> 5;
 }
 
+void MeasureAntennaTuning(void)
+{
+	uint8_t *dest = (uint8_t *)BigBuf+FREE_BUFFER_OFFSET;
+	int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; //ptr = 0 
+	int vLf125 = 0, vLf134 = 0, vHf = 0;	// in mV
+
+//	UsbCommand c;
+
+  LED_B_ON();
+	DbpString("Measuring antenna characteristics, please wait...");
+	memset(dest,0,sizeof(FREE_BUFFER_SIZE));
+
 /*
  * Sweeps the useful LF range of the proxmark from
  * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
- * reads the voltage in the antenna: the result is a graph
- * which should clearly show the resonating frequency of your
- * LF antenna ( hopefully around 90 if it is tuned to 125kHz!)
+ * read the voltage in the antenna, the result left
+ * in the buffer is a graph which should clearly show
+ * the resonating frequency of your LF antenna
+ * ( hopefully around 95 if it is tuned to 125kHz!)
  */
-void SweepLFrange()
-{
-	BYTE *dest = (BYTE *)BigBuf;
-	int i;
-
-	// clear buffer
-	memset(BigBuf,0,sizeof(BigBuf));
-
+  
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
 	for (i=255; i>19; i--) {
+    WDT_HIT();
 		FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
 		SpinDelay(20);
-		dest[i] = (137500 * AvgAdc(ADC_CHAN_LF)) >> 18;
+		// Vref = 3.3V, and a 10000:240 voltage divider on the input
+		// can measure voltages up to 137500 mV
+		adcval = ((137500 * AvgAdc(ADC_CHAN_LF)) >> 10);
+		if (i==95) 	vLf125 = adcval; // voltage at 125Khz
+		if (i==89) 	vLf134 = adcval; // voltage at 134Khz
+
+		dest[i] = adcval>>8; // scale int to fit in byte for graphing purposes
+		if(dest[i] > peak) {
+			peakv = adcval;
+			peak = dest[i];
+			peakf = i;
+			//ptr = i;
+		}
 	}
-}
-
-void MeasureAntennaTuning(void)
-{
-// Impedances are Zc = 1/(j*omega*C), in ohms
-#define LF_TUNING_CAP_Z	1273	//  1 nF @ 125   kHz
-#define HF_TUNING_CAP_Z	235		// 50 pF @ 13.56 MHz
-
-	int vLf125, vLf134, vHf;	// in mV
-
-	UsbCommand c;
-
-	// Let the FPGA drive the low-frequency antenna around 125 kHz.
-	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ);
-	SpinDelay(20);
-	vLf125 = AvgAdc(ADC_CHAN_LF);
-	// Vref = 3.3V, and a 10000:240 voltage divider on the input
-	// can measure voltages up to 137500 mV
-	vLf125 = (137500 * vLf125) >> 10;
-
-	// Let the FPGA drive the low-frequency antenna around 134 kHz.
-	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
-	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ);
-	SpinDelay(20);
-	vLf134 = AvgAdc(ADC_CHAN_LF);
-	// Vref = 3.3V, and a 10000:240 voltage divider on the input
-	// can measure voltages up to 137500 mV
-	vLf134 = (137500 * vLf134) >> 10;
 
+  LED_A_ON();
 	// Let the FPGA drive the high-frequency antenna around 13.56 MHz.
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
 	SpinDelay(20);
-	vHf = AvgAdc(ADC_CHAN_HF);
 	// Vref = 3300mV, and an 10:1 voltage divider on the input
 	// can measure voltages up to 33000 mV
-	vHf = (33000 * vHf) >> 10;
+	vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
+
+//	c.cmd = CMD_MEASURED_ANTENNA_TUNING;
+//	c.arg[0] = (vLf125 << 0) | (vLf134 << 16);
+//	c.arg[1] = vHf;
+//	c.arg[2] = peakf | (peakv << 16);
 
-	c.cmd = CMD_MEASURED_ANTENNA_TUNING;
-	c.ext1 = (vLf125 << 0) | (vLf134 << 16);
-	c.ext2 = vHf;
-	c.ext3 = (LF_TUNING_CAP_Z << 0) | (HF_TUNING_CAP_Z << 16);
-	UsbSendPacket((BYTE *)&c, sizeof(c));
+  DbpString("Measuring complete, sending report back to host");
+  cmd_send(CMD_MEASURED_ANTENNA_TUNING,vLf125|(vLf134<<16),vHf,peakf|(peakv<<16),0,0);
+//	UsbSendPacket((uint8_t *)&c, sizeof(c));
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+  LED_A_OFF();
+  LED_B_OFF();
+  return;
 }
 
-void SimulateTagLowFrequency(int period)
+void MeasureAntennaTuningHf(void)
 {
-	int i;
-	BYTE *tab = (BYTE *)BigBuf;
+	int vHf = 0;	// in mV
+
+	DbpString("Measuring HF antenna, press button to exit");
 
-	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR);
+	for (;;) {
+		// Let the FPGA drive the high-frequency antenna around 13.56 MHz.
+		FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
+		SpinDelay(20);
+		// Vref = 3300mV, and an 10:1 voltage divider on the input
+		// can measure voltages up to 33000 mV
+		vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
 
-	PIO_ENABLE = (1 << GPIO_SSC_DOUT) | (1 << GPIO_SSC_CLK);
+		Dbprintf("%d mV",vHf);
+		if (BUTTON_PRESS()) break;
+	}
+	DbpString("cancelled");
+}
 
-	PIO_OUTPUT_ENABLE = (1 << GPIO_SSC_DOUT);
-	PIO_OUTPUT_DISABLE = (1 << GPIO_SSC_CLK);
 
-#define SHORT_COIL()	LOW(GPIO_SSC_DOUT)
-#define OPEN_COIL()	HIGH(GPIO_SSC_DOUT)
+void SimulateTagHfListen(void)
+{
+	uint8_t *dest = (uint8_t *)BigBuf+FREE_BUFFER_OFFSET;
+	uint8_t v = 0;
+	int i;
+	int p = 0;
+
+	// We're using this mode just so that I can test it out; the simulated
+	// tag mode would work just as well and be simpler.
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);
+
+	// We need to listen to the high-frequency, peak-detected path.
+	SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+
+	FpgaSetupSsc();
 
 	i = 0;
 	for(;;) {
-		while(!(PIO_PIN_DATA_STATUS & (1<<GPIO_SSC_CLK))) {
-			if(BUTTON_PRESS()) {
-				return;
-			}
-			WDT_HIT();
+		if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+			AT91C_BASE_SSC->SSC_THR = 0xff;
 		}
+		if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+			uint8_t r = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
 
-		LED_D_ON();
-		if(tab[i]) {
-			OPEN_COIL();
-		} else {
-			SHORT_COIL();
-		}
-		LED_D_OFF();
+			v <<= 1;
+			if(r & 1) {
+				v |= 1;
+			}
+			p++;
+
+			if(p >= 8) {
+				dest[i] = v;
+				v = 0;
+				p = 0;
+				i++;
 
-		while(PIO_PIN_DATA_STATUS & (1<<GPIO_SSC_CLK)) {
-			if(BUTTON_PRESS()) {
-				return;
+				if(i >= FREE_BUFFER_SIZE) {
+					break;
+				}
 			}
-			WDT_HIT();
 		}
-
-		i++;
-		if(i == period) i = 0;
 	}
+	DbpString("simulate tag (now type bitsamples)");
 }
 
-// compose fc/8 fc/10 waveform
-static void fc(int c, int *n) {
-	BYTE *dest = (BYTE *)BigBuf;
-	int idx;
-
-	// for when we want an fc8 pattern every 4 logical bits
-	if(c==0) {
-		dest[((*n)++)]=1;
-		dest[((*n)++)]=1;
-		dest[((*n)++)]=0;
-		dest[((*n)++)]=0;
-		dest[((*n)++)]=0;
-		dest[((*n)++)]=0;
-		dest[((*n)++)]=0;
-		dest[((*n)++)]=0;
-	}
-	//	an fc/8  encoded bit is a bit pattern of  11000000  x6 = 48 samples
-	if(c==8) {
-		for (idx=0; idx<6; idx++) {
-			dest[((*n)++)]=1;
-			dest[((*n)++)]=1;
-			dest[((*n)++)]=0;
-			dest[((*n)++)]=0;
-			dest[((*n)++)]=0;
-			dest[((*n)++)]=0;
-			dest[((*n)++)]=0;
-			dest[((*n)++)]=0;
-		}
-	}
+void ReadMem(int addr)
+{
+	const uint8_t *data = ((uint8_t *)addr);
 
-	//	an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
-	if(c==10) {
-		for (idx=0; idx<5; idx++) {
-			dest[((*n)++)]=1;
-			dest[((*n)++)]=1;
-			dest[((*n)++)]=1;
-			dest[((*n)++)]=0;
-			dest[((*n)++)]=0;
-			dest[((*n)++)]=0;
-			dest[((*n)++)]=0;
-			dest[((*n)++)]=0;
-			dest[((*n)++)]=0;
-			dest[((*n)++)]=0;
-		}
-	}
+	Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
+		addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
 }
 
-// prepare a waveform pattern in the buffer based on the ID given then
-// simulate a HID tag until the button is pressed
-static void CmdHIDsimTAG(int hi, int lo)
+/* osimage version information is linked in */
+extern struct version_information version_information;
+/* bootrom version information is pointed to from _bootphase1_version_pointer */
+extern char *_bootphase1_version_pointer, _flash_start, _flash_end;
+void SendVersion(void)
 {
-	int n=0, i=0;
-	/*
-	 HID tag bitstream format
-	 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
-	 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
-	 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
-	 A fc8 is inserted before every 4 bits
-	 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
-	 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
-	*/
-
-	if (hi>0xFFF) {
-		DbpString("Tags can only have 44 bits.");
-		return;
-	}
-	fc(0,&n);
-	// special start of frame marker containing invalid bit sequences
-	fc(8,  &n);	fc(8,  &n);	// invalid
-	fc(8,  &n);	fc(10, &n); // logical 0
-	fc(10, &n);	fc(10, &n); // invalid
-	fc(8,  &n);	fc(10, &n); // logical 0
-
-	WDT_HIT();
-	// manchester encode bits 43 to 32
-	for (i=11; i>=0; i--) {
-		if ((i%4)==3) fc(0,&n);
-		if ((hi>>i)&1) {
-			fc(10, &n);	fc(8,  &n);		// low-high transition
-		} else {
-			fc(8,  &n);	fc(10, &n);		// high-low transition
-		}
+	char temp[48]; /* Limited data payload in USB packets */
+	DbpString("Prox/RFID mark3 RFID instrument");
+
+	/* Try to find the bootrom version information. Expect to find a pointer at
+	 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
+	 * pointer, then use it.
+	 */
+	char *bootrom_version = *(char**)&_bootphase1_version_pointer;
+	if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
+		DbpString("bootrom version information appears invalid");
+	} else {
+		FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
+		DbpString(temp);
 	}
 
-	WDT_HIT();
-	// manchester encode bits 31 to 0
-	for (i=31; i>=0; i--) {
-		if ((i%4)==3) fc(0,&n);
-		if ((lo>>i)&1) {
-			fc(10, &n);	fc(8,  &n);		// low-high transition
-		} else {
-			fc(8,  &n);	fc(10, &n);		// high-low transition
-		}
-	}
+	FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
+	DbpString(temp);
 
-	LED_A_ON();
-	SimulateTagLowFrequency(n);
-	LED_A_OFF();
+	FpgaGatherVersion(temp, sizeof(temp));
+	DbpString(temp);
 }
 
-// loop to capture raw HID waveform then FSK demodulate the TAG ID from it
-static void CmdHIDdemodFSK(void)
+#ifdef WITH_LF
+// samy's sniff and repeat routine
+void SamyRun()
 {
-	BYTE *dest = (BYTE *)BigBuf;
-	int m=0, n=0, i=0, idx=0, found=0, lastval=0;
-	DWORD hi=0, lo=0;
+	DbpString("Stand-alone mode! No PC necessary.");
+
+	// 3 possible options? no just 2 for now
+#define OPTS 2
+
+	int high[OPTS], low[OPTS];
+
+	// Oooh pretty -- notify user we're in elite samy mode now
+	LED(LED_RED,	200);
+	LED(LED_ORANGE, 200);
+	LED(LED_GREEN,	200);
+	LED(LED_ORANGE, 200);
+	LED(LED_RED,	200);
+	LED(LED_ORANGE, 200);
+	LED(LED_GREEN,	200);
+	LED(LED_ORANGE, 200);
+	LED(LED_RED,	200);
+
+	int selected = 0;
+	int playing = 0;
+
+	// Turn on selected LED
+	LED(selected + 1, 0);
+
+	for (;;)
+	{
+//		UsbPoll(FALSE);
+		usb_poll();
+    WDT_HIT();
+
+		// Was our button held down or pressed?
+		int button_pressed = BUTTON_HELD(1000);
+		SpinDelay(300);
+
+		// Button was held for a second, begin recording
+		if (button_pressed > 0)
+		{
+			LEDsoff();
+			LED(selected + 1, 0);
+			LED(LED_RED2, 0);
 
-	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ);
+			// record
+			DbpString("Starting recording");
 
-	// Connect the A/D to the peak-detected low-frequency path.
-	SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
+			// wait for button to be released
+			while(BUTTON_PRESS())
+				WDT_HIT();
 
-	// Give it a bit of time for the resonant antenna to settle.
-	SpinDelay(50);
+			/* need this delay to prevent catching some weird data */
+			SpinDelay(500);
 
-	// Now set up the SSC to get the ADC samples that are now streaming at us.
-	FpgaSetupSsc();
+			CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
+			Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]);
 
-	for(;;) {
-		WDT_HIT();
-		LED_A_ON();
-		if(BUTTON_PRESS()) {
-			LED_A_OFF();
-			return;
-		}
+			LEDsoff();
+			LED(selected + 1, 0);
+			// Finished recording
 
-		i = 0;
-		m = sizeof(BigBuf);
-		memset(dest,128,m);
-		for(;;) {
-			if(SSC_STATUS & (SSC_STATUS_TX_READY)) {
-				SSC_TRANSMIT_HOLDING = 0x43;
-				LED_D_ON();
-			}
-			if(SSC_STATUS & (SSC_STATUS_RX_READY)) {
-				dest[i] = (BYTE)SSC_RECEIVE_HOLDING;
-				// we don't care about actual value, only if it's more or less than a
-				// threshold essentially we capture zero crossings for later analysis
-				if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
-				i++;
-				LED_D_OFF();
-				if(i >= m) {
-					break;
-				}
-			}
+			// If we were previously playing, set playing off
+			// so next button push begins playing what we recorded
+			playing = 0;
 		}
 
-		// FSK demodulator
-
-		// sync to first lo-hi transition
-		for( idx=1; idx<m; idx++) {
-			if (dest[idx-1]<dest[idx])
-				lastval=idx;
-				break;
-		}
-		WDT_HIT();
-
-		// count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
-		// or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
-		// between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
-		for( i=0; idx<m; idx++) {
-			if (dest[idx-1]<dest[idx]) {
-				dest[i]=idx-lastval;
-				if (dest[i] <= 8) {
-						dest[i]=1;
-				} else {
-						dest[i]=0;
-				}
-
-				lastval=idx;
-				i++;
-			}
-		}
-		m=i;
-		WDT_HIT();
+		// Change where to record (or begin playing)
+		else if (button_pressed)
+		{
+			// Next option if we were previously playing
+			if (playing)
+				selected = (selected + 1) % OPTS;
+			playing = !playing;
 
-		// we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
-		lastval=dest[0];
-		idx=0;
-		i=0;
-		n=0;
-		for( idx=0; idx<m; idx++) {
-			if (dest[idx]==lastval) {
-				n++;
-			} else {
-				// a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents,
-				// an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets
-				// swallowed up by rounding
-				// expected results are 1 or 2 bits, any more and it's an invalid manchester encoding
-				// special start of frame markers use invalid manchester states (no transitions) by using sequences
-				// like 111000
-				if (dest[idx-1]) {
-					n=(n+1)/6;			// fc/8 in sets of 6
-				} else {
-					n=(n+1)/5;			// fc/10 in sets of 5
-				}
-				switch (n) {			// stuff appropriate bits in buffer
-					case 0:
-					case 1:	// one bit
-						dest[i++]=dest[idx-1];
-						break;
-					case 2: // two bits
-						dest[i++]=dest[idx-1];
-						dest[i++]=dest[idx-1];
-						break;
-					case 3: // 3 bit start of frame markers
-						dest[i++]=dest[idx-1];
-						dest[i++]=dest[idx-1];
-						dest[i++]=dest[idx-1];
-						break;
-					// When a logic 0 is immediately followed by the start of the next transmisson
-					// (special pattern) a pattern of 4 bit duration lengths is created.
-					case 4:
-						dest[i++]=dest[idx-1];
-						dest[i++]=dest[idx-1];
-						dest[i++]=dest[idx-1];
-						dest[i++]=dest[idx-1];
-						break;
-					default:	// this shouldn't happen, don't stuff any bits
-						break;
-				}
-				n=0;
-				lastval=dest[idx];
-			}
-		}
-		m=i;
-		WDT_HIT();
+			LEDsoff();
+			LED(selected + 1, 0);
 
-		// final loop, go over previously decoded manchester data and decode into usable tag ID
-		// 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
-		for( idx=0; idx<m-6; idx++) {
-			// search for a start of frame marker
-			if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )
+			// Begin transmitting
+			if (playing)
 			{
-				found=1;
-				idx+=6;
-				if (found && (hi|lo)) {
-					DbpString("TAG ID");
-					DbpIntegers(hi, lo, (lo>>1)&0xffff);
-					hi=0;
-					lo=0;
-					found=0;
-				}
-			}
-			if (found) {
-				if (dest[idx] && (!dest[idx+1]) ) {
-					hi=(hi<<1)|(lo>>31);
-					lo=(lo<<1)|0;
-				} else if ( (!dest[idx]) && dest[idx+1]) {
-					hi=(hi<<1)|(lo>>31);
-					lo=(lo<<1)|1;
-				} else {
-					found=0;
-					hi=0;
-					lo=0;
-				}
-				idx++;
-			}
-			if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )
-			{
-				found=1;
-				idx+=6;
-				if (found && (hi|lo)) {
-					DbpString("TAG ID");
-					DbpIntegers(hi, lo, (lo>>1)&0xffff);
-					hi=0;
-					lo=0;
-					found=0;
-				}
+				LED(LED_GREEN, 0);
+				DbpString("Playing");
+				// wait for button to be released
+				while(BUTTON_PRESS())
+					WDT_HIT();
+				Dbprintf("%x %x %x", selected, high[selected], low[selected]);
+				CmdHIDsimTAG(high[selected], low[selected], 0);
+				DbpString("Done playing");
+				if (BUTTON_HELD(1000) > 0)
+					{
+					DbpString("Exiting");
+					LEDsoff();
+					return;
+					}
+
+				/* We pressed a button so ignore it here with a delay */
+				SpinDelay(300);
+
+				// when done, we're done playing, move to next option
+				selected = (selected + 1) % OPTS;
+				playing = !playing;
+				LEDsoff();
+				LED(selected + 1, 0);
 			}
+			else
+				while(BUTTON_PRESS())
+					WDT_HIT();
 		}
-		WDT_HIT();
 	}
 }
+#endif
 
-void SimulateTagHfListen(void)
+/*
+OBJECTIVE
+Listen and detect an external reader. Determine the best location
+for the antenna.
+
+INSTRUCTIONS:
+Inside the ListenReaderField() function, there is two mode.
+By default, when you call the function, you will enter mode 1.
+If you press the PM3 button one time, you will enter mode 2.
+If you press the PM3 button a second time, you will exit the function.
+
+DESCRIPTION OF MODE 1:
+This mode just listens for an external reader field and lights up green
+for HF and/or red for LF. This is the original mode of the detectreader
+function.
+
+DESCRIPTION OF MODE 2:
+This mode will visually represent, using the LEDs, the actual strength of the
+current compared to the maximum current detected. Basically, once you know
+what kind of external reader is present, it will help you spot the best location to place
+your antenna. You will probably not get some good results if there is a LF and a HF reader
+at the same place! :-)
+
+LIGHT SCHEME USED:
+*/
+static const char LIGHT_SCHEME[] = {
+		0x0, /* ----     | No field detected */
+		0x1, /* X---     | 14% of maximum current detected */
+		0x2, /* -X--     | 29% of maximum current detected */
+		0x4, /* --X-     | 43% of maximum current detected */
+		0x8, /* ---X     | 57% of maximum current detected */
+		0xC, /* --XX     | 71% of maximum current detected */
+		0xE, /* -XXX     | 86% of maximum current detected */
+		0xF, /* XXXX     | 100% of maximum current detected */
+};
+static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
+
+void ListenReaderField(int limit)
 {
-	BYTE *dest = (BYTE *)BigBuf;
-	int n = sizeof(BigBuf);
-	BYTE v = 0;
-	int i;
-	int p = 0;
+	int lf_av, lf_av_new, lf_baseline= 0, lf_count= 0, lf_max;
+	int hf_av, hf_av_new,  hf_baseline= 0, hf_count= 0, hf_max;
+	int mode=1, display_val, display_max, i;
 
-	// We're using this mode just so that I can test it out; the simulated
-	// tag mode would work just as well and be simpler.
-	FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);
+#define LF_ONLY		1
+#define HF_ONLY		2
 
-	// We need to listen to the high-frequency, peak-detected path.
-	SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+	LEDsoff();
 
-	FpgaSetupSsc();
+	lf_av=lf_max=ReadAdc(ADC_CHAN_LF);
+
+	if(limit != HF_ONLY) {
+		Dbprintf("LF 125/134 Baseline: %d", lf_av);
+		lf_baseline = lf_av;
+	}
+
+	hf_av=hf_max=ReadAdc(ADC_CHAN_HF);
+
+	if (limit != LF_ONLY) {
+		Dbprintf("HF 13.56 Baseline: %d", hf_av);
+		hf_baseline = hf_av;
+	}
 
-	i = 0;
 	for(;;) {
-		if(SSC_STATUS & (SSC_STATUS_TX_READY)) {
-			SSC_TRANSMIT_HOLDING = 0xff;
+		if (BUTTON_PRESS()) {
+			SpinDelay(500);
+			switch (mode) {
+				case 1:
+					mode=2;
+					DbpString("Signal Strength Mode");
+					break;
+				case 2:
+				default:
+					DbpString("Stopped");
+					LEDsoff();
+					return;
+					break;
+			}
 		}
-		if(SSC_STATUS & (SSC_STATUS_RX_READY)) {
-			BYTE r = (BYTE)SSC_RECEIVE_HOLDING;
+		WDT_HIT();
 
-			v <<= 1;
-			if(r & 1) {
-				v |= 1;
+		if (limit != HF_ONLY) {
+			if(mode==1) {
+				if (abs(lf_av - lf_baseline) > 10) LED_D_ON();
+				else                               LED_D_OFF();
 			}
-			p++;
 
-			if(p >= 8) {
-				dest[i] = v;
-				v = 0;
-				p = 0;
-				i++;
+			++lf_count;
+			lf_av_new= ReadAdc(ADC_CHAN_LF);
+			// see if there's a significant change
+			if(abs(lf_av - lf_av_new) > 10) {
+				Dbprintf("LF 125/134 Field Change: %x %x %x", lf_av, lf_av_new, lf_count);
+				lf_av = lf_av_new;
+				if (lf_av > lf_max)
+					lf_max = lf_av;
+				lf_count= 0;
+			}
+		}
+
+		if (limit != LF_ONLY) {
+			if (mode == 1){
+				if (abs(hf_av - hf_baseline) > 10) LED_B_ON();
+				else                               LED_B_OFF();
+			}
+
+			++hf_count;
+			hf_av_new= ReadAdc(ADC_CHAN_HF);
+			// see if there's a significant change
+			if(abs(hf_av - hf_av_new) > 10) {
+				Dbprintf("HF 13.56 Field Change: %x %x %x", hf_av, hf_av_new, hf_count);
+				hf_av = hf_av_new;
+				if (hf_av > hf_max)
+					hf_max = hf_av;
+				hf_count= 0;
+			}
+		}
 
-				if(i >= n) {
+		if(mode == 2) {
+			if (limit == LF_ONLY) {
+				display_val = lf_av;
+				display_max = lf_max;
+			} else if (limit == HF_ONLY) {
+				display_val = hf_av;
+				display_max = hf_max;
+			} else { /* Pick one at random */
+				if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
+					display_val = hf_av;
+					display_max = hf_max;
+				} else {
+					display_val = lf_av;
+					display_max = lf_max;
+				}
+			}
+			for (i=0; i<LIGHT_LEN; i++) {
+				if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
+					if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
+					if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
+					if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
+					if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
 					break;
 				}
 			}
 		}
 	}
-	DbpString("simulate tag (now type bitsamples)");
 }
 
-void UsbPacketReceived(BYTE *packet, int len)
+void UsbPacketReceived(uint8_t *packet, int len)
 {
 	UsbCommand *c = (UsbCommand *)packet;
 
+//  Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
+  
 	switch(c->cmd) {
+#ifdef WITH_LF
 		case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
-			AcquireRawAdcSamples125k(c->ext1);
+			AcquireRawAdcSamples125k(c->arg[0]);
+			cmd_send(CMD_ACK,0,0,0,0,0);
 			break;
-
 		case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
-			ModThenAcquireRawAdcSamples125k(c->ext1,c->ext2,c->ext3,c->d.asBytes);
+			ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
+			break;
+		case CMD_HID_DEMOD_FSK:
+			CmdHIDdemodFSK(0, 0, 0, 1);					// Demodulate HID tag
+			break;
+		case CMD_HID_SIM_TAG:
+			CmdHIDsimTAG(c->arg[0], c->arg[1], 1);					// Simulate HID tag by ID
+			break;
+    case CMD_HID_CLONE_TAG: // Clone HID tag by ID to T55x7
+			CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
+			break;
+		case CMD_EM410X_WRITE_TAG:
+			WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
+			break;
+		case CMD_READ_TI_TYPE:
+			ReadTItag();
+			break;
+		case CMD_WRITE_TI_TYPE:
+			WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
+			break;
+		case CMD_SIMULATE_TAG_125K:
+			LED_A_ON();
+			SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
+			LED_A_OFF();
+			break;
+		case CMD_LF_SIMULATE_BIDIR:
+			SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
+			break;
+		case CMD_INDALA_CLONE_TAG:					// Clone Indala 64-bit tag by UID to T55x7
+			CopyIndala64toT55x7(c->arg[0], c->arg[1]);					
+			break;
+		case CMD_INDALA_CLONE_TAG_L:					// Clone Indala 224-bit tag by UID to T55x7
+			CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
+			break;
+		case CMD_T55XX_READ_BLOCK:
+			T55xxReadBlock(c->arg[1], c->arg[2],c->d.asBytes[0]);
 			break;
+		case CMD_T55XX_WRITE_BLOCK:
+			T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
+			break;
+		case CMD_T55XX_READ_TRACE: // Clone HID tag by ID to T55x7
+			T55xxReadTrace();
+			break;
+		case CMD_PCF7931_READ: // Read PCF7931 tag
+			ReadPCF7931();
+			cmd_send(CMD_ACK,0,0,0,0,0);
+//      	UsbSendPacket((uint8_t*)&ack, sizeof(ack));
+			break;
+		case CMD_EM4X_READ_WORD:
+			EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]);
+			break;
+		case CMD_EM4X_WRITE_WORD:
+			EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
+			break;
+#endif
 
+#ifdef WITH_HITAG
+		case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
+			SnoopHitag(c->arg[0]);
+			break;
+		case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
+			SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
+			break;
+		case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
+			ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
+			break;
+#endif
+            
+#ifdef WITH_ISO15693
 		case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
 			AcquireRawAdcSamplesIso15693();
 			break;
-
-		case CMD_BUFF_CLEAR:
-			BufferClear();
+		case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
+			RecordRawAdcSamplesIso15693();
+			break;
+			
+		case CMD_ISO_15693_COMMAND:
+			DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
+			break;
+					
+		case CMD_ISO_15693_FIND_AFI:
+			BruteforceIso15693Afi(c->arg[0]);
+			break;	
+			
+		case CMD_ISO_15693_DEBUG:
+			SetDebugIso15693(c->arg[0]);
 			break;
 
 		case CMD_READER_ISO_15693:
-			ReaderIso15693(c->ext1);
+			ReaderIso15693(c->arg[0]);
 			break;
-
 		case CMD_SIMTAG_ISO_15693:
-			SimTagIso15693(c->ext1);
+			SimTagIso15693(c->arg[0]);
 			break;
+#endif
 
-		case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443:
-			AcquireRawAdcSamplesIso14443(c->ext1);
+#ifdef WITH_LEGICRF
+		case CMD_SIMULATE_TAG_LEGIC_RF:
+			LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
 			break;
 
-		case CMD_READ_SRI512_TAG:
-			ReadSRI512Iso14443(c->ext1);
+		case CMD_WRITER_LEGIC_RF:
+			LegicRfWriter(c->arg[1], c->arg[0]);
 			break;
 
-		case CMD_READER_ISO_14443a:
-			ReaderIso14443a(c->ext1);
+		case CMD_READER_LEGIC_RF:
+			LegicRfReader(c->arg[0], c->arg[1]);
 			break;
+#endif
 
+#ifdef WITH_ISO14443b
+		case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443:
+			AcquireRawAdcSamplesIso14443(c->arg[0]);
+			break;
+		case CMD_READ_SRI512_TAG:
+			ReadSTMemoryIso14443(0x0F);
+			break;
+		case CMD_READ_SRIX4K_TAG:
+			ReadSTMemoryIso14443(0x7F);
+			break;
 		case CMD_SNOOP_ISO_14443:
 			SnoopIso14443();
 			break;
+		case CMD_SIMULATE_TAG_ISO_14443:
+			SimulateIso14443Tag();
+			break;
+		case CMD_ISO_14443B_COMMAND:
+			SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
+			break;
+#endif
 
+#ifdef WITH_ISO14443a
 		case CMD_SNOOP_ISO_14443a:
-			SnoopIso14443a();
+			SnoopIso14443a(c->arg[0]);
+			break;
+		case CMD_READER_ISO_14443a:
+			ReaderIso14443a(c);
+			break;
+		case CMD_SIMULATE_TAG_ISO_14443a:
+			SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);  // ## Simulate iso14443a tag - pass tag type & UID
+			break;
+		case CMD_EPA_PACE_COLLECT_NONCE:
+			EPA_PACE_Collect_Nonce(c);
+			break;
+			
+		case CMD_READER_MIFARE:
+            ReaderMifare(c->arg[0]);
+			break;
+		case CMD_MIFARE_READBL:
+			MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+			break;
+		case CMD_MIFARE_READSC:
+			MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+			break;
+		case CMD_MIFARE_WRITEBL:
+			MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+			break;
+		case CMD_MIFARE_NESTED:
+			MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+			break;
+		case CMD_MIFARE_CHKKEYS:
+			MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+			break;
+		case CMD_SIMULATE_MIFARE_CARD:
+			Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+			break;
+		
+		// emulator
+		case CMD_MIFARE_SET_DBGMODE:
+			MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+			break;
+		case CMD_MIFARE_EML_MEMCLR:
+			MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+			break;
+		case CMD_MIFARE_EML_MEMSET:
+			MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+			break;
+		case CMD_MIFARE_EML_MEMGET:
+			MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+			break;
+		case CMD_MIFARE_EML_CARDLOAD:
+			MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+			break;
+			
+		// Work with "magic Chinese" card
+		case CMD_MIFARE_EML_CSETBLOCK:
+			MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
 			break;
+		case CMD_MIFARE_EML_CGETBLOCK:
+			MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+			break;
+			
+		// mifare sniffer
+		case CMD_MIFARE_SNIFFER:
+			SniffMifare(c->arg[0]);
+			break;
+#endif
 
-		case CMD_SIMULATE_TAG_HF_LISTEN:
-			SimulateTagHfListen();
+#ifdef WITH_ICLASS
+		// Makes use of ISO14443a FPGA Firmware
+		case CMD_SNOOP_ICLASS:
+			SnoopIClass();
+			break;
+		case CMD_SIMULATE_TAG_ICLASS:
+			SimulateIClass(c->arg[0], c->d.asBytes);
 			break;
+		case CMD_READER_ICLASS:
+			ReaderIClass(c->arg[0]);
+			break;
+#endif
 
-		case CMD_SIMULATE_TAG_ISO_14443:
-			SimulateIso14443Tag();
+		case CMD_SIMULATE_TAG_HF_LISTEN:
+			SimulateTagHfListen();
 			break;
 
-		case CMD_SIMULATE_TAG_ISO_14443a:
-			SimulateIso14443aTag(c->ext1, c->ext2);  // ## Simulate iso14443a tag - pass tag type & UID
+		case CMD_BUFF_CLEAR:
+			BufferClear();
 			break;
 
 		case CMD_MEASURE_ANTENNA_TUNING:
 			MeasureAntennaTuning();
 			break;
 
-		case CMD_LISTEN_READER_FIELD:
-			ListenReaderField(c->ext1);
-			break;
-
-		case CMD_HID_DEMOD_FSK:
-			CmdHIDdemodFSK();				// Demodulate HID tag
+		case CMD_MEASURE_ANTENNA_TUNING_HF:
+			MeasureAntennaTuningHf();
 			break;
 
-		case CMD_HID_SIM_TAG:
-			CmdHIDsimTAG(c->ext1, c->ext2);					// Simulate HID tag by ID
+		case CMD_LISTEN_READER_FIELD:
+			ListenReaderField(c->arg[0]);
 			break;
 
 		case CMD_FPGA_MAJOR_MODE_OFF:		// ## FPGA Control
@@ -747,247 +867,161 @@ void UsbPacketReceived(BYTE *packet, int len)
 			break;
 
 		case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:
-		case CMD_DOWNLOAD_RAW_BITS_TI_TYPE: {
-			UsbCommand n;
-			if(c->cmd == CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K) {
-				n.cmd = CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K;
-			} else {
-				n.cmd = CMD_DOWNLOADED_RAW_BITS_TI_TYPE;
+//			UsbCommand n;
+//			if(c->cmd == CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K) {
+//				n.cmd = CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K;
+//			} else {
+//				n.cmd = CMD_DOWNLOADED_RAW_BITS_TI_TYPE;
+//			}
+//			n.arg[0] = c->arg[0];
+      //			memcpy(n.d.asBytes, BigBuf+c->arg[0], 48); // 12*sizeof(uint32_t)
+      //			LED_B_ON();
+      //      usb_write((uint8_t *)&n, sizeof(n));
+      //			UsbSendPacket((uint8_t *)&n, sizeof(n));
+      //			LED_B_OFF();
+
+			LED_B_ON();
+			for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
+				size_t len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE);
+				cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,0,((byte_t*)BigBuf)+c->arg[0]+i,len);
 			}
-			n.ext1 = c->ext1;
-			memcpy(n.d.asDwords, BigBuf+c->ext1, 12*sizeof(DWORD));
-			UsbSendPacket((BYTE *)&n, sizeof(n));
+			// Trigger a finish downloading signal with an ACK frame
+			cmd_send(CMD_ACK,0,0,0,0,0);
+			LED_B_OFF();
 			break;
-		}
+
 		case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
-			BYTE *b = (BYTE *)BigBuf;
-			memcpy(b+c->ext1, c->d.asBytes, 48);
+			uint8_t *b = (uint8_t *)BigBuf;
+			memcpy(b+c->arg[0], c->d.asBytes, 48);
+			//Dbprintf("copied 48 bytes to %i",b+c->arg[0]);
+//			UsbSendPacket((uint8_t*)&ack, sizeof(ack));
+			cmd_send(CMD_ACK,0,0,0,0,0);
 			break;
-		}
-		case CMD_SIMULATE_TAG_125K:
-			LED_A_ON();
-			SimulateTagLowFrequency(c->ext1);
-			LED_A_OFF();
+		}	
+		case CMD_READ_MEM:
+			ReadMem(c->arg[0]);
 			break;
-#ifdef WITH_LCD
-		case CMD_LCD_RESET:
-			LCDReset();
+
+		case CMD_SET_LF_DIVISOR:
+			FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
 			break;
-#endif
-		case CMD_SWEEP_LF:
-			SweepLFrange();
+
+		case CMD_SET_ADC_MUX:
+			switch(c->arg[0]) {
+				case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
+				case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
+				case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
+				case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
+			}
 			break;
 
-		case CMD_SET_LF_DIVISOR:
-			FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->ext1);
+		case CMD_VERSION:
+			SendVersion();
 			break;
+
 #ifdef WITH_LCD
+		case CMD_LCD_RESET:
+			LCDReset();
+			break;
 		case CMD_LCD:
-			LCDSend(c->ext1);
+			LCDSend(c->arg[0]);
 			break;
 #endif
-        case CMD_SETUP_WRITE:
+		case CMD_SETUP_WRITE:
 		case CMD_FINISH_WRITE:
 		case CMD_HARDWARE_RESET:
-			USB_D_PLUS_PULLUP_OFF();
+			usb_disable();
 			SpinDelay(1000);
 			SpinDelay(1000);
-			RSTC_CONTROL = RST_CONTROL_KEY | RST_CONTROL_PROCESSOR_RESET;
+			AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
 			for(;;) {
 				// We're going to reset, and the bootrom will take control.
 			}
 			break;
 
+		case CMD_START_FLASH:
+			if(common_area.flags.bootrom_present) {
+				common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
+			}
+			usb_disable();
+			AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
+			for(;;);
+			break;
 
+		case CMD_DEVICE_INFO: {
+			uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
+			if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
+//			UsbSendPacket((uint8_t*)&c, sizeof(c));
+			cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);	
+			break;
+		}
 		default:
-			DbpString("unknown command");
+			Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
 			break;
 	}
 }
 
-void AppMain(void)
+void  __attribute__((noreturn)) AppMain(void)
 {
-	memset(BigBuf,0,sizeof(BigBuf));
 	SpinDelay(100);
 
-    LED_D_OFF();
-    LED_C_OFF();
-    LED_B_OFF();
-    LED_A_OFF();
+	if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
+		/* Initialize common area */
+		memset(&common_area, 0, sizeof(common_area));
+		common_area.magic = COMMON_AREA_MAGIC;
+		common_area.version = 1;
+	}
+	common_area.flags.osimage_present = 1;
 
-	UsbStart();
+	LED_D_OFF();
+	LED_C_OFF();
+	LED_B_OFF();
+	LED_A_OFF();
+
+  // Init USB device`
+  usb_enable();
+//	UsbStart();
 
 	// The FPGA gets its clock from us from PCK0 output, so set that up.
-	PIO_PERIPHERAL_B_SEL = (1 << GPIO_PCK0);
-	PIO_DISABLE = (1 << GPIO_PCK0);
-	PMC_SYS_CLK_ENABLE = PMC_SYS_CLK_PROGRAMMABLE_CLK_0;
+	AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
+	AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
+	AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
 	// PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
-	PMC_PROGRAMMABLE_CLK_0 = PMC_CLK_SELECTION_PLL_CLOCK |
-		PMC_CLK_PRESCALE_DIV_4;
-	PIO_OUTPUT_ENABLE = (1 << GPIO_PCK0);
+	AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
+		AT91C_PMC_PRES_CLK_4;
+	AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
 
 	// Reset SPI
-	SPI_CONTROL = SPI_CONTROL_RESET;
+	AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
 	// Reset SSC
-	SSC_CONTROL = SSC_CONTROL_RESET;
+	AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
 
 	// Load the FPGA image, which we have stored in our flash.
 	FpgaDownloadAndGo();
 
+	StartTickCount();
+  	
 #ifdef WITH_LCD
-
 	LCDInit();
-
-	// test text on different colored backgrounds
-    LCDString(" The quick brown fox  ",	&FONT6x8,1,1+8*0,WHITE  ,BLACK );
-    LCDString("  jumped over the     ",	&FONT6x8,1,1+8*1,BLACK  ,WHITE );
-    LCDString("     lazy dog.        ",	&FONT6x8,1,1+8*2,YELLOW ,RED   );
-    LCDString(" AaBbCcDdEeFfGgHhIiJj ",	&FONT6x8,1,1+8*3,RED    ,GREEN );
-    LCDString(" KkLlMmNnOoPpQqRrSsTt ",	&FONT6x8,1,1+8*4,MAGENTA,BLUE  );
-    LCDString("UuVvWwXxYyZz0123456789",	&FONT6x8,1,1+8*5,BLUE   ,YELLOW);
-    LCDString("`-=[]_;',./~!@#$%^&*()",	&FONT6x8,1,1+8*6,BLACK  ,CYAN  );
-    LCDString("     _+{}|:\\\"<>?     ",&FONT6x8,1,1+8*7,BLUE  ,MAGENTA);
-
-	// color bands
-	LCDFill(0, 1+8* 8, 132, 8, BLACK);
-	LCDFill(0, 1+8* 9, 132, 8, WHITE);
-	LCDFill(0, 1+8*10, 132, 8, RED);
-	LCDFill(0, 1+8*11, 132, 8, GREEN);
-	LCDFill(0, 1+8*12, 132, 8, BLUE);
-	LCDFill(0, 1+8*13, 132, 8, YELLOW);
-	LCDFill(0, 1+8*14, 132, 8, CYAN);
-	LCDFill(0, 1+8*15, 132, 8, MAGENTA);
-
 #endif
 
+  byte_t rx[sizeof(UsbCommand)];
+	size_t rx_len;
+  
 	for(;;) {
-		UsbPoll(FALSE);
-		WDT_HIT();
-	}
-}
-
-void SpinDelayUs(int us)
-{
-	int ticks = (48*us) >> 10;
-
-	// Borrow a PWM unit for my real-time clock
-	PWM_ENABLE = PWM_CHANNEL(0);
-	// 48 MHz / 1024 gives 46.875 kHz
-	PWM_CH_MODE(0) = PWM_CH_MODE_PRESCALER(10);
-	PWM_CH_DUTY_CYCLE(0) = 0;
-	PWM_CH_PERIOD(0) = 0xffff;
+    if (usb_poll()) {
+      rx_len = usb_read(rx,sizeof(UsbCommand));
+      if (rx_len) {
+        UsbPacketReceived(rx,rx_len);
+      }
+    }
+//		UsbPoll(FALSE);
 
-	WORD start = (WORD)PWM_CH_COUNTER(0);
-
-	for(;;) {
-		WORD now = (WORD)PWM_CH_COUNTER(0);
-		if(now == (WORD)(start + ticks)) {
-			return;
-		}
 		WDT_HIT();
-	}
-}
-
-void SpinDelay(int ms)
-{
-	int ticks = (48000*ms) >> 10;
-
-	// Borrow a PWM unit for my real-time clock
-	PWM_ENABLE = PWM_CHANNEL(0);
-	// 48 MHz / 1024 gives 46.875 kHz
-	PWM_CH_MODE(0) = PWM_CH_MODE_PRESCALER(10);
-	PWM_CH_DUTY_CYCLE(0) = 0;
-	PWM_CH_PERIOD(0) = 0xffff;
-
-	WORD start = (WORD)PWM_CH_COUNTER(0);
 
-	for(;;) {
-		WORD now = (WORD)PWM_CH_COUNTER(0);
-		if(now == (WORD)(start + ticks)) {
-			return;
-		}
-		WDT_HIT();
+#ifdef WITH_LF
+		if (BUTTON_HELD(1000) > 0)
+			SamyRun();
+#endif
 	}
 }
-
-// listen for external reader 
-void ListenReaderField(int limit)
-{
-	int lf_av, lf_av_new, lf_baseline= -1, lf_count= 0;
-	int hf_av, hf_av_new,  hf_baseline= -1, hf_count= 0;
-
-#define LF_ONLY		1
-#define HF_ONLY		2
-
-	LED_A_OFF();
-	LED_B_OFF();
-	LED_C_OFF();
-	LED_D_OFF();
-
-	lf_av= ReadAdc(ADC_CHAN_LF);
-
-	if(limit != HF_ONLY && lf_baseline ==  -1) 
-		{
-		DbpString("LF 125/134 Baseline:");
-		DbpIntegers(lf_av,0,0);
-		lf_baseline= lf_av;
-		}
-
-	hf_av= ReadAdc(ADC_CHAN_HF);
-
-
-	if (limit != LF_ONLY && hf_baseline == -1) 
-		{
-		DbpString("HF 13.56 Baseline:");
-		DbpIntegers(hf_av,0,0);
-		hf_baseline= hf_av;
-		}
-
-	for(;;) 
-		{
-		if(BUTTON_PRESS()) 
-			{
-			LED_B_OFF();
-			LED_D_OFF();
-			return;
-			}
-		WDT_HIT();
-
-
-		if (limit != HF_ONLY) 
-			{
-			if (abs(lf_av - lf_baseline) > 10)
-				LED_D_ON();
-			else
-				LED_D_OFF();
-			++lf_count;
-			lf_av_new= ReadAdc(ADC_CHAN_LF);
-			// see if there's a significant change
-			if(abs(lf_av - lf_av_new) > 10) 
-				{
-				DbpString("LF 125/134 Field Change:");
-				DbpIntegers(lf_av,lf_av_new,lf_count);
-				lf_av= lf_av_new;
-				lf_count= 0;
-				}
-			}
-
-		if (limit != LF_ONLY) 
-			{
-			if (abs(hf_av - hf_baseline) > 10)
-				LED_B_ON();
-			else
-				LED_B_OFF();
-			++hf_count;
-			hf_av_new= ReadAdc(ADC_CHAN_HF);
-			// see if there's a significant change
-			if(abs(hf_av - hf_av_new) > 10) 
-				{
-				DbpString("HF 13.56 Field Change:");
-				DbpIntegers(hf_av,hf_av_new,hf_count);
-				hf_av= hf_av_new;
-				hf_count= 0;
-				}
-			}
-		}
-}