X-Git-Url: http://cvs.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/8e4a0b3585ae9d62acfde915e25dbcd90b56397a..516dbac2105d8195ba52f46f4d5d75d598868f45:/client/cmdhfmfhard.c diff --git a/client/cmdhfmfhard.c b/client/cmdhfmfhard.c index 39aecb4f..3fed7c95 100644 --- a/client/cmdhfmfhard.c +++ b/client/cmdhfmfhard.c @@ -1,6 +1,7 @@ //----------------------------------------------------------------------------- // Copyright (C) 2015 piwi // fiddled with 2016 Azcid (hardnested bitsliced Bruteforce imp) +// fiddled with 2016 Matrix ( sub testing of nonces while collecting ) // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. @@ -14,11 +15,13 @@ // Computer and Communications Security, 2015 //----------------------------------------------------------------------------- #include "cmdhfmfhard.h" +#include "cmdhw.h" #define CONFIDENCE_THRESHOLD 0.95 // Collect nonces until we are certain enough that the following brute force is successfull #define GOOD_BYTES_REQUIRED 13 // default 28, could be smaller == faster #define NONCES_THRESHOLD 5000 // every N nonces check if we can crack the key -#define CRACKING_THRESHOLD 39.00f // as 2^39 +#define CRACKING_THRESHOLD 36.0f //38.50f // as 2^38.5 +#define MAX_BUCKETS 128 #define END_OF_LIST_MARKER 0xFFFFFFFF @@ -71,7 +74,8 @@ typedef struct noncelist { float Sum8_prob; bool updated; noncelistentry_t *first; - float score1, score2; + float score1; + uint_fast8_t score2; } noncelist_t; static size_t nonces_to_bruteforce = 0; @@ -115,6 +119,22 @@ static statelist_t *candidates = NULL; bool field_off = false; +uint64_t foundkey = 0; +size_t keys_found = 0; +size_t bucket_count = 0; +statelist_t* buckets[MAX_BUCKETS]; +static uint64_t total_states_tested = 0; +size_t thread_count = 4; + +// these bitsliced states will hold identical states in all slices +bitslice_t bitsliced_rollback_byte[ROLLBACK_SIZE]; + +// arrays of bitsliced states with identical values in all slices +bitslice_t bitsliced_encrypted_nonces[NONCE_TESTS][STATE_SIZE]; +bitslice_t bitsliced_encrypted_parity_bits[NONCE_TESTS][ROLLBACK_SIZE]; + +#define EXACT_COUNT + static bool generate_candidates(uint16_t, uint16_t); static bool brute_force(void); @@ -145,14 +165,17 @@ static int add_nonce(uint32_t nonce_enc, uint8_t par_enc) } else { // add new entry at end of existing list. p2 = p2->next = malloc(sizeof(noncelistentry_t)); } - } else if ((p1->nonce_enc & 0x00ff0000) != (nonce_enc & 0x00ff0000)) { // found distinct 2nd byte. Need to insert. + if (p2 == NULL) return 0; // memory allocation failed + } + else if ((p1->nonce_enc & 0x00ff0000) != (nonce_enc & 0x00ff0000)) { // found distinct 2nd byte. Need to insert. if (p2 == NULL) { // need to insert at start of list p2 = nonces[first_byte].first = malloc(sizeof(noncelistentry_t)); } else { p2 = p2->next = malloc(sizeof(noncelistentry_t)); } - } else { // we have seen this 2nd byte before. Nothing to add or insert. - return (0); + if (p2 == NULL) return 0; // memory allocation failed + } else { + return 0; // we have seen this 2nd byte before. Nothing to add or insert. } // add or insert new data @@ -169,7 +192,7 @@ static int add_nonce(uint32_t nonce_enc, uint8_t par_enc) nonces[first_byte].Sum += evenparity32((nonce_enc & 0x00ff0000) | (par_enc & 0x04)); nonces[first_byte].updated = true; // indicates that we need to recalculate the Sum(a8) probability for this first byte - return (1); // new nonce added + return 1; // new nonce added } static void init_nonce_memory(void) @@ -279,19 +302,19 @@ static float sum_probability(uint16_t K, uint16_t n, uint16_t k) if (k > K || p_K[K] == 0.0) return 0.0; double p_T_is_k_when_S_is_K = p_hypergeometric(N, K, n, k); + if (p_T_is_k_when_S_is_K == 0.0) return 0.0; + double p_S_is_K = p_K[K]; - double p_T_is_k = 0; + double p_T_is_k = 0.0; for (uint16_t i = 0; i <= 256; i++) { if (p_K[i] != 0.0) { - double tmp = p_hypergeometric(N, i, n, k); - if (tmp != 0.0) - p_T_is_k += p_K[i] * tmp; + p_T_is_k += p_K[i] * p_hypergeometric(N, i, n, k); } } + if (p_T_is_k == 0.0) return 0.0; return(p_T_is_k_when_S_is_K * p_S_is_K / p_T_is_k); } - static inline uint_fast8_t common_bits(uint_fast8_t bytes_diff) { static const uint_fast8_t common_bits_LUT[256] = { @@ -477,7 +500,7 @@ static void Tests() } -static void sort_best_first_bytes(void) +static uint16_t sort_best_first_bytes(void) { // sort based on probability for correct guess for (uint16_t i = 0; i < 256; i++ ) { @@ -492,7 +515,7 @@ static void sort_best_first_bytes(void) best_first_bytes[k] = best_first_bytes[k-1]; } } - best_first_bytes[j] = i; + best_first_bytes[j] = i; } // determine how many are above the CONFIDENCE_THRESHOLD @@ -503,6 +526,8 @@ static void sort_best_first_bytes(void) } } + if (num_good_nonces == 0) return 0; + uint16_t best_first_byte = 0; // select the best possible first byte based on number of common bits with all {b'} @@ -525,25 +550,28 @@ static void sort_best_first_bytes(void) for (uint16_t i = 0; i < num_good_nonces; i++ ) { uint16_t sum8 = nonces[best_first_bytes[i]].Sum8_guess; float bitflip_prob = 1.0; - if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE]) { + + if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE]) bitflip_prob = 0.09375; - } + nonces[best_first_bytes[i]].score1 = p_K[sum8] * bitflip_prob; - if (p_K[sum8] * bitflip_prob <= min_p_K) { + + if (p_K[sum8] * bitflip_prob <= min_p_K) min_p_K = p_K[sum8] * bitflip_prob; - } + } // use number of commmon bits as a tie breaker - uint16_t max_common_bits = 0; + uint_fast8_t max_common_bits = 0; for (uint16_t i = 0; i < num_good_nonces; i++) { + float bitflip_prob = 1.0; - if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE]) { + if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE]) bitflip_prob = 0.09375; - } + if (p_K[nonces[best_first_bytes[i]].Sum8_guess] * bitflip_prob == min_p_K) { - uint16_t sum_common_bits = 0; + uint_fast8_t sum_common_bits = 0; for (uint16_t j = 0; j < num_good_nonces; j++) { sum_common_bits += common_bits(best_first_bytes[i] ^ best_first_bytes[j]); } @@ -557,16 +585,16 @@ static void sort_best_first_bytes(void) // swap best possible first byte to the pole position if (best_first_byte != 0) { - uint16_t temp = best_first_bytes[0]; - best_first_bytes[0] = best_first_bytes[best_first_byte]; - best_first_bytes[best_first_byte] = temp; + uint16_t temp = best_first_bytes[0]; + best_first_bytes[0] = best_first_bytes[best_first_byte]; + best_first_bytes[best_first_byte] = temp; } + return num_good_nonces; } static uint16_t estimate_second_byte_sum(void) -{ - +{ for (uint16_t first_byte = 0; first_byte < 256; first_byte++) { float Sum8_prob = 0.0; uint16_t Sum8 = 0; @@ -583,17 +611,7 @@ static uint16_t estimate_second_byte_sum(void) nonces[first_byte].updated = false; } } - - sort_best_first_bytes(); - - uint16_t num_good_nonces = 0; - for (uint16_t i = 0; i < 256; i++) { - if (nonces[best_first_bytes[i]].Sum8_prob >= CONFIDENCE_THRESHOLD) { - ++num_good_nonces; - } - } - - return num_good_nonces; + return sort_best_first_bytes(); } static int read_nonce_file(void) @@ -612,6 +630,7 @@ static int read_nonce_file(void) } PrintAndLog("Reading nonces from file nonces.bin..."); + memset (read_buf, 0, sizeof (read_buf)); size_t bytes_read = fread(read_buf, 1, 6, fnonces); if ( bytes_read == 0) { PrintAndLog("File reading error."); @@ -621,8 +640,10 @@ static int read_nonce_file(void) cuid = bytes_to_num(read_buf, 4); trgBlockNo = bytes_to_num(read_buf+4, 1); trgKeyType = bytes_to_num(read_buf+5, 1); - - while (fread(read_buf, 1, 9, fnonces) == 9) { + size_t ret = 0; + do { + memset (read_buf, 0, sizeof (read_buf)); + if ((ret = fread(read_buf, 1, 9, fnonces)) == 9) { nt_enc1 = bytes_to_num(read_buf, 4); nt_enc2 = bytes_to_num(read_buf+4, 4); par_enc = bytes_to_num(read_buf+8, 1); @@ -632,6 +653,8 @@ static int read_nonce_file(void) add_nonce(nt_enc2, par_enc & 0x0f); total_num_nonces += 2; } + } while (ret == 9); + fclose(fnonces); PrintAndLog("Read %d nonces from file. cuid=%08x, Block=%d, Keytype=%c", total_num_nonces, cuid, trgBlockNo, trgKeyType==0?'A':'B'); return 0; @@ -640,7 +663,6 @@ static int read_nonce_file(void) static void Check_for_FilterFlipProperties(void) { printf("Checking for Filter Flip Properties...\n"); - uint16_t num_bitflips = 0; for (uint16_t i = 0; i < 256; i++) { @@ -649,6 +671,8 @@ static void Check_for_FilterFlipProperties(void) } for (uint16_t i = 0; i < 256; i++) { + if (!nonces[i].first || !nonces[i^0x80].first || !nonces[i^0x40].first) continue; + uint8_t parity1 = (nonces[i].first->par_enc) >> 3; // parity of first byte uint8_t parity2_odd = (nonces[i^0x80].first->par_enc) >> 3; // XOR 0x80 = last bit flipped uint8_t parity2_even = (nonces[i^0x40].first->par_enc) >> 3; // XOR 0x40 = second last bit flipped @@ -662,9 +686,8 @@ static void Check_for_FilterFlipProperties(void) } } - if (write_stats) { + if (write_stats) fprintf(fstats, "%d;", num_bitflips); - } } static void simulate_MFplus_RNG(uint32_t test_cuid, uint64_t test_key, uint32_t *nt_enc, uint8_t *par_enc) @@ -721,7 +744,7 @@ static void simulate_acquire_nonces() num_good_first_bytes = estimate_second_byte_sum(); if (total_num_nonces > next_fivehundred) { next_fivehundred = (total_num_nonces/500+1) * 500; - printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n", + printf("Acquired %5d nonces (%5d with distinct bytes 0,1). Bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n", total_num_nonces, total_added_nonces, CONFIDENCE_THRESHOLD * 100.0, @@ -754,120 +777,112 @@ static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_ uint32_t next_fivehundred = 500; uint32_t total_added_nonces = 0; uint32_t idx = 1; + uint32_t timeout = 0; FILE *fnonces = NULL; - UsbCommand resp; - field_off = false; - + UsbCommand resp; + UsbCommand c = {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES, {0,0,0} }; + memcpy(c.d.asBytes, key, 6); + c.arg[0] = blockNo + (keyType * 0x100); + c.arg[1] = trgBlockNo + (trgKeyType * 0x100); + printf("Acquiring nonces...\n"); - do { + flags = 0; flags |= initialize ? 0x0001 : 0; flags |= slow ? 0x0002 : 0; flags |= field_off ? 0x0004 : 0; - UsbCommand c = {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, flags}}; - memcpy(c.d.asBytes, key, 6); + c.arg[2] = flags; clearCommandBuffer(); SendCommand(&c); - if (field_off) finished = true; - - if (initialize) { - if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) return 1; - if (resp.arg[0]) return resp.arg[0]; // error during nested_hard + if (field_off) break; + while(!WaitForResponseTimeout(CMD_ACK, &resp, 2000)) { + timeout++; + printf("."); + if (timeout > 3) { + PrintAndLog("\nNo response from Proxmark. Aborting..."); + if (fnonces) fclose(fnonces); + return 1; + } + } + + if (resp.arg[0]) { + if (fnonces) fclose(fnonces); + return resp.arg[0]; // error during nested_hard + } + + if (initialize) { + // global var CUID cuid = resp.arg[1]; - // PrintAndLog("Acquiring nonces for CUID 0x%08x", cuid); if (nonce_file_write && fnonces == NULL) { if ((fnonces = fopen("nonces.bin","wb")) == NULL) { PrintAndLog("Could not create file nonces.bin"); return 3; } PrintAndLog("Writing acquired nonces to binary file nonces.bin"); + memset (write_buf, 0, sizeof (write_buf)); num_to_bytes(cuid, 4, write_buf); fwrite(write_buf, 1, 4, fnonces); fwrite(&trgBlockNo, 1, 1, fnonces); fwrite(&trgKeyType, 1, 1, fnonces); fflush(fnonces); } + initialize = false; } - - if (!initialize) { - uint32_t nt_enc1, nt_enc2; - uint8_t par_enc; - uint16_t num_acquired_nonces = resp.arg[2]; - uint8_t *bufp = resp.d.asBytes; - for (uint16_t i = 0; i < num_acquired_nonces; i+=2) { - nt_enc1 = bytes_to_num(bufp, 4); - nt_enc2 = bytes_to_num(bufp+4, 4); - par_enc = bytes_to_num(bufp+8, 1); - - //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4); - total_added_nonces += add_nonce(nt_enc1, par_enc >> 4); - //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f); - total_added_nonces += add_nonce(nt_enc2, par_enc & 0x0f); - - if (nonce_file_write && fnonces) { - fwrite(bufp, 1, 9, fnonces); - fflush(fnonces); - } - - bufp += 9; + + uint32_t nt_enc1, nt_enc2; + uint8_t par_enc; + uint16_t num_acquired_nonces = resp.arg[2]; + uint8_t *bufp = resp.d.asBytes; + for (uint16_t i = 0; i < num_acquired_nonces; i += 2) { + nt_enc1 = bytes_to_num(bufp, 4); + nt_enc2 = bytes_to_num(bufp+4, 4); + par_enc = bytes_to_num(bufp+8, 1); + + total_added_nonces += add_nonce(nt_enc1, par_enc >> 4); + total_added_nonces += add_nonce(nt_enc2, par_enc & 0x0f); + + if (nonce_file_write && fnonces) { + fwrite(bufp, 1, 9, fnonces); + fflush(fnonces); } - - total_num_nonces += num_acquired_nonces; + bufp += 9; } + total_num_nonces += num_acquired_nonces; + + if (first_byte_num == 256) { - if (first_byte_num == 256 && !field_off) { - // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum); if (!filter_flip_checked) { Check_for_FilterFlipProperties(); filter_flip_checked = true; } num_good_first_bytes = estimate_second_byte_sum(); + if (total_num_nonces > next_fivehundred) { next_fivehundred = (total_num_nonces/500+1) * 500; - printf("Acquired %5d nonces (%5d / %5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n", + printf("Acquired %5d nonces (%5d/%5d with distinct bytes 0,1). Bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n", total_num_nonces, total_added_nonces, NONCES_THRESHOLD * idx, CONFIDENCE_THRESHOLD * 100.0, - num_good_first_bytes); + num_good_first_bytes + ); } - - if (total_added_nonces >= (NONCES_THRESHOLD * idx)) - { - num_good_first_bytes = estimate_second_byte_sum(); - clock_t time1 = clock(); - bool cracking = generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess); - time1 = clock() - time1; - if (time1 > 0) PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1)/CLOCKS_PER_SEC); - - if (cracking || known_target_key != -1) { + + if (total_added_nonces >= (NONCES_THRESHOLD * idx)) { + if (num_good_first_bytes > 0) { + if (generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess) || known_target_key != -1) { field_off = brute_force(); // switch off field with next SendCommand and then finish - } - - idx++; + } } - } - - if (!initialize) { - if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) { - if (fnonces) fclose(fnonces); - return 1; - } - - if (resp.arg[0]) { - if (fnonces) fclose(fnonces); - return resp.arg[0]; // error during nested_hard + idx++; } } - - initialize = false; - } while (!finished); if (nonce_file_write && fnonces) @@ -955,7 +970,7 @@ static void init_BitFlip_statelist(void) // set len and add End Of List marker statelist_bitflip.len[0] = p - statelist_bitflip.states[0]; *p = END_OF_LIST_MARKER; - statelist_bitflip.states[0] = realloc(statelist_bitflip.states[0], sizeof(uint32_t) * (statelist_bitflip.len[0] + 1)); + //statelist_bitflip.states[0] = realloc(statelist_bitflip.states[0], sizeof(uint32_t) * (statelist_bitflip.len[0] + 1)); } static inline uint32_t *find_first_state(uint32_t state, uint32_t mask, partial_indexed_statelist_t *sl, odd_even_t odd_even) @@ -1176,7 +1191,7 @@ static int add_matching_states(statelist_t *candidates, uint16_t part_sum_a0, ui for (uint32_t *p1 = partial_statelist[part_sum_a0].states[odd_even]; *p1 != END_OF_LIST_MARKER; p1++) { uint32_t search_mask = 0x000ffff0; uint32_t *p2 = find_first_state((*p1 << 4), search_mask, &partial_statelist[part_sum_a8], odd_even); - if (p2 != NULL) { + if (p1 != NULL && p2 != NULL) { while (((*p1 << 4) & search_mask) == (*p2 & search_mask) && *p2 != END_OF_LIST_MARKER) { if ((nonces[best_first_bytes[0]].BitFlip[odd_even] && find_first_state((*p1 << 4) | *p2, 0x000fffff, &statelist_bitflip, 0)) || !nonces[best_first_bytes[0]].BitFlip[odd_even]) { @@ -1214,6 +1229,8 @@ static statelist_t *add_more_candidates(statelist_t *current_candidates) } else { new_candidates = current_candidates->next = (statelist_t *)malloc(sizeof(statelist_t)); } + if (!new_candidates) return NULL; + new_candidates->next = NULL; new_candidates->len[ODD_STATE] = 0; new_candidates->len[EVEN_STATE] = 0; @@ -1231,7 +1248,7 @@ static bool TestIfKeyExists(uint64_t key) uint32_t state_odd = pcs->odd & 0x00ffffff; uint32_t state_even = pcs->even & 0x00ffffff; //printf("Tests: searching for key %llx after first byte 0x%02x (state_odd = 0x%06x, state_even = 0x%06x) ...\n", key, best_first_bytes[0], state_odd, state_even); - + printf("Validating key search space\n"); uint64_t count = 0; for (statelist_t *p = candidates; p != NULL; p = p->next) { bool found_odd = false; @@ -1246,33 +1263,34 @@ static bool TestIfKeyExists(uint64_t key) p_odd++; } while (*p_even != END_OF_LIST_MARKER) { - if ((*p_even & 0x00ffffff) == state_even) { + if ((*p_even & 0x00ffffff) == state_even) found_even = true; - } + p_even++; } count += (p_odd - p->states[ODD_STATE]) * (p_even - p->states[EVEN_STATE]); if (found_odd && found_even) { - PrintAndLog("\nKey Found after testing %lld (2^%1.1f) out of %lld (2^%1.1f) keys. ", - count, - log(count)/log(2), - maximum_states, - log(maximum_states)/log(2) - ); - if (write_stats) { - fprintf(fstats, "1\n"); + if (known_target_key != -1) { + PrintAndLog("Key Found after testing %llu (2^%1.1f) out of %lld (2^%1.1f) keys.", + count, + log(count)/log(2), + maximum_states, + log(maximum_states)/log(2) + ); + if (write_stats) + fprintf(fstats, "1\n"); } crypto1_destroy(pcs); return true; } } - printf("Key NOT found!\n"); - if (write_stats) { - fprintf(fstats, "0\n"); + if (known_target_key != -1) { + printf("Key NOT found!\n"); + if (write_stats) + fprintf(fstats, "0\n"); } crypto1_destroy(pcs); - return false; } @@ -1306,7 +1324,7 @@ static bool generate_candidates(uint16_t sum_a0, uint16_t sum_a8) for (uint16_t s = 0; s <= 16; s += 2) { if (r*(16-s) + (16-r)*s == sum_a8) { current_candidates = add_more_candidates(current_candidates); - if (current_candidates) { + if (current_candidates != NULL) { // check for the smallest partial statelist. Try this first - it might give 0 candidates // and eliminate the need to calculate the other part if (MIN(partial_statelist[p].len[ODD_STATE], partial_statelist[r].len[ODD_STATE]) @@ -1341,7 +1359,7 @@ static bool generate_candidates(uint16_t sum_a0, uint16_t sum_a8) maximum_states = 0; unsigned int n = 0; - for (statelist_t *sl = candidates; sl != NULL && n < 128; sl = sl->next, n++) { + for (statelist_t *sl = candidates; sl != NULL && n < MAX_BUCKETS; sl = sl->next, n++) { maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE]; } @@ -1350,18 +1368,14 @@ static bool generate_candidates(uint16_t sum_a0, uint16_t sum_a8) float kcalc = log(maximum_states)/log(2); printf("Number of remaining possible keys: %"PRIu64" (2^%1.1f)\n", maximum_states, kcalc); if (write_stats) { - if (maximum_states != 0) { - fprintf(fstats, "%1.1f;", kcalc); - } else { - fprintf(fstats, "%1.1f;", 0.0); - } + fprintf(fstats, "%1.1f;", (kcalc != 0) ? kcalc : 0.0); } if (kcalc < CRACKING_THRESHOLD) return true; return false; } -static void free_candidates_memory(statelist_t *sl) +static void free_candidates_memory(statelist_t *sl) { if (sl == NULL) { return; @@ -1382,22 +1396,6 @@ static void free_statelist_cache(void) } } -uint64_t foundkey = 0; -size_t keys_found = 0; -size_t bucket_count = 0; -statelist_t* buckets[128]; -size_t total_states_tested = 0; -size_t thread_count = 4; - -// these bitsliced states will hold identical states in all slices -bitslice_t bitsliced_rollback_byte[ROLLBACK_SIZE]; - -// arrays of bitsliced states with identical values in all slices -bitslice_t bitsliced_encrypted_nonces[NONCE_TESTS][STATE_SIZE]; -bitslice_t bitsliced_encrypted_parity_bits[NONCE_TESTS][ROLLBACK_SIZE]; - -#define EXACT_COUNT - static const uint64_t crack_states_bitsliced(statelist_t *p){ // the idea to roll back the half-states before combining them was suggested/explained to me by bla // first we pre-bitslice all the even state bits and roll them back, then bitslice the odd bits and combine the two in the inner loop @@ -1486,11 +1484,7 @@ static const uint64_t crack_states_bitsliced(statelist_t *p){ crypto1_bs_rewind_a0(); // set odd bits for(size_t state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; o >>= 1, state_idx+=2){ - if(o & 1){ - state_p[state_idx] = bs_ones; - } else { - state_p[state_idx] = bs_zeroes; - } + state_p[state_idx] = (o & 1) ? bs_ones : bs_zeroes; } const bitslice_value_t odd_feedback = odd_feedback_bit ? bs_ones.value : bs_zeroes.value; @@ -1520,7 +1514,7 @@ static const uint64_t crack_states_bitsliced(statelist_t *p){ } #ifdef EXACT_COUNT - bucket_states_tested += bucket_size[block_idx]; + bucket_states_tested += (bucket_size[block_idx] > MAX_BITSLICES) ? MAX_BITSLICES : bucket_size[block_idx]; #endif // pre-compute first keystream and feedback bit vectors const bitslice_value_t ksb = crypto1_bs_f20(state_p); @@ -1631,16 +1625,25 @@ out: static void* crack_states_thread(void* x){ const size_t thread_id = (size_t)x; size_t current_bucket = thread_id; + statelist_t *bucket = NULL; + while(current_bucket < bucket_count){ - statelist_t * bucket = buckets[current_bucket]; - if(bucket){ + if (keys_found) break; + + if ((bucket = buckets[current_bucket])) { const uint64_t key = crack_states_bitsliced(bucket); - if(key != -1){ + + if (keys_found) break; + else if(key != -1) { + if (TestIfKeyExists(key)) { __sync_fetch_and_add(&keys_found, 1); __sync_fetch_and_add(&foundkey, key); + printf("*"); + fflush(stdout); break; - } else if(keys_found){ - break; + } + printf("!"); + fflush(stdout); } else { printf("."); fflush(stdout); @@ -1651,8 +1654,7 @@ static void* crack_states_thread(void* x){ return NULL; } -static bool brute_force(void) -{ +static bool brute_force(void) { bool ret = false; if (known_target_key != -1) { PrintAndLog("Looking for known target key in remaining key space..."); @@ -1667,6 +1669,9 @@ static bool brute_force(void) foundkey = 0; crypto1_bs_init(); + memset (bitsliced_rollback_byte, 0, sizeof (bitsliced_rollback_byte)); + memset (bitsliced_encrypted_nonces, 0, sizeof (bitsliced_encrypted_nonces)); + memset (bitsliced_encrypted_parity_bits, 0, sizeof (bitsliced_encrypted_parity_bits)); PrintAndLog("Using %u-bit bitslices", MAX_BITSLICES); PrintAndLog("Bitslicing best_first_byte^uid[3] (rollback byte): %02X ...", best_first_bytes[0]^(cuid>>24)); @@ -1686,11 +1691,12 @@ static bool brute_force(void) // count number of states to go bucket_count = 0; - for (statelist_t *p = candidates; p != NULL && bucket_count < 128; p = p->next) { + buckets[MAX_BUCKETS-1] = NULL; + for (statelist_t *p = candidates; p != NULL && bucket_count < MAX_BUCKETS; p = p->next) { buckets[bucket_count] = p; bucket_count++; } - buckets[bucket_count] = NULL; + if (bucket_count < MAX_BUCKETS) buckets[bucket_count] = NULL; #ifndef __WIN32 thread_count = sysconf(_SC_NPROCESSORS_CONF); @@ -1711,29 +1717,26 @@ static bool brute_force(void) } time1 = clock() - time1; - if ( time1 < 0 ) time1 = -1; + PrintAndLog("\nTime for bruteforce %0.1f seconds.",((float)time1)/CLOCKS_PER_SEC); - if (keys_found && TestIfKeyExists(foundkey)) { - PrintAndLog("Success! Found %u keys after %0.0f seconds", keys_found, ((float)time1)/CLOCKS_PER_SEC); + if (keys_found) { PrintAndLog("\nFound key: %012"PRIx64"\n", foundkey); ret = true; - } else { - PrintAndLog("Fail! Tested %"PRIu32" states, in %0.0f seconds", total_states_tested, ((float)time1)/CLOCKS_PER_SEC); - } - + } // reset this counter for the next call nonces_to_bruteforce = 0; } - return ret; } -int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *trgkey, bool nonce_file_read, bool nonce_file_write, bool slow, int tests) +int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *trgkey, bool nonce_file_read, bool nonce_file_write, bool slow, int tests, uint64_t *found_key) { // initialize Random number generator time_t t; srand((unsigned) time(&t)); + *found_key = 0; + if (trgkey != NULL) { known_target_key = bytes_to_num(trgkey, 6); } else { @@ -1777,12 +1780,7 @@ int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBloc num_good_first_bytes = MIN(estimate_second_byte_sum(), GOOD_BYTES_REQUIRED); PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes); - clock_t time1 = clock(); bool cracking = generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess); - time1 = clock() - time1; - if (time1 > 0) - PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1)/CLOCKS_PER_SEC); - if (cracking || known_target_key != -1) { brute_force(); } @@ -1790,30 +1788,20 @@ int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBloc } else { // acquire nonces. uint16_t is_OK = acquire_nonces(blockNo, keyType, key, trgBlockNo, trgKeyType, nonce_file_write, slow); if (is_OK != 0) { + free_nonces_memory(); + //free_statelist_cache(); + free_candidates_memory(candidates); + candidates = NULL; return is_OK; } } //Tests(); - - //PrintAndLog(""); - //PrintAndLog("Sum(a0) = %d", first_byte_Sum); - // PrintAndLog("Best 10 first bytes: %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x", - // best_first_bytes[0], - // best_first_bytes[1], - // best_first_bytes[2], - // best_first_bytes[3], - // best_first_bytes[4], - // best_first_bytes[5], - // best_first_bytes[6], - // best_first_bytes[7], - // best_first_bytes[8], - // best_first_bytes[9] ); - free_nonces_memory(); free_statelist_cache(); free_candidates_memory(candidates); candidates = NULL; } + *found_key = foundkey; return 0; -} +} \ No newline at end of file