X-Git-Url: http://cvs.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/90677ad99bb27055b1e06429b8731db628d3b8ae..refs/pull/89/head:/common/lfdemod.c diff --git a/common/lfdemod.c b/common/lfdemod.c index 92ad633e..fae61206 100644 --- a/common/lfdemod.c +++ b/common/lfdemod.c @@ -58,65 +58,65 @@ uint8_t parityTest(uint32_t bits, uint8_t bitLen, uint8_t pType) //search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length uint8_t preambleSearch(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t *size, size_t *startIdx) { - uint8_t foundCnt=0; - for (int idx=0; idx < *size - pLen; idx++){ - if (memcmp(BitStream+idx, preamble, pLen) == 0){ - //first index found - foundCnt++; - if (foundCnt == 1){ - *startIdx = idx; - } - if (foundCnt == 2){ - *size = idx - *startIdx; - return 1; - } - } - } - return 0; + uint8_t foundCnt=0; + for (int idx=0; idx < *size - pLen; idx++){ + if (memcmp(BitStream+idx, preamble, pLen) == 0){ + //first index found + foundCnt++; + if (foundCnt == 1){ + *startIdx = idx; + } + if (foundCnt == 2){ + *size = idx - *startIdx; + return 1; + } + } + } + return 0; } //by marshmellow //takes 1s and 0s and searches for EM410x format - output EM ID uint8_t Em410xDecode(uint8_t *BitStream, size_t *size, size_t *startIdx, uint32_t *hi, uint64_t *lo) { - //no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future - // otherwise could be a void with no arguments - //set defaults - uint32_t i = 0; - if (BitStream[1]>1){ //allow only 1s and 0s - // PrintAndLog("no data found"); - return 0; - } - // 111111111 bit pattern represent start of frame - // include 0 in front to help get start pos - uint8_t preamble[] = {0,1,1,1,1,1,1,1,1,1}; - uint32_t idx = 0; - uint32_t parityBits = 0; - uint8_t errChk = 0; - uint8_t FmtLen = 10; - *startIdx = 0; - errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, startIdx); - if (errChk == 0 || *size < 64) return 0; - if (*size > 64) FmtLen = 22; - *startIdx += 1; //get rid of 0 from preamble - idx = *startIdx + 9; - for (i=0; i> 63); - *lo = (*lo << 1) | (BitStream[(i*5)+ii+idx]); - } - } - if (errChk != 0) return 1; - //skip last 5 bit parity test for simplicity. - // *size = 64 | 128; - return 0; + //no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future + // otherwise could be a void with no arguments + //set defaults + uint32_t i = 0; + if (BitStream[1]>1){ //allow only 1s and 0s + // PrintAndLog("no data found"); + return 0; + } + // 111111111 bit pattern represent start of frame + // include 0 in front to help get start pos + uint8_t preamble[] = {0,1,1,1,1,1,1,1,1,1}; + uint32_t idx = 0; + uint32_t parityBits = 0; + uint8_t errChk = 0; + uint8_t FmtLen = 10; + *startIdx = 0; + errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, startIdx); + if (errChk == 0 || *size < 64) return 0; + if (*size > 64) FmtLen = 22; + *startIdx += 1; //get rid of 0 from preamble + idx = *startIdx + 9; + for (i=0; i> 63); + *lo = (*lo << 1) | (BitStream[(i*5)+ii+idx]); + } + } + if (errChk != 0) return 1; + //skip last 5 bit parity test for simplicity. + // *size = 64 | 128; + return 0; } //by marshmellow @@ -443,9 +443,9 @@ int askrawdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int max int lastBit = 0; //set first clock check uint32_t bitnum = 0; //output counter uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock - // if they fall + or - this value + clock from last valid wave + // if they fall + or - this value + clock from last valid wave if (*clk == 32) tol=0; //clock tolerance may not be needed anymore currently set to - // + or - 1 but could be increased for poor waves or removed entirely + // + or - 1 but could be increased for poor waves or removed entirely uint32_t iii = 0; uint32_t gLen = *size; if (gLen > 500) gLen=500; @@ -647,7 +647,7 @@ uint32_t myround2(float f) //translate 11111100000 to 10 size_t aggregate_bits(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t maxConsequtiveBits, - uint8_t invert, uint8_t fchigh, uint8_t fclow) + uint8_t invert, uint8_t fchigh, uint8_t fclow) { uint8_t lastval=dest[0]; uint32_t idx=0; @@ -719,33 +719,33 @@ int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t // loop to get raw HID waveform then FSK demodulate the TAG ID from it int HIDdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo) { - if (justNoise(dest, *size)) return -1; - - size_t numStart=0, size2=*size, startIdx=0; - // FSK demodulator - *size = fskdemod(dest, size2,50,1,10,8); //fsk2a - if (*size < 96) return -2; - // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1 - uint8_t preamble[] = {0,0,0,1,1,1,0,1}; - // find bitstring in array - uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); - if (errChk == 0) return -3; //preamble not found - - numStart = startIdx + sizeof(preamble); - // final loop, go over previously decoded FSK data and manchester decode into usable tag ID - for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){ - if (dest[idx] == dest[idx+1]){ - return -4; //not manchester data - } - *hi2 = (*hi2<<1)|(*hi>>31); - *hi = (*hi<<1)|(*lo>>31); - //Then, shift in a 0 or one into low - if (dest[idx] && !dest[idx+1]) // 1 0 - *lo=(*lo<<1)|1; - else // 0 1 - *lo=(*lo<<1)|0; - } - return (int)startIdx; + if (justNoise(dest, *size)) return -1; + + size_t numStart=0, size2=*size, startIdx=0; + // FSK demodulator + *size = fskdemod(dest, size2,50,1,10,8); //fsk2a + if (*size < 96) return -2; + // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1 + uint8_t preamble[] = {0,0,0,1,1,1,0,1}; + // find bitstring in array + uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); + if (errChk == 0) return -3; //preamble not found + + numStart = startIdx + sizeof(preamble); + // final loop, go over previously decoded FSK data and manchester decode into usable tag ID + for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){ + if (dest[idx] == dest[idx+1]){ + return -4; //not manchester data + } + *hi2 = (*hi2<<1)|(*hi>>31); + *hi = (*hi<<1)|(*lo>>31); + //Then, shift in a 0 or one into low + if (dest[idx] && !dest[idx+1]) // 1 0 + *lo=(*lo<<1)|1; + else // 0 1 + *lo=(*lo<<1)|0; + } + return (int)startIdx; } // loop to get raw paradox waveform then FSK demodulate the TAG ID from it @@ -909,7 +909,7 @@ uint8_t DetectCleanAskWave(uint8_t dest[], size_t size, int high, int low) int DetectStrongAskClock(uint8_t dest[], size_t size) { int clk[]={0,8,16,32,40,50,64,100,128,256}; - size_t idx = 40; + size_t idx = 40; uint8_t high=0; size_t cnt = 0; size_t highCnt = 0; @@ -960,87 +960,87 @@ int DetectStrongAskClock(uint8_t dest[], size_t size) // return start index of best starting position for that clock and return clock (by reference) int DetectASKClock(uint8_t dest[], size_t size, int *clock, int maxErr) { - int i=0; - int clk[]={8,16,32,40,50,64,100,128,256}; - int loopCnt = 256; //don't need to loop through entire array... - if (size == 0) return -1; - if (size0; i--){ - if (clk[i] == ans) { - *clock=ans; - return 0; - } - } - } - int ii; - int clkCnt; - int tol = 0; - int bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000}; - int bestStart[]={0,0,0,0,0,0,0,0,0}; - int errCnt=0; - //test each valid clock from smallest to greatest to see which lines up - for(clkCnt=0; clkCnt < 8; clkCnt++){ - if (clk[clkCnt] == 32){ - tol=1; - }else{ - tol=0; - } - if (!maxErr) loopCnt=clk[clkCnt]*2; - bestErr[clkCnt]=1000; - //try lining up the peaks by moving starting point (try first 256) - for (ii=0; ii < loopCnt; ii++){ - if ((dest[ii] >= peak) || (dest[ii] <= low)){ - errCnt=0; - // now that we have the first one lined up test rest of wave array - for (i=0; i<((int)((size-ii-tol)/clk[clkCnt])-1); ++i){ - if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){ - }else if(dest[ii+(i*clk[clkCnt])-tol]>=peak || dest[ii+(i*clk[clkCnt])-tol]<=low){ - }else if(dest[ii+(i*clk[clkCnt])+tol]>=peak || dest[ii+(i*clk[clkCnt])+tol]<=low){ - }else{ //error no peak detected - errCnt++; - } - } - //if we found no errors then we can stop here - // this is correct one - return this clock - //PrintAndLog("DEBUG: clk %d, err %d, ii %d, i %d",clk[clkCnt],errCnt,ii,i); - if(errCnt==0 && clkCnt<6) { - *clock = clk[clkCnt]; - return ii; - } - //if we found errors see if it is lowest so far and save it as best run - if(errCntmaxErr) return -1; - *clock=clk[best]; - return bestStart[best]; + int i=0; + int clk[]={8,16,32,40,50,64,100,128,256}; + int loopCnt = 256; //don't need to loop through entire array... + if (size == 0) return -1; + if (size0; i--){ + if (clk[i] == ans) { + *clock=ans; + return 0; + } + } + } + int ii; + int clkCnt; + int tol = 0; + int bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000}; + int bestStart[]={0,0,0,0,0,0,0,0,0}; + int errCnt=0; + //test each valid clock from smallest to greatest to see which lines up + for(clkCnt=0; clkCnt < 8; clkCnt++){ + if (clk[clkCnt] == 32){ + tol=1; + }else{ + tol=0; + } + if (!maxErr) loopCnt=clk[clkCnt]*2; + bestErr[clkCnt]=1000; + //try lining up the peaks by moving starting point (try first 256) + for (ii=0; ii < loopCnt; ii++){ + if ((dest[ii] >= peak) || (dest[ii] <= low)){ + errCnt=0; + // now that we have the first one lined up test rest of wave array + for (i=0; i<((int)((size-ii-tol)/clk[clkCnt])-1); ++i){ + if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){ + }else if(dest[ii+(i*clk[clkCnt])-tol]>=peak || dest[ii+(i*clk[clkCnt])-tol]<=low){ + }else if(dest[ii+(i*clk[clkCnt])+tol]>=peak || dest[ii+(i*clk[clkCnt])+tol]<=low){ + }else{ //error no peak detected + errCnt++; + } + } + //if we found no errors then we can stop here + // this is correct one - return this clock + //PrintAndLog("DEBUG: clk %d, err %d, ii %d, i %d",clk[clkCnt],errCnt,ii,i); + if(errCnt==0 && clkCnt<6) { + *clock = clk[clkCnt]; + return ii; + } + //if we found errors see if it is lowest so far and save it as best run + if(errCntmaxErr) return -1; + *clock=clk[best]; + return bestStart[best]; } //by marshmellow @@ -1048,165 +1048,165 @@ int DetectASKClock(uint8_t dest[], size_t size, int *clock, int maxErr) // a phase shift is determined by measuring the sample length of each wave int DetectPSKClock(uint8_t dest[], size_t size, int clock) { - uint8_t clk[]={255,16,32,40,50,64,100,128,255}; //255 is not a valid clock - uint16_t loopCnt = 4096; //don't need to loop through entire array... - if (size == 0) return 0; - if (size= dest[i+2]){ - if (waveStart == 0) { - waveStart = i+1; - //PrintAndLog("DEBUG: waveStart: %d",waveStart); - } else { - waveEnd = i+1; - //PrintAndLog("DEBUG: waveEnd: %d",waveEnd); - waveLenCnt = waveEnd-waveStart; - if (waveLenCnt > fc){ - firstFullWave = waveStart; - fullWaveLen=waveLenCnt; - break; - } - waveStart=0; - } - } - } - //PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen); - - //test each valid clock from greatest to smallest to see which lines up - for(clkCnt=7; clkCnt >= 1 ; clkCnt--){ - lastClkBit = firstFullWave; //set end of wave as clock align - waveStart = 0; - errCnt=0; - peakcnt=0; - //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d",clk[clkCnt],lastClkBit); - - for (i = firstFullWave+fullWaveLen-1; i < loopCnt-2; i++){ - //top edge of wave = start of new wave - if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){ - if (waveStart == 0) { - waveStart = i+1; - waveLenCnt=0; - } else { //waveEnd - waveEnd = i+1; - waveLenCnt = waveEnd-waveStart; - if (waveLenCnt > fc){ - //if this wave is a phase shift - //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, ii: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,ii+1,fc); - if (i+1 >= lastClkBit + clk[clkCnt] - tol){ //should be a clock bit - peakcnt++; - lastClkBit+=clk[clkCnt]; - } else if (i lastClkBit + clk[clkCnt] + tol + fc){ - lastClkBit+=clk[clkCnt]; //no phase shift but clock bit - } - waveStart=i+1; - } - } - } - if (errCnt == 0){ - return clk[clkCnt]; - } - if (errCnt <= bestErr[clkCnt]) bestErr[clkCnt]=errCnt; - if (peakcnt > peaksdet[clkCnt]) peaksdet[clkCnt]=peakcnt; - } - //all tested with errors - //return the highest clk with the most peaks found - uint8_t best=7; - for (i=7; i>=1; i--){ - if (peaksdet[i] > peaksdet[best]) { - best = i; - } - //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best]); - } - return clk[best]; + uint8_t clk[]={255,16,32,40,50,64,100,128,255}; //255 is not a valid clock + uint16_t loopCnt = 4096; //don't need to loop through entire array... + if (size == 0) return 0; + if (size= dest[i+2]){ + if (waveStart == 0) { + waveStart = i+1; + //PrintAndLog("DEBUG: waveStart: %d",waveStart); + } else { + waveEnd = i+1; + //PrintAndLog("DEBUG: waveEnd: %d",waveEnd); + waveLenCnt = waveEnd-waveStart; + if (waveLenCnt > fc){ + firstFullWave = waveStart; + fullWaveLen=waveLenCnt; + break; + } + waveStart=0; + } + } + } + //PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen); + + //test each valid clock from greatest to smallest to see which lines up + for(clkCnt=7; clkCnt >= 1 ; clkCnt--){ + lastClkBit = firstFullWave; //set end of wave as clock align + waveStart = 0; + errCnt=0; + peakcnt=0; + //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d",clk[clkCnt],lastClkBit); + + for (i = firstFullWave+fullWaveLen-1; i < loopCnt-2; i++){ + //top edge of wave = start of new wave + if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){ + if (waveStart == 0) { + waveStart = i+1; + waveLenCnt=0; + } else { //waveEnd + waveEnd = i+1; + waveLenCnt = waveEnd-waveStart; + if (waveLenCnt > fc){ + //if this wave is a phase shift + //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, ii: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,ii+1,fc); + if (i+1 >= lastClkBit + clk[clkCnt] - tol){ //should be a clock bit + peakcnt++; + lastClkBit+=clk[clkCnt]; + } else if (i lastClkBit + clk[clkCnt] + tol + fc){ + lastClkBit+=clk[clkCnt]; //no phase shift but clock bit + } + waveStart=i+1; + } + } + } + if (errCnt == 0){ + return clk[clkCnt]; + } + if (errCnt <= bestErr[clkCnt]) bestErr[clkCnt]=errCnt; + if (peakcnt > peaksdet[clkCnt]) peaksdet[clkCnt]=peakcnt; + } + //all tested with errors + //return the highest clk with the most peaks found + uint8_t best=7; + for (i=7; i>=1; i--){ + if (peaksdet[i] > peaksdet[best]) { + best = i; + } + //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best]); + } + return clk[best]; } //by marshmellow //detect nrz clock by reading #peaks vs no peaks(or errors) int DetectNRZClock(uint8_t dest[], size_t size, int clock) { - int i=0; - int clk[]={8,16,32,40,50,64,100,128,256}; - int loopCnt = 4096; //don't need to loop through entire array... - if (size == 0) return 0; - if (size= peak || dest[i] <= low){ - peakcnt++; - } else { - if (peakcnt>0 && maxPeak < peakcnt){ - maxPeak = peakcnt; - } - peakcnt=0; - } - } - peakcnt=0; - //test each valid clock from smallest to greatest to see which lines up - for(clkCnt=0; clkCnt < 8; ++clkCnt){ - //ignore clocks smaller than largest peak - if (clk[clkCnt]= peak) || (dest[ii] <= low)){ - peakcnt=0; - // now that we have the first one lined up test rest of wave array - for (i=0; i < ((int)((size-ii-tol)/clk[clkCnt])-1); ++i){ - if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){ - peakcnt++; - } - } - if(peakcnt>peaksdet[clkCnt]) { - peaksdet[clkCnt]=peakcnt; - } - } - } - } - int iii=7; - int best=0; - for (iii=7; iii > 0; iii--){ - if (peaksdet[iii] > peaksdet[best]){ - best = iii; - } - //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best]); - } - return clk[best]; + int i=0; + int clk[]={8,16,32,40,50,64,100,128,256}; + int loopCnt = 4096; //don't need to loop through entire array... + if (size == 0) return 0; + if (size= peak || dest[i] <= low){ + peakcnt++; + } else { + if (peakcnt>0 && maxPeak < peakcnt){ + maxPeak = peakcnt; + } + peakcnt=0; + } + } + peakcnt=0; + //test each valid clock from smallest to greatest to see which lines up + for(clkCnt=0; clkCnt < 8; ++clkCnt){ + //ignore clocks smaller than largest peak + if (clk[clkCnt]= peak) || (dest[ii] <= low)){ + peakcnt=0; + // now that we have the first one lined up test rest of wave array + for (i=0; i < ((int)((size-ii-tol)/clk[clkCnt])-1); ++i){ + if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){ + peakcnt++; + } + } + if(peakcnt>peaksdet[clkCnt]) { + peaksdet[clkCnt]=peakcnt; + } + } + } + } + int iii=7; + int best=0; + for (iii=7; iii > 0; iii--){ + if (peaksdet[iii] > peaksdet[best]){ + best = iii; + } + //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best]); + } + return clk[best]; } // by marshmellow @@ -1313,275 +1313,275 @@ int indala26decode(uint8_t *bitStream, size_t *size, uint8_t *invert) // there probably is a much simpler way to do this.... int nrzRawDemod(uint8_t *dest, size_t *size, int *clk, int *invert, int maxErr) { - if (justNoise(dest, *size)) return -1; - *clk = DetectNRZClock(dest, *size, *clk); - if (*clk==0) return -2; - uint32_t i; - uint32_t gLen = 4096; - if (gLen>*size) gLen = *size; - int high, low; - if (getHiLo(dest, gLen, &high, &low, 75, 75) < 1) return -3; //25% fuzz on high 25% fuzz on low - int lastBit = 0; //set first clock check - uint32_t bitnum = 0; //output counter - uint8_t tol = 1; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave - uint32_t iii = 0; - uint16_t errCnt =0; - uint16_t MaxBits = 1000; - uint32_t bestErrCnt = maxErr+1; - uint32_t bestPeakCnt = 0; - uint32_t bestPeakStart=0; - uint8_t bestFirstPeakHigh=0; - uint8_t firstPeakHigh=0; - uint8_t curBit=0; - uint8_t bitHigh=0; - uint8_t errBitHigh=0; - uint16_t peakCnt=0; - uint8_t ignoreWindow=4; - uint8_t ignoreCnt=ignoreWindow; //in case of noice near peak - //loop to find first wave that works - align to clock - for (iii=0; iii < gLen; ++iii){ - if ((dest[iii]>=high) || (dest[iii]<=low)){ - if (dest[iii]>=high) firstPeakHigh=1; - else firstPeakHigh=0; - lastBit=iii-*clk; - peakCnt=0; - errCnt=0; - bitnum=0; - //loop through to see if this start location works - for (i = iii; i < *size; ++i) { - //if we found a high bar and we are at a clock bit - if ((dest[i]>=high ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){ - bitHigh=1; - lastBit+=*clk; - bitnum++; - peakCnt++; - errBitHigh=0; - ignoreCnt=ignoreWindow; - //else if low bar found and we are at a clock point - }else if ((dest[i]<=low ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){ - bitHigh=1; - lastBit+=*clk; - bitnum++; - peakCnt++; - errBitHigh=0; - ignoreCnt=ignoreWindow; - //else if no bars found - }else if(dest[i] < high && dest[i] > low) { - if (ignoreCnt==0){ - bitHigh=0; - if (errBitHigh==1){ - errCnt++; - } - errBitHigh=0; - } else { - ignoreCnt--; - } - //if we are past a clock point - if (i >= lastBit+*clk+tol){ //clock val - lastBit+=*clk; - bitnum++; - } - //else if bar found but we are not at a clock bit and we did not just have a clock bit - }else if ((dest[i]>=high || dest[i]<=low) && (ilastBit+*clk+tol) && (bitHigh==0)){ - //error bar found no clock... - errBitHigh=1; - } - if (bitnum>=MaxBits) break; - } - //we got more than 64 good bits and not all errors - if (bitnum > (64) && (errCnt <= (maxErr))) { - //possible good read - if (errCnt == 0){ - //bestStart = iii; - bestFirstPeakHigh=firstPeakHigh; - bestErrCnt = errCnt; - bestPeakCnt = peakCnt; - bestPeakStart = iii; - break; //great read - finish - } - if (errCnt < bestErrCnt){ //set this as new best run - bestErrCnt = errCnt; - //bestStart = iii; - } - if (peakCnt > bestPeakCnt){ - bestFirstPeakHigh=firstPeakHigh; - bestPeakCnt=peakCnt; - bestPeakStart=iii; - } - } - } - } - //PrintAndLog("DEBUG: bestErrCnt: %d, maxErr: %d, bestStart: %d, bestPeakCnt: %d, bestPeakStart: %d",bestErrCnt,maxErr,bestStart,bestPeakCnt,bestPeakStart); - if (bestErrCnt <= maxErr){ - //best run is good enough set to best run and set overwrite BinStream - iii=bestPeakStart; - lastBit=bestPeakStart-*clk; - bitnum=0; - memset(dest, bestFirstPeakHigh^1, bestPeakStart / *clk); - bitnum += (bestPeakStart / *clk); - for (i = iii; i < *size; ++i) { - //if we found a high bar and we are at a clock bit - if ((dest[i] >= high ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){ - bitHigh=1; - lastBit+=*clk; - curBit=1-*invert; - dest[bitnum]=curBit; - bitnum++; - errBitHigh=0; - ignoreCnt=ignoreWindow; - //else if low bar found and we are at a clock point - }else if ((dest[i]<=low ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){ - bitHigh=1; - lastBit+=*clk; - curBit=*invert; - dest[bitnum]=curBit; - bitnum++; - errBitHigh=0; - ignoreCnt=ignoreWindow; - //else if no bars found - }else if(dest[i]low) { - if (ignoreCnt==0){ - bitHigh=0; - //if peak is done was it an error peak? - if (errBitHigh==1){ - dest[bitnum]=77; - bitnum++; - errCnt++; - } - errBitHigh=0; - } else { - ignoreCnt--; - } - //if we are past a clock point - if (i>=lastBit+*clk+tol){ //clock val - lastBit+=*clk; - dest[bitnum]=curBit; - bitnum++; - } - //else if bar found but we are not at a clock bit and we did not just have a clock bit - }else if ((dest[i]>=high || dest[i]<=low) && ((ilastBit+*clk+tol)) && (bitHigh==0)){ - //error bar found no clock... - errBitHigh=1; - } - if (bitnum >= MaxBits) break; - } - *size=bitnum; - } else{ - *size=bitnum; - return bestErrCnt; - } - - if (bitnum>16){ - *size=bitnum; - } else return -5; - return errCnt; + if (justNoise(dest, *size)) return -1; + *clk = DetectNRZClock(dest, *size, *clk); + if (*clk==0) return -2; + uint32_t i; + uint32_t gLen = 4096; + if (gLen>*size) gLen = *size; + int high, low; + if (getHiLo(dest, gLen, &high, &low, 75, 75) < 1) return -3; //25% fuzz on high 25% fuzz on low + int lastBit = 0; //set first clock check + uint32_t bitnum = 0; //output counter + uint8_t tol = 1; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave + uint32_t iii = 0; + uint16_t errCnt =0; + uint16_t MaxBits = 1000; + uint32_t bestErrCnt = maxErr+1; + uint32_t bestPeakCnt = 0; + uint32_t bestPeakStart=0; + uint8_t bestFirstPeakHigh=0; + uint8_t firstPeakHigh=0; + uint8_t curBit=0; + uint8_t bitHigh=0; + uint8_t errBitHigh=0; + uint16_t peakCnt=0; + uint8_t ignoreWindow=4; + uint8_t ignoreCnt=ignoreWindow; //in case of noice near peak + //loop to find first wave that works - align to clock + for (iii=0; iii < gLen; ++iii){ + if ((dest[iii]>=high) || (dest[iii]<=low)){ + if (dest[iii]>=high) firstPeakHigh=1; + else firstPeakHigh=0; + lastBit=iii-*clk; + peakCnt=0; + errCnt=0; + bitnum=0; + //loop through to see if this start location works + for (i = iii; i < *size; ++i) { + //if we found a high bar and we are at a clock bit + if ((dest[i]>=high ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){ + bitHigh=1; + lastBit+=*clk; + bitnum++; + peakCnt++; + errBitHigh=0; + ignoreCnt=ignoreWindow; + //else if low bar found and we are at a clock point + }else if ((dest[i]<=low ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){ + bitHigh=1; + lastBit+=*clk; + bitnum++; + peakCnt++; + errBitHigh=0; + ignoreCnt=ignoreWindow; + //else if no bars found + }else if(dest[i] < high && dest[i] > low) { + if (ignoreCnt==0){ + bitHigh=0; + if (errBitHigh==1){ + errCnt++; + } + errBitHigh=0; + } else { + ignoreCnt--; + } + //if we are past a clock point + if (i >= lastBit+*clk+tol){ //clock val + lastBit+=*clk; + bitnum++; + } + //else if bar found but we are not at a clock bit and we did not just have a clock bit + }else if ((dest[i]>=high || dest[i]<=low) && (ilastBit+*clk+tol) && (bitHigh==0)){ + //error bar found no clock... + errBitHigh=1; + } + if (bitnum>=MaxBits) break; + } + //we got more than 64 good bits and not all errors + if (bitnum > (64) && (errCnt <= (maxErr))) { + //possible good read + if (errCnt == 0){ + //bestStart = iii; + bestFirstPeakHigh=firstPeakHigh; + bestErrCnt = errCnt; + bestPeakCnt = peakCnt; + bestPeakStart = iii; + break; //great read - finish + } + if (errCnt < bestErrCnt){ //set this as new best run + bestErrCnt = errCnt; + //bestStart = iii; + } + if (peakCnt > bestPeakCnt){ + bestFirstPeakHigh=firstPeakHigh; + bestPeakCnt=peakCnt; + bestPeakStart=iii; + } + } + } + } + //PrintAndLog("DEBUG: bestErrCnt: %d, maxErr: %d, bestStart: %d, bestPeakCnt: %d, bestPeakStart: %d",bestErrCnt,maxErr,bestStart,bestPeakCnt,bestPeakStart); + if (bestErrCnt <= maxErr){ + //best run is good enough set to best run and set overwrite BinStream + iii=bestPeakStart; + lastBit=bestPeakStart-*clk; + bitnum=0; + memset(dest, bestFirstPeakHigh^1, bestPeakStart / *clk); + bitnum += (bestPeakStart / *clk); + for (i = iii; i < *size; ++i) { + //if we found a high bar and we are at a clock bit + if ((dest[i] >= high ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){ + bitHigh=1; + lastBit+=*clk; + curBit=1-*invert; + dest[bitnum]=curBit; + bitnum++; + errBitHigh=0; + ignoreCnt=ignoreWindow; + //else if low bar found and we are at a clock point + }else if ((dest[i]<=low ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){ + bitHigh=1; + lastBit+=*clk; + curBit=*invert; + dest[bitnum]=curBit; + bitnum++; + errBitHigh=0; + ignoreCnt=ignoreWindow; + //else if no bars found + }else if(dest[i]low) { + if (ignoreCnt==0){ + bitHigh=0; + //if peak is done was it an error peak? + if (errBitHigh==1){ + dest[bitnum]=77; + bitnum++; + errCnt++; + } + errBitHigh=0; + } else { + ignoreCnt--; + } + //if we are past a clock point + if (i>=lastBit+*clk+tol){ //clock val + lastBit+=*clk; + dest[bitnum]=curBit; + bitnum++; + } + //else if bar found but we are not at a clock bit and we did not just have a clock bit + }else if ((dest[i]>=high || dest[i]<=low) && ((ilastBit+*clk+tol)) && (bitHigh==0)){ + //error bar found no clock... + errBitHigh=1; + } + if (bitnum >= MaxBits) break; + } + *size=bitnum; + } else{ + *size=bitnum; + return bestErrCnt; + } + + if (bitnum>16){ + *size=bitnum; + } else return -5; + return errCnt; } //by marshmellow //detects the bit clock for FSK given the high and low Field Clocks uint8_t detectFSKClk(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fcLow) { - uint8_t clk[] = {8,16,32,40,50,64,100,128,0}; - uint16_t rfLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; - uint8_t rfCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; - uint8_t rfLensFnd = 0; - uint8_t lastFCcnt=0; - uint32_t fcCounter = 0; - uint16_t rfCounter = 0; - uint8_t firstBitFnd = 0; - size_t i; - if (size == 0) return 0; - - uint8_t fcTol = (uint8_t)(0.5+(float)(fcHigh-fcLow)/2); - rfLensFnd=0; - fcCounter=0; - rfCounter=0; - firstBitFnd=0; - //PrintAndLog("DEBUG: fcTol: %d",fcTol); - // prime i to first up transition - for (i = 1; i < size-1; i++) - if (BitStream[i] > BitStream[i-1] && BitStream[i]>=BitStream[i+1]) - break; - - for (; i < size-1; i++){ - if (BitStream[i] > BitStream[i-1] && BitStream[i]>=BitStream[i+1]){ - // new peak - fcCounter++; - rfCounter++; - // if we got less than the small fc + tolerance then set it to the small fc - if (fcCounter < fcLow+fcTol) - fcCounter = fcLow; - else //set it to the large fc - fcCounter = fcHigh; - - //look for bit clock (rf/xx) - if ((fcCounterlastFCcnt)){ - //not the same size as the last wave - start of new bit sequence - - if (firstBitFnd>1){ //skip first wave change - probably not a complete bit - for (int ii=0; ii<15; ii++){ - if (rfLens[ii]==rfCounter){ - rfCnts[ii]++; - rfCounter=0; - break; - } - } - if (rfCounter>0 && rfLensFnd<15){ - //PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter); - rfCnts[rfLensFnd]++; - rfLens[rfLensFnd++]=rfCounter; - } - } else { - firstBitFnd++; - } - rfCounter=0; - lastFCcnt=fcCounter; - } - fcCounter=0; - } else { - // count sample - fcCounter++; - rfCounter++; - } - } - uint8_t rfHighest=15, rfHighest2=15, rfHighest3=15; - - for (i=0; i<15; i++){ - //PrintAndLog("DEBUG: RF %d, cnts %d",rfLens[i], rfCnts[i]); - //get highest 2 RF values (might need to get more values to compare or compare all?) - if (rfCnts[i]>rfCnts[rfHighest]){ - rfHighest3=rfHighest2; - rfHighest2=rfHighest; - rfHighest=i; - } else if(rfCnts[i]>rfCnts[rfHighest2]){ - rfHighest3=rfHighest2; - rfHighest2=i; - } else if(rfCnts[i]>rfCnts[rfHighest3]){ - rfHighest3=i; - } - } - // set allowed clock remainder tolerance to be 1 large field clock length+1 - // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off - uint8_t tol1 = fcHigh+1; - - //PrintAndLog("DEBUG: hightest: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]); - - // loop to find the highest clock that has a remainder less than the tolerance - // compare samples counted divided by - int ii=7; - for (; ii>=0; ii--){ - if (rfLens[rfHighest] % clk[ii] < tol1 || rfLens[rfHighest] % clk[ii] > clk[ii]-tol1){ - if (rfLens[rfHighest2] % clk[ii] < tol1 || rfLens[rfHighest2] % clk[ii] > clk[ii]-tol1){ - if (rfLens[rfHighest3] % clk[ii] < tol1 || rfLens[rfHighest3] % clk[ii] > clk[ii]-tol1){ - break; - } - } - } - } - - if (ii<0) return 0; // oops we went too far - - return clk[ii]; + uint8_t clk[] = {8,16,32,40,50,64,100,128,0}; + uint16_t rfLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; + uint8_t rfCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; + uint8_t rfLensFnd = 0; + uint8_t lastFCcnt=0; + uint32_t fcCounter = 0; + uint16_t rfCounter = 0; + uint8_t firstBitFnd = 0; + size_t i; + if (size == 0) return 0; + + uint8_t fcTol = (uint8_t)(0.5+(float)(fcHigh-fcLow)/2); + rfLensFnd=0; + fcCounter=0; + rfCounter=0; + firstBitFnd=0; + //PrintAndLog("DEBUG: fcTol: %d",fcTol); + // prime i to first up transition + for (i = 1; i < size-1; i++) + if (BitStream[i] > BitStream[i-1] && BitStream[i]>=BitStream[i+1]) + break; + + for (; i < size-1; i++){ + if (BitStream[i] > BitStream[i-1] && BitStream[i]>=BitStream[i+1]){ + // new peak + fcCounter++; + rfCounter++; + // if we got less than the small fc + tolerance then set it to the small fc + if (fcCounter < fcLow+fcTol) + fcCounter = fcLow; + else //set it to the large fc + fcCounter = fcHigh; + + //look for bit clock (rf/xx) + if ((fcCounterlastFCcnt)){ + //not the same size as the last wave - start of new bit sequence + + if (firstBitFnd>1){ //skip first wave change - probably not a complete bit + for (int ii=0; ii<15; ii++){ + if (rfLens[ii]==rfCounter){ + rfCnts[ii]++; + rfCounter=0; + break; + } + } + if (rfCounter>0 && rfLensFnd<15){ + //PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter); + rfCnts[rfLensFnd]++; + rfLens[rfLensFnd++]=rfCounter; + } + } else { + firstBitFnd++; + } + rfCounter=0; + lastFCcnt=fcCounter; + } + fcCounter=0; + } else { + // count sample + fcCounter++; + rfCounter++; + } + } + uint8_t rfHighest=15, rfHighest2=15, rfHighest3=15; + + for (i=0; i<15; i++){ + //PrintAndLog("DEBUG: RF %d, cnts %d",rfLens[i], rfCnts[i]); + //get highest 2 RF values (might need to get more values to compare or compare all?) + if (rfCnts[i]>rfCnts[rfHighest]){ + rfHighest3=rfHighest2; + rfHighest2=rfHighest; + rfHighest=i; + } else if(rfCnts[i]>rfCnts[rfHighest2]){ + rfHighest3=rfHighest2; + rfHighest2=i; + } else if(rfCnts[i]>rfCnts[rfHighest3]){ + rfHighest3=i; + } + } + // set allowed clock remainder tolerance to be 1 large field clock length+1 + // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off + uint8_t tol1 = fcHigh+1; + + //PrintAndLog("DEBUG: hightest: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]); + + // loop to find the highest clock that has a remainder less than the tolerance + // compare samples counted divided by + int ii=7; + for (; ii>=0; ii--){ + if (rfLens[rfHighest] % clk[ii] < tol1 || rfLens[rfHighest] % clk[ii] > clk[ii]-tol1){ + if (rfLens[rfHighest2] % clk[ii] < tol1 || rfLens[rfHighest2] % clk[ii] > clk[ii]-tol1){ + if (rfLens[rfHighest3] % clk[ii] < tol1 || rfLens[rfHighest3] % clk[ii] > clk[ii]-tol1){ + break; + } + } + } + } + + if (ii<0) return 0; // oops we went too far + + return clk[ii]; } //by marshmellow @@ -1590,84 +1590,84 @@ uint8_t detectFSKClk(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fc //mainly used for FSK field clock detection uint16_t countFC(uint8_t *BitStream, size_t size, uint8_t *mostFC) { - uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0}; - uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0}; - uint8_t fcLensFnd = 0; - uint8_t lastFCcnt=0; - uint32_t fcCounter = 0; - size_t i; - if (size == 0) return 0; - - // prime i to first up transition - for (i = 1; i < size-1; i++) - if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]) - break; - - for (; i < size-1; i++){ - if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]){ - // new up transition - fcCounter++; - - //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8) - if (lastFCcnt==5 && fcCounter==9) fcCounter--; - //if odd and not rc/5 add one (for when we get a fc 9 instead of 10) - if ((fcCounter==9 && fcCounter & 1) || fcCounter==4) fcCounter++; - - // save last field clock count (fc/xx) - // find which fcLens to save it to: - for (int ii=0; ii<10; ii++){ - if (fcLens[ii]==fcCounter){ - fcCnts[ii]++; - fcCounter=0; - break; - } - } - if (fcCounter>0 && fcLensFnd<10){ - //add new fc length - fcCnts[fcLensFnd]++; - fcLens[fcLensFnd++]=fcCounter; - } - fcCounter=0; - } else { - // count sample - fcCounter++; - } - } - - uint8_t best1=9, best2=9, best3=9; - uint16_t maxCnt1=0; - // go through fclens and find which ones are bigest 2 - for (i=0; i<10; i++){ - // PrintAndLog("DEBUG: FC %d, Cnt %d, Errs %d",fcLens[i],fcCnts[i],errCnt); - // get the 3 best FC values - if (fcCnts[i]>maxCnt1) { - best3=best2; - best2=best1; - maxCnt1=fcCnts[i]; - best1=i; - } else if(fcCnts[i]>fcCnts[best2]){ - best3=best2; - best2=i; - } else if(fcCnts[i]>fcCnts[best3]){ - best3=i; - } - } - uint8_t fcH=0, fcL=0; - if (fcLens[best1]>fcLens[best2]){ - fcH=fcLens[best1]; - fcL=fcLens[best2]; - } else{ - fcH=fcLens[best2]; - fcL=fcLens[best1]; - } - - *mostFC=fcLens[best1]; - // TODO: take top 3 answers and compare to known Field clocks to get top 2 - - uint16_t fcs = (((uint16_t)fcH)<<8) | fcL; - // PrintAndLog("DEBUG: Best %d best2 %d best3 %d",fcLens[best1],fcLens[best2],fcLens[best3]); - - return fcs; + uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0}; + uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0}; + uint8_t fcLensFnd = 0; + uint8_t lastFCcnt=0; + uint32_t fcCounter = 0; + size_t i; + if (size == 0) return 0; + + // prime i to first up transition + for (i = 1; i < size-1; i++) + if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]) + break; + + for (; i < size-1; i++){ + if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]){ + // new up transition + fcCounter++; + + //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8) + if (lastFCcnt==5 && fcCounter==9) fcCounter--; + //if odd and not rc/5 add one (for when we get a fc 9 instead of 10) + if ((fcCounter==9 && fcCounter & 1) || fcCounter==4) fcCounter++; + + // save last field clock count (fc/xx) + // find which fcLens to save it to: + for (int ii=0; ii<10; ii++){ + if (fcLens[ii]==fcCounter){ + fcCnts[ii]++; + fcCounter=0; + break; + } + } + if (fcCounter>0 && fcLensFnd<10){ + //add new fc length + fcCnts[fcLensFnd]++; + fcLens[fcLensFnd++]=fcCounter; + } + fcCounter=0; + } else { + // count sample + fcCounter++; + } + } + + uint8_t best1=9, best2=9, best3=9; + uint16_t maxCnt1=0; + // go through fclens and find which ones are bigest 2 + for (i=0; i<10; i++){ + // PrintAndLog("DEBUG: FC %d, Cnt %d, Errs %d",fcLens[i],fcCnts[i],errCnt); + // get the 3 best FC values + if (fcCnts[i]>maxCnt1) { + best3=best2; + best2=best1; + maxCnt1=fcCnts[i]; + best1=i; + } else if(fcCnts[i]>fcCnts[best2]){ + best3=best2; + best2=i; + } else if(fcCnts[i]>fcCnts[best3]){ + best3=i; + } + } + uint8_t fcH=0, fcL=0; + if (fcLens[best1]>fcLens[best2]){ + fcH=fcLens[best1]; + fcL=fcLens[best2]; + } else{ + fcH=fcLens[best2]; + fcL=fcLens[best1]; + } + + *mostFC=fcLens[best1]; + // TODO: take top 3 answers and compare to known Field clocks to get top 2 + + uint16_t fcs = (((uint16_t)fcH)<<8) | fcL; + // PrintAndLog("DEBUG: Best %d best2 %d best3 %d",fcLens[best1],fcLens[best2],fcLens[best3]); + + return fcs; } //by marshmellow @@ -1675,140 +1675,140 @@ uint16_t countFC(uint8_t *BitStream, size_t size, uint8_t *mostFC) //counts and returns the 1 most common wave length uint8_t countPSK_FC(uint8_t *BitStream, size_t size) { - uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0}; - uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0}; - uint8_t fcLensFnd = 0; - uint32_t fcCounter = 0; - size_t i; - if (size == 0) return 0; - - // prime i to first up transition - for (i = 1; i < size-1; i++) - if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]) - break; - - for (; i < size-1; i++){ - if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]){ - // new up transition - fcCounter++; - - // save last field clock count (fc/xx) - // find which fcLens to save it to: - for (int ii=0; ii<10; ii++){ - if (fcLens[ii]==fcCounter){ - fcCnts[ii]++; - fcCounter=0; - break; - } - } - if (fcCounter>0 && fcLensFnd<10){ - //add new fc length - fcCnts[fcLensFnd]++; - fcLens[fcLensFnd++]=fcCounter; - } - fcCounter=0; - } else { - // count sample - fcCounter++; - } - } - - uint8_t best1=9; - uint16_t maxCnt1=0; - // go through fclens and find which ones are bigest - for (i=0; i<10; i++){ - //PrintAndLog("DEBUG: FC %d, Cnt %d",fcLens[i],fcCnts[i]); - // get the best FC value - if (fcCnts[i]>maxCnt1) { - maxCnt1=fcCnts[i]; - best1=i; - } - } - return fcLens[best1]; + uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0}; + uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0}; + uint8_t fcLensFnd = 0; + uint32_t fcCounter = 0; + size_t i; + if (size == 0) return 0; + + // prime i to first up transition + for (i = 1; i < size-1; i++) + if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]) + break; + + for (; i < size-1; i++){ + if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]){ + // new up transition + fcCounter++; + + // save last field clock count (fc/xx) + // find which fcLens to save it to: + for (int ii=0; ii<10; ii++){ + if (fcLens[ii]==fcCounter){ + fcCnts[ii]++; + fcCounter=0; + break; + } + } + if (fcCounter>0 && fcLensFnd<10){ + //add new fc length + fcCnts[fcLensFnd]++; + fcLens[fcLensFnd++]=fcCounter; + } + fcCounter=0; + } else { + // count sample + fcCounter++; + } + } + + uint8_t best1=9; + uint16_t maxCnt1=0; + // go through fclens and find which ones are bigest + for (i=0; i<10; i++){ + //PrintAndLog("DEBUG: FC %d, Cnt %d",fcLens[i],fcCnts[i]); + // get the best FC value + if (fcCnts[i]>maxCnt1) { + maxCnt1=fcCnts[i]; + best1=i; + } + } + return fcLens[best1]; } //by marshmellow - demodulate PSK1 wave //uses wave lengths (# Samples) int pskRawDemod(uint8_t dest[], size_t *size, int *clock, int *invert) { - uint16_t loopCnt = 4096; //don't need to loop through entire array... - if (size == 0) return -1; - if (*size= dest[i+2]){ - waveEnd = i+1; - //PrintAndLog("DEBUG: waveEnd: %d",waveEnd); - waveLenCnt = waveEnd-waveStart; - if (waveLenCnt > fc && waveStart > fc){ //not first peak and is a large wave - lastAvgWaveVal = avgWaveVal/(waveLenCnt); - firstFullWave = waveStart; - fullWaveLen=waveLenCnt; - //if average wave value is > graph 0 then it is an up wave or a 1 - if (lastAvgWaveVal > 123) curPhase^=1; //fudge graph 0 a little 123 vs 128 - break; - } - waveStart = i+1; - avgWaveVal = 0; - } - avgWaveVal+=dest[i+2]; - } - //PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen); - lastClkBit = firstFullWave; //set start of wave as clock align - //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d", *clock, lastClkBit); - waveStart = 0; - errCnt=0; - size_t numBits=0; - //set skipped bits - memset(dest,curPhase^1,firstFullWave / *clock); - numBits += (firstFullWave / *clock); - dest[numBits++] = curPhase; //set first read bit - for (i = firstFullWave+fullWaveLen-1; i < *size-3; i++){ - //top edge of wave = start of new wave - if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){ - if (waveStart == 0) { - waveStart = i+1; - waveLenCnt=0; - avgWaveVal = dest[i+1]; - } else { //waveEnd - waveEnd = i+1; - waveLenCnt = waveEnd-waveStart; - lastAvgWaveVal = avgWaveVal/waveLenCnt; - if (waveLenCnt > fc){ - //PrintAndLog("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal); - //if this wave is a phase shift - //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc); - if (i+1 >= lastClkBit + *clock - tol){ //should be a clock bit - curPhase^=1; - dest[numBits++] = curPhase; - lastClkBit += *clock; - } else if (i lastClkBit + *clock + tol + fc){ - lastClkBit += *clock; //no phase shift but clock bit - dest[numBits++] = curPhase; - } - avgWaveVal=0; - waveStart=i+1; - } - } - avgWaveVal+=dest[i+1]; - } - *size = numBits; - return errCnt; + uint16_t loopCnt = 4096; //don't need to loop through entire array... + if (size == 0) return -1; + if (*size= dest[i+2]){ + waveEnd = i+1; + //PrintAndLog("DEBUG: waveEnd: %d",waveEnd); + waveLenCnt = waveEnd-waveStart; + if (waveLenCnt > fc && waveStart > fc){ //not first peak and is a large wave + lastAvgWaveVal = avgWaveVal/(waveLenCnt); + firstFullWave = waveStart; + fullWaveLen=waveLenCnt; + //if average wave value is > graph 0 then it is an up wave or a 1 + if (lastAvgWaveVal > 123) curPhase^=1; //fudge graph 0 a little 123 vs 128 + break; + } + waveStart = i+1; + avgWaveVal = 0; + } + avgWaveVal+=dest[i+2]; + } + //PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen); + lastClkBit = firstFullWave; //set start of wave as clock align + //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d", *clock, lastClkBit); + waveStart = 0; + errCnt=0; + size_t numBits=0; + //set skipped bits + memset(dest,curPhase^1,firstFullWave / *clock); + numBits += (firstFullWave / *clock); + dest[numBits++] = curPhase; //set first read bit + for (i = firstFullWave+fullWaveLen-1; i < *size-3; i++){ + //top edge of wave = start of new wave + if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){ + if (waveStart == 0) { + waveStart = i+1; + waveLenCnt=0; + avgWaveVal = dest[i+1]; + } else { //waveEnd + waveEnd = i+1; + waveLenCnt = waveEnd-waveStart; + lastAvgWaveVal = avgWaveVal/waveLenCnt; + if (waveLenCnt > fc){ + //PrintAndLog("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal); + //if this wave is a phase shift + //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc); + if (i+1 >= lastClkBit + *clock - tol){ //should be a clock bit + curPhase^=1; + dest[numBits++] = curPhase; + lastClkBit += *clock; + } else if (i lastClkBit + *clock + tol + fc){ + lastClkBit += *clock; //no phase shift but clock bit + dest[numBits++] = curPhase; + } + avgWaveVal=0; + waveStart=i+1; + } + } + avgWaveVal+=dest[i+1]; + } + *size = numBits; + return errCnt; }