X-Git-Url: http://cvs.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/a531720ae6e8c9882c96ba4968e5c7ce98e7fb4c..b03006794fc64e8b2e3f38cb9add5e19128f2f6f:/client/cmdhfmfhard.c diff --git a/client/cmdhfmfhard.c b/client/cmdhfmfhard.c index 6e1ebc85..eac783ff 100644 --- a/client/cmdhfmfhard.c +++ b/client/cmdhfmfhard.c @@ -18,6 +18,7 @@ #include #include #include +#include #include #include "proxmark3.h" #include "cmdmain.h" @@ -30,7 +31,7 @@ // uint32_t test_state_even = 0; #define CONFIDENCE_THRESHOLD 0.95 // Collect nonces until we are certain enough that the following brute force is successfull -#define GOOD_BYTES_REQUIRED 20 +#define GOOD_BYTES_REQUIRED 30 static const float p_K[257] = { // the probability that a random nonce has a Sum Property == K @@ -87,16 +88,16 @@ typedef struct noncelist { } noncelist_t; -static uint32_t cuid; +static uint32_t cuid = 0; static noncelist_t nonces[256]; +static uint8_t best_first_bytes[256]; static uint16_t first_byte_Sum = 0; static uint16_t first_byte_num = 0; static uint16_t num_good_first_bytes = 0; static uint64_t maximum_states = 0; static uint64_t known_target_key; - -#define MAX_BEST_BYTES 256 -static uint8_t best_first_bytes[MAX_BEST_BYTES]; +static bool write_stats = false; +static FILE *fstats = NULL; typedef enum { @@ -176,6 +177,41 @@ static int add_nonce(uint32_t nonce_enc, uint8_t par_enc) } +static void init_nonce_memory(void) +{ + for (uint16_t i = 0; i < 256; i++) { + nonces[i].num = 0; + nonces[i].Sum = 0; + nonces[i].Sum8_guess = 0; + nonces[i].Sum8_prob = 0.0; + nonces[i].updated = true; + nonces[i].first = NULL; + } + first_byte_num = 0; + first_byte_Sum = 0; + num_good_first_bytes = 0; +} + + +static void free_nonce_list(noncelistentry_t *p) +{ + if (p == NULL) { + return; + } else { + free_nonce_list(p->next); + free(p); + } +} + + +static void free_nonces_memory(void) +{ + for (uint16_t i = 0; i < 256; i++) { + free_nonce_list(nonces[i].first); + } +} + + static uint16_t PartialSumProperty(uint32_t state, odd_even_t odd_even) { uint16_t sum = 0; @@ -200,12 +236,12 @@ static uint16_t PartialSumProperty(uint32_t state, odd_even_t odd_even) } -static uint16_t SumProperty(struct Crypto1State *s) -{ - uint16_t sum_odd = PartialSumProperty(s->odd, ODD_STATE); - uint16_t sum_even = PartialSumProperty(s->even, EVEN_STATE); - return (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even); -} +// static uint16_t SumProperty(struct Crypto1State *s) +// { + // uint16_t sum_odd = PartialSumProperty(s->odd, ODD_STATE); + // uint16_t sum_even = PartialSumProperty(s->even, EVEN_STATE); + // return (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even); +// } static double p_hypergeometric(uint16_t N, uint16_t K, uint16_t n, uint16_t k) @@ -250,20 +286,18 @@ static double p_hypergeometric(uint16_t N, uint16_t K, uint16_t n, uint16_t k) static float sum_probability(uint16_t K, uint16_t n, uint16_t k) { const uint16_t N = 256; - - - if (k > K || p_K[K] == 0.0) return 0.0; + if (k > K || p_K[K] == 0.0) return 0.0; - double p_T_is_k_when_S_is_K = p_hypergeometric(N, K, n, k); - double p_S_is_K = p_K[K]; - double p_T_is_k = 0; - for (uint16_t i = 0; i <= 256; i++) { - if (p_K[i] != 0.0) { - p_T_is_k += p_K[i] * p_hypergeometric(N, i, n, k); - } + double p_T_is_k_when_S_is_K = p_hypergeometric(N, K, n, k); + double p_S_is_K = p_K[K]; + double p_T_is_k = 0; + for (uint16_t i = 0; i <= 256; i++) { + if (p_K[i] != 0.0) { + p_T_is_k += p_K[i] * p_hypergeometric(N, i, n, k); } - return(p_T_is_k_when_S_is_K * p_S_is_K / p_T_is_k); + } + return(p_T_is_k_when_S_is_K * p_S_is_K / p_T_is_k); } @@ -296,13 +330,13 @@ static inline uint_fast8_t common_bits(uint_fast8_t bytes_diff) static void Tests() { - printf("Tests: Partial Statelist sizes\n"); - for (uint16_t i = 0; i <= 16; i+=2) { - printf("Partial State List Odd [%2d] has %8d entries\n", i, partial_statelist[i].len[ODD_STATE]); - } - for (uint16_t i = 0; i <= 16; i+=2) { - printf("Partial State List Even [%2d] has %8d entries\n", i, partial_statelist[i].len[EVEN_STATE]); - } + // printf("Tests: Partial Statelist sizes\n"); + // for (uint16_t i = 0; i <= 16; i+=2) { + // printf("Partial State List Odd [%2d] has %8d entries\n", i, partial_statelist[i].len[ODD_STATE]); + // } + // for (uint16_t i = 0; i <= 16; i+=2) { + // printf("Partial State List Even [%2d] has %8d entries\n", i, partial_statelist[i].len[EVEN_STATE]); + // } // #define NUM_STATISTICS 100000 // uint32_t statistics_odd[17]; @@ -375,65 +409,64 @@ static void Tests() // printf("p_hypergeometric(256, 1, 1, 1) = %0.8f\n", p_hypergeometric(256, 1, 1, 1)); // printf("p_hypergeometric(256, 1, 1, 0) = %0.8f\n", p_hypergeometric(256, 1, 1, 0)); - struct Crypto1State *pcs; - pcs = crypto1_create(0xffffffffffff); - printf("\nTests: for key = 0xffffffffffff:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", - SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); - crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true); - printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", - best_first_bytes[0], - SumProperty(pcs), - pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); - //test_state_odd = pcs->odd & 0x00ffffff; - //test_state_even = pcs->even & 0x00ffffff; - crypto1_destroy(pcs); - pcs = crypto1_create(0xa0a1a2a3a4a5); - printf("Tests: for key = 0xa0a1a2a3a4a5:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", - SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); - crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true); - printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", - best_first_bytes[0], - SumProperty(pcs), - pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); - // test_state_odd = pcs->odd & 0x00ffffff; - // test_state_even = pcs->even & 0x00ffffff; - crypto1_destroy(pcs); - pcs = crypto1_create(0xa6b9aa97b955); - printf("Tests: for key = 0xa6b9aa97b955:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", - SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); - crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true); - printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", - best_first_bytes[0], - SumProperty(pcs), - pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); + // struct Crypto1State *pcs; + // pcs = crypto1_create(0xffffffffffff); + // printf("\nTests: for key = 0xffffffffffff:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", + // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); + // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true); + // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", + // best_first_bytes[0], + // SumProperty(pcs), + // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); + // //test_state_odd = pcs->odd & 0x00ffffff; + // //test_state_even = pcs->even & 0x00ffffff; + // crypto1_destroy(pcs); + // pcs = crypto1_create(0xa0a1a2a3a4a5); + // printf("Tests: for key = 0xa0a1a2a3a4a5:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", + // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); + // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true); + // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", + // best_first_bytes[0], + // SumProperty(pcs), + // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); + // //test_state_odd = pcs->odd & 0x00ffffff; + // //test_state_even = pcs->even & 0x00ffffff; + // crypto1_destroy(pcs); + // pcs = crypto1_create(0xa6b9aa97b955); + // printf("Tests: for key = 0xa6b9aa97b955:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", + // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); + // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true); + // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", + // best_first_bytes[0], + // SumProperty(pcs), + // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); //test_state_odd = pcs->odd & 0x00ffffff; //test_state_even = pcs->even & 0x00ffffff; - crypto1_destroy(pcs); - + // crypto1_destroy(pcs); - printf("\nTests: number of states with BitFlipProperty: %d, (= %1.3f%% of total states)\n", statelist_bitflip.len[0], 100.0 * statelist_bitflip.len[0] / (1<<20)); + + // printf("\nTests: number of states with BitFlipProperty: %d, (= %1.3f%% of total states)\n", statelist_bitflip.len[0], 100.0 * statelist_bitflip.len[0] / (1<<20)); printf("\nTests: Actual BitFlipProperties odd/even:\n"); for (uint16_t i = 0; i < 256; i++) { - printf("[%02x]:%c%c ", i, nonces[i].BitFlip[ODD_STATE]?'o':' ', nonces[i].BitFlip[EVEN_STATE]?'e':' '); + printf("[%02x]:%c ", i, nonces[i].BitFlip[ODD_STATE]?'o':nonces[i].BitFlip[EVEN_STATE]?'e':' '); if (i % 8 == 7) { printf("\n"); } } - printf("\nTests: Best %d first bytes:\n", MAX_BEST_BYTES); - for (uint16_t i = 0; i < MAX_BEST_BYTES; i++) { + printf("\nTests: Sorted First Bytes:\n"); + for (uint16_t i = 0; i < 256; i++) { uint8_t best_byte = best_first_bytes[i]; - printf("#%03d Byte: %02x, n = %2d, k = %2d, Sum(a8): %3d, Confidence: %2.1f%%, Bitflip: %c%c\n", - //printf("#%03d Byte: %02x, n = %2d, k = %2d, Sum(a8): %3d, Confidence: %2.1f%%, Bitflip: %c%c, score1: %f, score2: %f\n", + printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c\n", + //printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c, score1: %1.5f, score2: %1.0f\n", i, best_byte, nonces[best_byte].num, nonces[best_byte].Sum, nonces[best_byte].Sum8_guess, nonces[best_byte].Sum8_prob * 100, - nonces[best_byte].BitFlip[ODD_STATE]?'o':' ', - nonces[best_byte].BitFlip[EVEN_STATE]?'e':' ' + nonces[best_byte].BitFlip[ODD_STATE]?'o':nonces[best_byte].BitFlip[EVEN_STATE]?'e':' ' //nonces[best_byte].score1, //nonces[best_byte].score2 ); @@ -460,26 +493,26 @@ static void Tests() static void sort_best_first_bytes(void) { - // first, sort based on probability for correct guess + // sort based on probability for correct guess for (uint16_t i = 0; i < 256; i++ ) { uint16_t j = 0; float prob1 = nonces[i].Sum8_prob; float prob2 = nonces[best_first_bytes[0]].Sum8_prob; - while (prob1 < prob2 && j < MAX_BEST_BYTES-1) { + while (prob1 < prob2 && j < i) { prob2 = nonces[best_first_bytes[++j]].Sum8_prob; } - if (prob1 >= prob2) { - for (uint16_t k = MAX_BEST_BYTES-1; k > j; k--) { + if (j < i) { + for (uint16_t k = i; k > j; k--) { best_first_bytes[k] = best_first_bytes[k-1]; } + } best_first_bytes[j] = i; } - } - // determine, how many are above the CONFIDENCE_THRESHOLD + // determine how many are above the CONFIDENCE_THRESHOLD uint16_t num_good_nonces = 0; - for (uint16_t i = 0; i < MAX_BEST_BYTES; i++) { - if (nonces[best_first_bytes[i]].Sum8_prob > CONFIDENCE_THRESHOLD) { + for (uint16_t i = 0; i < 256; i++) { + if (nonces[best_first_bytes[i]].Sum8_prob >= CONFIDENCE_THRESHOLD) { ++num_good_nonces; } } @@ -546,9 +579,6 @@ static void sort_best_first_bytes(void) static uint16_t estimate_second_byte_sum(void) { - for (uint16_t i = 0; i < MAX_BEST_BYTES; i++) { - best_first_bytes[i] = 0; - } for (uint16_t first_byte = 0; first_byte < 256; first_byte++) { float Sum8_prob = 0.0; @@ -570,8 +600,8 @@ static uint16_t estimate_second_byte_sum(void) sort_best_first_bytes(); uint16_t num_good_nonces = 0; - for (uint16_t i = 0; i < MAX_BEST_BYTES; i++) { - if (nonces[best_first_bytes[i]].Sum8_prob > CONFIDENCE_THRESHOLD) { + for (uint16_t i = 0; i < 256; i++) { + if (nonces[best_first_bytes[i]].Sum8_prob >= CONFIDENCE_THRESHOLD) { ++num_good_nonces; } } @@ -596,7 +626,8 @@ static int read_nonce_file(void) } PrintAndLog("Reading nonces from file nonces.bin..."); - if (fread(read_buf, 1, 6, fnonces) == 0) { + size_t bytes_read = fread(read_buf, 1, 6, fnonces); + if ( bytes_read == 0) { PrintAndLog("File reading error."); fclose(fnonces); return 1; @@ -626,6 +657,8 @@ static void Check_for_FilterFlipProperties(void) { printf("Checking for Filter Flip Properties...\n"); + uint16_t num_bitflips = 0; + for (uint16_t i = 0; i < 256; i++) { nonces[i].BitFlip[ODD_STATE] = false; nonces[i].BitFlip[EVEN_STATE] = false; @@ -638,10 +671,95 @@ static void Check_for_FilterFlipProperties(void) if (parity1 == parity2_odd) { // has Bit Flip Property for odd bits nonces[i].BitFlip[ODD_STATE] = true; + num_bitflips++; } else if (parity1 == parity2_even) { // has Bit Flip Property for even bits nonces[i].BitFlip[EVEN_STATE] = true; + num_bitflips++; + } + } + + if (write_stats) { + fprintf(fstats, "%d;", num_bitflips); + } +} + + +static void simulate_MFplus_RNG(uint32_t test_cuid, uint64_t test_key, uint32_t *nt_enc, uint8_t *par_enc) +{ + struct Crypto1State sim_cs = {0, 0}; +// sim_cs.odd = sim_cs.even = 0; + + // init cryptostate with key: + for(int8_t i = 47; i > 0; i -= 2) { + sim_cs.odd = sim_cs.odd << 1 | BIT(test_key, (i - 1) ^ 7); + sim_cs.even = sim_cs.even << 1 | BIT(test_key, i ^ 7); + } + + *par_enc = 0; + uint32_t nt = (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff); + for (int8_t byte_pos = 3; byte_pos >= 0; byte_pos--) { + uint8_t nt_byte_dec = (nt >> (8*byte_pos)) & 0xff; + uint8_t nt_byte_enc = crypto1_byte(&sim_cs, nt_byte_dec ^ (test_cuid >> (8*byte_pos)), false) ^ nt_byte_dec; // encode the nonce byte + *nt_enc = (*nt_enc << 8) | nt_byte_enc; + uint8_t ks_par = filter(sim_cs.odd); // the keystream bit to encode/decode the parity bit + uint8_t nt_byte_par_enc = ks_par ^ oddparity8(nt_byte_dec); // determine the nt byte's parity and encode it + *par_enc = (*par_enc << 1) | nt_byte_par_enc; + } + +} + + +static void simulate_acquire_nonces() +{ + clock_t time1 = clock(); + bool filter_flip_checked = false; + uint32_t total_num_nonces = 0; + uint32_t next_fivehundred = 500; + uint32_t total_added_nonces = 0; + + cuid = (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff); + known_target_key = ((uint64_t)rand() & 0xfff) << 36 | ((uint64_t)rand() & 0xfff) << 24 | ((uint64_t)rand() & 0xfff) << 12 | ((uint64_t)rand() & 0xfff); + + printf("Simulating nonce acquisition for target key %012"llx", cuid %08x ...\n", known_target_key, cuid); + fprintf(fstats, "%012"llx";%08x;", known_target_key, cuid); + + do { + uint32_t nt_enc = 0; + uint8_t par_enc = 0; + + simulate_MFplus_RNG(cuid, known_target_key, &nt_enc, &par_enc); + //printf("Simulated RNG: nt_enc1: %08x, nt_enc2: %08x, par_enc: %02x\n", nt_enc1, nt_enc2, par_enc); + total_added_nonces += add_nonce(nt_enc, par_enc); + total_num_nonces++; + + if (first_byte_num == 256 ) { + // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum); + if (!filter_flip_checked) { + Check_for_FilterFlipProperties(); + filter_flip_checked = true; + } + num_good_first_bytes = estimate_second_byte_sum(); + if (total_num_nonces > next_fivehundred) { + next_fivehundred = (total_num_nonces/500+1) * 500; + printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n", + total_num_nonces, + total_added_nonces, + CONFIDENCE_THRESHOLD * 100.0, + num_good_first_bytes); + } } + + } while (num_good_first_bytes < GOOD_BYTES_REQUIRED); + + time1 = clock() - time1; + if ( time1 > 0 ) { + PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)", + total_num_nonces, + ((float)time1)/CLOCKS_PER_SEC, + total_num_nonces * 60.0 * CLOCKS_PER_SEC/(float)time1); } + fprintf(fstats, "%d;%d;%d;%1.2f;", total_num_nonces, total_added_nonces, num_good_first_bytes, CONFIDENCE_THRESHOLD); + } @@ -742,8 +860,14 @@ static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_ } if (!initialize) { - if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) return 1; - if (resp.arg[0]) return resp.arg[0]; // error during nested_hard + if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) { + fclose(fnonces); + return 1; + } + if (resp.arg[0]) { + fclose(fnonces); + return resp.arg[0]; // error during nested_hard + } } initialize = false; @@ -755,11 +879,14 @@ static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_ fclose(fnonces); } + time1 = clock() - time1; + if ( time1 > 0 ) { PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)", total_num_nonces, - ((float)clock()-time1)/CLOCKS_PER_SEC, - total_num_nonces*60.0*CLOCKS_PER_SEC/((float)clock()-time1)); - + ((float)time1)/CLOCKS_PER_SEC, + total_num_nonces * 60.0 * CLOCKS_PER_SEC/(float)time1 + ); + } return 0; } @@ -1034,7 +1161,6 @@ static struct sl_cache_entry { static void init_statelist_cache(void) { - for (uint16_t i = 0; i < 17; i+=2) { for (uint16_t j = 0; j < 17; j+=2) { for (uint16_t k = 0; k < 2; k++) { @@ -1148,13 +1274,19 @@ static void TestIfKeyExists(uint64_t key) PrintAndLog("Key Found after testing %lld (2^%1.1f) out of %lld (2^%1.1f) keys. A brute force would have taken approx %lld minutes.", count, log(count)/log(2), maximum_states, log(maximum_states)/log(2), - (count>>22)/60); + (count>>23)/60); + if (write_stats) { + fprintf(fstats, "1\n"); + } crypto1_destroy(pcs); return; } } printf("Key NOT found!\n"); + if (write_stats) { + fprintf(fstats, "0\n"); + } crypto1_destroy(pcs); } @@ -1173,7 +1305,7 @@ static void generate_candidates(uint16_t sum_a0, uint16_t sum_a8) } } } - printf("Number of possible keys with Sum(a0) = %d: %lld (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2.0)); + printf("Number of possible keys with Sum(a0) = %d: %"PRIu64" (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2.0)); init_statelist_cache(); @@ -1222,8 +1354,37 @@ static void generate_candidates(uint16_t sum_a0, uint16_t sum_a8) for (statelist_t *sl = candidates; sl != NULL; sl = sl->next) { maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE]; } - printf("Number of remaining possible keys: %lld (2^%1.1f)\n", maximum_states, log(maximum_states)/log(2.0)); + printf("Number of remaining possible keys: %"PRIu64" (2^%1.1f)\n", maximum_states, log(maximum_states)/log(2.0)); + if (write_stats) { + if (maximum_states != 0) { + fprintf(fstats, "%1.1f;", log(maximum_states)/log(2.0)); + } else { + fprintf(fstats, "%1.1f;", 0.0); + } + } +} + +static void free_candidates_memory(statelist_t *sl) +{ + if (sl == NULL) { + return; + } else { + free_candidates_memory(sl->next); + free(sl); + } +} + + +static void free_statelist_cache(void) +{ + for (uint16_t i = 0; i < 17; i+=2) { + for (uint16_t j = 0; j < 17; j+=2) { + for (uint16_t k = 0; k < 2; k++) { + free(sl_cache[i][j][k].sl); + } + } + } } @@ -1232,77 +1393,95 @@ static void brute_force(void) if (known_target_key != -1) { PrintAndLog("Looking for known target key in remaining key space..."); TestIfKeyExists(known_target_key); - return; } else { PrintAndLog("Brute Force phase is not implemented."); - return; } - } -int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *trgkey, bool nonce_file_read, bool nonce_file_write, bool slow) +int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *trgkey, bool nonce_file_read, bool nonce_file_write, bool slow, int tests) { + // initialize Random number generator + time_t t; + srand((unsigned) time(&t)); + if (trgkey != NULL) { known_target_key = bytes_to_num(trgkey, 6); } else { known_target_key = -1; } - // initialize the list of nonces - for (uint16_t i = 0; i < 256; i++) { - nonces[i].num = 0; - nonces[i].Sum = 0; - nonces[i].Sum8_guess = 0; - nonces[i].Sum8_prob = 0.0; - nonces[i].updated = true; - nonces[i].first = NULL; - } - first_byte_num = 0; - first_byte_Sum = 0; - num_good_first_bytes = 0; - init_partial_statelists(); init_BitFlip_statelist(); + write_stats = false; - if (nonce_file_read) { // use pre-acquired data from file nonces.bin - if (read_nonce_file() != 0) { + if (tests) { + // set the correct locale for the stats printing + setlocale(LC_ALL, ""); + write_stats = true; + if ((fstats = fopen("hardnested_stats.txt","a")) == NULL) { + PrintAndLog("Could not create/open file hardnested_stats.txt"); return 3; } - Check_for_FilterFlipProperties(); - num_good_first_bytes = MIN(estimate_second_byte_sum(), GOOD_BYTES_REQUIRED); - } else { // acquire nonces. - uint16_t is_OK = acquire_nonces(blockNo, keyType, key, trgBlockNo, trgKeyType, nonce_file_write, slow); - if (is_OK != 0) { - return is_OK; + for (uint32_t i = 0; i < tests; i++) { + init_nonce_memory(); + simulate_acquire_nonces(); + Tests(); + printf("Sum(a0) = %d\n", first_byte_Sum); + fprintf(fstats, "%d;", first_byte_Sum); + generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess); + brute_force(); + free_nonces_memory(); + free_statelist_cache(); + free_candidates_memory(candidates); + candidates = NULL; + } + fclose(fstats); + } else { + init_nonce_memory(); + if (nonce_file_read) { // use pre-acquired data from file nonces.bin + if (read_nonce_file() != 0) { + return 3; + } + Check_for_FilterFlipProperties(); + num_good_first_bytes = MIN(estimate_second_byte_sum(), GOOD_BYTES_REQUIRED); + } else { // acquire nonces. + uint16_t is_OK = acquire_nonces(blockNo, keyType, key, trgBlockNo, trgKeyType, nonce_file_write, slow); + if (is_OK != 0) { + return is_OK; + } } - } - - - Tests(); - PrintAndLog(""); - PrintAndLog("Sum(a0) = %d", first_byte_Sum); - // PrintAndLog("Best 10 first bytes: %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x", - // best_first_bytes[0], - // best_first_bytes[1], - // best_first_bytes[2], - // best_first_bytes[3], - // best_first_bytes[4], - // best_first_bytes[5], - // best_first_bytes[6], - // best_first_bytes[7], - // best_first_bytes[8], - // best_first_bytes[9] ); - PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes); - - time_t start_time = clock(); - generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess); - PrintAndLog("Time for generating key candidates list: %1.0f seconds", (float)(clock() - start_time)/CLOCKS_PER_SEC); - - brute_force(); + Tests(); + + PrintAndLog(""); + PrintAndLog("Sum(a0) = %d", first_byte_Sum); + // PrintAndLog("Best 10 first bytes: %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x", + // best_first_bytes[0], + // best_first_bytes[1], + // best_first_bytes[2], + // best_first_bytes[3], + // best_first_bytes[4], + // best_first_bytes[5], + // best_first_bytes[6], + // best_first_bytes[7], + // best_first_bytes[8], + // best_first_bytes[9] ); + PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes); + + clock_t time1 = clock(); + generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess); + time1 = clock() - time1; + if ( time1 > 0 ) + PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1)/CLOCKS_PER_SEC); + brute_force(); + free_nonces_memory(); + free_statelist_cache(); + free_candidates_memory(candidates); + candidates = NULL; + } return 0; }