X-Git-Url: http://cvs.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/a61b4976bd2085bf0495855b48fcad0d9ed4572e..8949bb5dad06fdbaa25fd0d2f5e4a78b1f19915d:/armsrc/lfops.c?ds=inline

diff --git a/armsrc/lfops.c b/armsrc/lfops.c
index c80caf77..5b0b4904 100644
--- a/armsrc/lfops.c
+++ b/armsrc/lfops.c
@@ -8,119 +8,52 @@
 // Also routines for raw mode reading/simulating of LF waveform
 //-----------------------------------------------------------------------------
 
-#include "../include/proxmark3.h"
+#include "proxmark3.h"
 #include "apps.h"
 #include "util.h"
-#include "../include/hitag2.h"
-#include "../common/crc16.h"
+#include "hitag2.h"
+#include "crc16.h"
 #include "string.h"
-#include "crapto1.h"
-#include "mifareutil.h"
+#include "lfdemod.h"
+#include "lfsampling.h"
+#include "usb_cdc.h"
 
-#define SHORT_COIL()	LOW(GPIO_SSC_DOUT)
-#define OPEN_COIL()		HIGH(GPIO_SSC_DOUT)
 
-void LFSetupFPGAForADC(int divisor, bool lf_field)
+/**
+ * Function to do a modulation and then get samples.
+ * @param delay_off
+ * @param period_0
+ * @param period_1
+ * @param command
+ */
+void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command)
 {
-	FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
-	if ( (divisor == 1) || (divisor < 0) || (divisor > 255) )
-		FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
-	else if (divisor == 0)
-		FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-	else
-		FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor);
-
-	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | (lf_field ? FPGA_LF_ADC_READER_FIELD : 0));
-
-	// Connect the A/D to the peak-detected low-frequency path.
-	SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
-	
-	// Give it a bit of time for the resonant antenna to settle.
-	SpinDelay(150);
-	
-	// Now set up the SSC to get the ADC samples that are now streaming at us.
-	FpgaSetupSsc();
-}
 
-void AcquireRawAdcSamples125k(int divisor)
-{
-	LFSetupFPGAForADC(divisor, true);
-	DoAcquisition125k();
-}
+	int divisor_used = 95; // 125 KHz
+	// see if 'h' was specified
 
-void SnoopLFRawAdcSamples(int divisor, int trigger_threshold)
-{
-	LFSetupFPGAForADC(divisor, false);
-	DoAcquisition125k_threshold(trigger_threshold);
-}
+	if (command[strlen((char *) command) - 1] == 'h')
+		divisor_used = 88; // 134.8 KHz
 
-// split into two routines so we can avoid timing issues after sending commands //
-void DoAcquisition125k_internal(int trigger_threshold, bool silent)
-{
-	uint8_t *dest =  mifare_get_bigbufptr();
-	int n = 24000;
-	int i = 0;
-	memset(dest, 0x00, n);
-
-	for(;;) {
-		if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
-			AT91C_BASE_SSC->SSC_THR = 0x43;
-			LED_D_ON();
-		}
-		if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
-			dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
-			LED_D_OFF();
-			if (trigger_threshold != -1 && dest[i] < trigger_threshold)
-				continue;
-			else
-				trigger_threshold = -1;
-			if (++i >= n) break;
-		}
-	}
-	if (!silent){
-		Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
-			dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]);
-	}
-}
-void DoAcquisition125k_threshold(int trigger_threshold) {
-	 DoAcquisition125k_internal(trigger_threshold, true);
-}
-void DoAcquisition125k() {
-	 DoAcquisition125k_internal(-1, true);
-}	
-	
-void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command)
-{
+	sample_config sc = { 0,0,1, divisor_used, 0};
+	setSamplingConfig(&sc);
 
 	/* Make sure the tag is reset */
 	FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
 	SpinDelay(2500);
 
-	int divisor_used = 95; // 125 KHz
-	// see if 'h' was specified
-
-	if (command[strlen((char *) command) - 1] == 'h')
-		divisor_used = 88; // 134.8 KHz
+	LFSetupFPGAForADC(sc.divisor, 1);
 
-	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used); 
-	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
-	// Give it a bit of time for the resonant antenna to settle.
-	SpinDelay(50);
-	
-	
 	// And a little more time for the tag to fully power up
 	SpinDelay(2000);
 
-	// Now set up the SSC to get the ADC samples that are now streaming at us.
-	FpgaSetupSsc();
-
 	// now modulate the reader field
 	while(*command != '\0' && *command != ' ') {
 		FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
 		LED_D_OFF();
 		SpinDelayUs(delay_off);
-		FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used); 
+		FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
 
 		FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
 		LED_D_ON();
@@ -132,14 +65,16 @@ void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1,
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
 	LED_D_OFF();
 	SpinDelayUs(delay_off);
-	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used); 
+	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
 
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
 
 	// now do the read
-	DoAcquisition125k(-1);
+	DoAcquisition_config(false);
 }
 
+
+
 /* blank r/w tag data stream
 ...0000000000000000 01111111
 1010101010101010101010101010101010101010101010101010101010101010
@@ -155,15 +90,12 @@ void ReadTItag(void)
 	// when we read a TI tag we sample the zerocross line at 2Mhz
 	// TI tags modulate a 1 as 16 cycles of 123.2Khz
 	// TI tags modulate a 0 as 16 cycles of 134.2Khz
-	#define FSAMPLE 2000000
-	#define FREQLO 123200
-	#define FREQHI 134200
-
-	signed char *dest = (signed char *)BigBuf;
-	int n = sizeof(BigBuf);
-//	int *dest = GraphBuffer;
-//	int n = GraphTraceLen;
+ #define FSAMPLE 2000000
+ #define FREQLO 123200
+ #define FREQHI 134200
 
+	signed char *dest = (signed char *)BigBuf_get_addr();
+	uint16_t n = BigBuf_max_traceLen();
 	// 128 bit shift register [shift3:shift2:shift1:shift0]
 	uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
 
@@ -199,10 +131,10 @@ void ReadTItag(void)
 
 				// TI bits are coming to us lsb first so shift them
 				// right through our 128 bit right shift register
-			  shift0 = (shift0>>1) | (shift1 << 31);
-			  shift1 = (shift1>>1) | (shift2 << 31);
-			  shift2 = (shift2>>1) | (shift3 << 31);
-			  shift3 >>= 1;
+				shift0 = (shift0>>1) | (shift1 << 31);
+				shift1 = (shift1>>1) | (shift2 << 31);
+				shift2 = (shift2>>1) | (shift3 << 31);
+				shift3 >>= 1;
 
 				// check if the cycles fall close to the number
 				// expected for either the low or high frequency
@@ -237,18 +169,18 @@ void ReadTItag(void)
 	if (cycles!=0xF0B) {
 		DbpString("Info: No valid tag detected.");
 	} else {
-	  // put 64 bit data into shift1 and shift0
-	  shift0 = (shift0>>24) | (shift1 << 8);
-	  shift1 = (shift1>>24) | (shift2 << 8);
+		// put 64 bit data into shift1 and shift0
+		shift0 = (shift0>>24) | (shift1 << 8);
+		shift1 = (shift1>>24) | (shift2 << 8);
 
 		// align 16 bit crc into lower half of shift2
-	  shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
+		shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
 
 		// if r/w tag, check ident match
-		if ( shift3&(1<<15) ) {
+		if (shift3 & (1<<15) ) {
 			DbpString("Info: TI tag is rewriteable");
 			// only 15 bits compare, last bit of ident is not valid
-			if ( ((shift3>>16)^shift0)&0x7fff ) {
+			if (((shift3 >> 16) ^ shift0) & 0x7fff ) {
 				DbpString("Error: Ident mismatch!");
 			} else {
 				DbpString("Info: TI tag ident is valid");
@@ -263,7 +195,7 @@ void ReadTItag(void)
 		// calculate CRC
 		uint32_t crc=0;
 
-	 	crc = update_crc16(crc, (shift0)&0xff);
+		crc = update_crc16(crc, (shift0)&0xff);
 		crc = update_crc16(crc, (shift0>>8)&0xff);
 		crc = update_crc16(crc, (shift0>>16)&0xff);
 		crc = update_crc16(crc, (shift0>>24)&0xff);
@@ -273,7 +205,7 @@ void ReadTItag(void)
 		crc = update_crc16(crc, (shift1>>24)&0xff);
 
 		Dbprintf("Info: Tag data: %x%08x, crc=%x",
-			(unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
+				 (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
 		if (crc != (shift2&0xffff)) {
 			Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
 		} else {
@@ -291,17 +223,17 @@ void WriteTIbyte(uint8_t b)
 	{
 		if (b&(1<<i)) {
 			// stop modulating antenna
-			SHORT_COIL();
+			LOW(GPIO_SSC_DOUT);
 			SpinDelayUs(1000);
 			// modulate antenna
-			OPEN_COIL();
+			HIGH(GPIO_SSC_DOUT);
 			SpinDelayUs(1000);
 		} else {
 			// stop modulating antenna
-			SHORT_COIL();
+			LOW(GPIO_SSC_DOUT);
 			SpinDelayUs(300);
 			// modulate antenna
-			OPEN_COIL();
+			HIGH(GPIO_SSC_DOUT);
 			SpinDelayUs(1700);
 		}
 	}
@@ -312,10 +244,11 @@ void AcquireTiType(void)
 	int i, j, n;
 	// tag transmission is <20ms, sampling at 2M gives us 40K samples max
 	// each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
-	#define TIBUFLEN 1250
+ #define TIBUFLEN 1250
 
 	// clear buffer
-	memset(BigBuf,0,sizeof(BigBuf));
+	uint32_t *BigBuf = (uint32_t *)BigBuf_get_addr();
+	memset(BigBuf,0,BigBuf_max_traceLen()/sizeof(uint32_t));
 
 	// Set up the synchronous serial port
 	AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
@@ -363,7 +296,7 @@ void AcquireTiType(void)
 	AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
 	AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
 
-	char *dest = (char *)BigBuf;
+	char *dest = (char *)BigBuf_get_addr();
 	n = TIBUFLEN*32;
 	// unpack buffer
 	for (i=TIBUFLEN-1; i>=0; i--) {
@@ -382,9 +315,9 @@ void AcquireTiType(void)
 // if not provided a valid crc will be computed from the data and written.
 void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
 {
-	FpgaDownloadAndGo(FPGA_BITSTREAM_LF);	
+	FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
 	if(crc == 0) {
-	 	crc = update_crc16(crc, (idlo)&0xff);
+		crc = update_crc16(crc, (idlo)&0xff);
 		crc = update_crc16(crc, (idlo>>8)&0xff);
 		crc = update_crc16(crc, (idlo>>16)&0xff);
 		crc = update_crc16(crc, (idlo>>24)&0xff);
@@ -394,7 +327,7 @@ void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
 		crc = update_crc16(crc, (idhi>>24)&0xff);
 	}
 	Dbprintf("Writing to tag: %x%08x, crc=%x",
-		(unsigned int) idhi, (unsigned int) idlo, crc);
+			(unsigned int) idhi, (unsigned int) idlo, crc);
 
 	// TI tags charge at 134.2Khz
 	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
@@ -446,62 +379,62 @@ void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
 	AcquireTiType();
 
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
-	DbpString("Now use tiread to check");
+	DbpString("Now use 'lf ti read' to check");
 }
 
 void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
 {
-	int i = 0;
-	uint8_t *buff = (uint8_t *)BigBuf;
+	int i;
+	uint8_t *tab = BigBuf_get_addr();
 
 	FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
-	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
-	SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
 
-	// Configure output and enable pin that is connected to the FPGA (for modulating)
-	AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;    
+	AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
+
 	AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
-	
 	AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
 
-	// Give it a bit of time for the resonant antenna to settle.
-	SpinDelay(30);
+ #define SHORT_COIL()	LOW(GPIO_SSC_DOUT)
+ #define OPEN_COIL()		HIGH(GPIO_SSC_DOUT)
 
-	for(;;) { 
-		
+	i = 0;
+	for(;;) {
+		//wait until SSC_CLK goes HIGH
 		while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
-			 if(BUTTON_PRESS()) {
-				 DbpString("Stopped at 0");
-				 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
-				 return;
-			 }
-			 WDT_HIT();
+			if(BUTTON_PRESS() || usb_poll()) {
+				DbpString("Stopped");
+				return;
+			}
+			WDT_HIT();
 		}
-        
-		if ( buff[i] )
+		if (ledcontrol)
+			LED_D_ON();
+
+		if(tab[i])
 			OPEN_COIL();
 		else
 			SHORT_COIL();
-       
-		 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
-			 if(BUTTON_PRESS()) {
-				DbpString("Stopped at 1");
-				FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+
+		if (ledcontrol)
+			LED_D_OFF();
+		//wait until SSC_CLK goes LOW
+		while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
+			if(BUTTON_PRESS()) {
+				DbpString("Stopped");
 				return;
 			}
 			WDT_HIT();
-		 }
-        
-		++i;
+		}
+
+		i++;
 		if(i == period) {
+
 			i = 0;
 			if (gap) {
-				// turn of modulation
 				SHORT_COIL();
-				// wait
-				SpinDelay(gap);
-			} 
+				SpinDelayUs(gap);
+			}
 		}
 	}
 }
@@ -511,29 +444,31 @@ void SimulateTagLowFrequencyBidir(int divisor, int t0)
 {
 }
 
-// compose fc/8 fc/10 waveform
-static void fc(int c, int *n) {
-	uint8_t *dest = (uint8_t *)BigBuf;
+// compose fc/8 fc/10 waveform (FSK2)
+static void fc(int c, int *n)
+{
+	uint8_t *dest = BigBuf_get_addr();
 	int idx;
 
 	// for when we want an fc8 pattern every 4 logical bits
 	if(c==0) {
 		dest[((*n)++)]=1;
 		dest[((*n)++)]=1;
-		dest[((*n)++)]=0;
-		dest[((*n)++)]=0;
+		dest[((*n)++)]=1;
+		dest[((*n)++)]=1;
 		dest[((*n)++)]=0;
 		dest[((*n)++)]=0;
 		dest[((*n)++)]=0;
 		dest[((*n)++)]=0;
 	}
-	//	an fc/8  encoded bit is a bit pattern of  11000000  x6 = 48 samples
+
+	//	an fc/8  encoded bit is a bit pattern of  11110000  x6 = 48 samples
 	if(c==8) {
 		for (idx=0; idx<6; idx++) {
 			dest[((*n)++)]=1;
 			dest[((*n)++)]=1;
-			dest[((*n)++)]=0;
-			dest[((*n)++)]=0;
+			dest[((*n)++)]=1;
+			dest[((*n)++)]=1;
 			dest[((*n)++)]=0;
 			dest[((*n)++)]=0;
 			dest[((*n)++)]=0;
@@ -541,9 +476,11 @@ static void fc(int c, int *n) {
 		}
 	}
 
-	//	an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
+	//	an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
 	if(c==10) {
 		for (idx=0; idx<5; idx++) {
+			dest[((*n)++)]=1;
+			dest[((*n)++)]=1;
 			dest[((*n)++)]=1;
 			dest[((*n)++)]=1;
 			dest[((*n)++)]=1;
@@ -552,11 +489,39 @@ static void fc(int c, int *n) {
 			dest[((*n)++)]=0;
 			dest[((*n)++)]=0;
 			dest[((*n)++)]=0;
-			dest[((*n)++)]=0;
-			dest[((*n)++)]=0;
 		}
 	}
 }
+// compose fc/X fc/Y waveform (FSKx)
+static void fcAll(uint8_t fc, int *n, uint8_t clock, uint16_t *modCnt) 
+{
+	uint8_t *dest = BigBuf_get_addr();
+	uint8_t halfFC = fc/2;
+	uint8_t wavesPerClock = clock/fc;
+	uint8_t mod = clock % fc;    //modifier
+	uint8_t modAdj = fc/mod;     //how often to apply modifier
+	bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk=TRUE;
+	// loop through clock - step field clock
+	for (uint8_t idx=0; idx < wavesPerClock; idx++){
+		// put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
+		memset(dest+(*n), 0, fc-halfFC);  //in case of odd number use extra here
+		memset(dest+(*n)+(fc-halfFC), 1, halfFC);
+		*n += fc;
+	}
+	if (mod>0) (*modCnt)++;
+	if ((mod>0) && modAdjOk){  //fsk2 
+		if ((*modCnt % modAdj) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
+			memset(dest+(*n), 0, fc-halfFC);
+			memset(dest+(*n)+(fc-halfFC), 1, halfFC);
+			*n += fc;
+		}
+	}
+	if (mod>0 && !modAdjOk){  //fsk1
+		memset(dest+(*n), 0, mod-(mod/2));
+		memset(dest+(*n)+(mod-(mod/2)), 1, mod/2);
+		*n += mod;
+	}
+}
 
 // prepare a waveform pattern in the buffer based on the ID given then
 // simulate a HID tag until the button is pressed
@@ -574,12 +539,12 @@ void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
 	*/
 
 	if (hi>0xFFF) {
-		DbpString("Tags can only have 44 bits.");
+		DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags");
 		return;
 	}
 	fc(0,&n);
 	// special start of frame marker containing invalid bit sequences
-	fc(8,  &n);	fc(8,  &n);	// invalid
+	fc(8,  &n);	fc(8,  &n); // invalid
 	fc(8,  &n);	fc(10, &n); // logical 0
 	fc(10, &n);	fc(10, &n); // invalid
 	fc(8,  &n);	fc(10, &n); // logical 0
@@ -589,9 +554,9 @@ void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
 	for (i=11; i>=0; i--) {
 		if ((i%4)==3) fc(0,&n);
 		if ((hi>>i)&1) {
-			fc(10, &n);	fc(8,  &n);		// low-high transition
+			fc(10, &n); fc(8,  &n);		// low-high transition
 		} else {
-			fc(8,  &n);	fc(10, &n);		// high-low transition
+			fc(8,  &n); fc(10, &n);		// high-low transition
 		}
 	}
 
@@ -600,247 +565,420 @@ void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
 	for (i=31; i>=0; i--) {
 		if ((i%4)==3) fc(0,&n);
 		if ((lo>>i)&1) {
-			fc(10, &n);	fc(8,  &n);		// low-high transition
+			fc(10, &n); fc(8,  &n);		// low-high transition
 		} else {
-			fc(8,  &n);	fc(10, &n);		// high-low transition
+			fc(8,  &n); fc(10, &n);		// high-low transition
 		}
 	}
 
 	if (ledcontrol)
 		LED_A_ON();
-	
 	SimulateTagLowFrequency(n, 0, ledcontrol);
 
 	if (ledcontrol)
 		LED_A_OFF();
 }
 
-size_t fsk_demod(uint8_t * dest, size_t size)
+// prepare a waveform pattern in the buffer based on the ID given then
+// simulate a FSK tag until the button is pressed
+// arg1 contains fcHigh and fcLow, arg2 contains invert and clock
+void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
 {
-	uint32_t last_transition = 0;
-	uint32_t idx = 1;
-
-	// we don't care about actual value, only if it's more or less than a
-	// threshold essentially we capture zero crossings for later analysis
-	uint8_t threshold_value = 127;
-
-	// sync to first lo-hi transition, and threshold
-
-	//Need to threshold first sample
-	dest[0] = (dest[0] < threshold_value) ? 0 : 1;
+	int ledcontrol=1;
+	int n=0, i=0;
+	uint8_t fcHigh = arg1 >> 8;
+	uint8_t fcLow = arg1 & 0xFF;
+	uint16_t modCnt = 0;
+	uint8_t clk = arg2 & 0xFF;
+	uint8_t invert = (arg2 >> 8) & 1;
+
+	for (i=0; i<size; i++){
+		if (BitStream[i] == invert){
+			fcAll(fcLow, &n, clk, &modCnt);
+		} else {
+			fcAll(fcHigh, &n, clk, &modCnt);
+		}
+	}
+	Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh, fcLow, clk, invert, n);
+	/*Dbprintf("DEBUG: First 32:");
+	uint8_t *dest = BigBuf_get_addr();
+	i=0;
+	Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
+	i+=16;
+	Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
+	*/
+	if (ledcontrol)
+		LED_A_ON();
 
-	size_t numBits = 0;
-	// count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
-	// or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
-	// between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
-	for(idx = 1; idx < size; idx++) {
-		// threshold current value
-		dest[idx] = (dest[idx] < threshold_value) ? 0 : 1;
+	SimulateTagLowFrequency(n, 0, ledcontrol);
 
-		// Check for 0->1 transition
-		if (dest[idx-1] < dest[idx]) { // 0 -> 1 transition
+	if (ledcontrol)
+		LED_A_OFF();
+}
 
-			dest[numBits] =  (idx-last_transition <  9) ? 1 : 0;
-			last_transition = idx;
-			numBits++;
-		}
+// compose ask waveform for one bit(ASK)
+static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester)
+{
+	uint8_t *dest = BigBuf_get_addr();
+	uint8_t halfClk = clock/2;
+	// c = current bit 1 or 0
+	if (manchester==1){
+		memset(dest+(*n), c, halfClk);
+		memset(dest+(*n) + halfClk, c^1, halfClk);
+	} else {
+		memset(dest+(*n), c, clock);
 	}
-	return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
+	*n += clock;
 }
 
-
-size_t aggregate_bits(uint8_t *dest,size_t size, uint8_t h2l_crossing_value,uint8_t l2h_crossing_value, uint8_t maxConsequtiveBits )
+static void biphaseSimBit(uint8_t c, int *n, uint8_t clock, uint8_t *phase)
 {
-	uint8_t lastval=dest[0];
-	uint32_t idx=0;
-	size_t numBits=0;
-	uint32_t n=1;
+	uint8_t *dest = BigBuf_get_addr();
+	uint8_t halfClk = clock/2;
+	if (c){
+		memset(dest+(*n), c ^ 1 ^ *phase, halfClk);
+		memset(dest+(*n) + halfClk, c ^ *phase, halfClk);
+	} else {
+		memset(dest+(*n), c ^ *phase, clock);
+		*phase ^= 1;
+	}
 
-	for( idx=1; idx < size; idx++) {
+}
 
-		if (dest[idx]==lastval) {
-			n++;
-			continue;
+// args clock, ask/man or askraw, invert, transmission separator
+void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
+{
+	int ledcontrol = 1;
+	int n=0, i=0;
+	uint8_t clk = (arg1 >> 8) & 0xFF;
+	uint8_t encoding = arg1 & 1;
+	uint8_t separator = arg2 & 1;
+	uint8_t invert = (arg2 >> 8) & 1;
+
+	if (encoding==2){  //biphase
+		uint8_t phase=0;
+		for (i=0; i<size; i++){
+			biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
+		}
+		if (BitStream[0]==BitStream[size-1]){ //run a second set inverted to keep phase in check
+			for (i=0; i<size; i++){
+				biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
+			}
 		}
-		//if lastval was 1, we have a 1->0 crossing
-		if ( dest[idx-1] ) {
-			n=(n+1) / h2l_crossing_value;
-		} else {// 0->1 crossing
-			n=(n+1) / l2h_crossing_value;
+	} else {  // ask/manchester || ask/raw
+		for (i=0; i<size; i++){
+			askSimBit(BitStream[i]^invert, &n, clk, encoding);
 		}
-		if (n == 0) n = 1;
-
-		if(n < maxConsequtiveBits)
-		{
-			memset(dest+numBits, dest[idx-1] , n);
-			numBits += n;
+		if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for biphase phase)
+			for (i=0; i<size; i++){
+				askSimBit(BitStream[i]^invert^1, &n, clk, encoding);
+			}
 		}
-		n=0;
-		lastval=dest[idx];
-	}//end for
+	}
+	
+	if (separator==1) Dbprintf("sorry but separator option not yet available"); 
 
-	return numBits;
+	Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk, invert, encoding, separator, n);
+	//DEBUG
+	//Dbprintf("First 32:");
+	//uint8_t *dest = BigBuf_get_addr();
+	//i=0;
+	//Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
+	//i+=16;
+	//Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
+
+	if (ledcontrol)
+		LED_A_ON();
+	
+	SimulateTagLowFrequency(n, 0, ledcontrol);
 
+	if (ledcontrol)
+		LED_A_OFF();
 }
-// loop to capture raw HID waveform then FSK demodulate the TAG ID from it
-void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
+
+//carrier can be 2,4 or 8
+static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg)
 {
-	uint8_t *dest = (uint8_t *)BigBuf;
+	uint8_t *dest = BigBuf_get_addr();
+	uint8_t halfWave = waveLen/2;
+	//uint8_t idx;
+	int i = 0;
+	if (phaseChg){
+		// write phase change
+		memset(dest+(*n), *curPhase^1, halfWave);
+		memset(dest+(*n) + halfWave, *curPhase, halfWave);
+		*n += waveLen;
+		*curPhase ^= 1;
+		i += waveLen;
+	}
+	//write each normal clock wave for the clock duration
+	for (; i < clk; i+=waveLen){
+		memset(dest+(*n), *curPhase, halfWave);
+		memset(dest+(*n) + halfWave, *curPhase^1, halfWave);
+		*n += waveLen;
+	}
+}
 
-	size_t size=0,idx=0; //, found=0;
-  uint32_t hi2=0, hi=0, lo=0;
+// args clock, carrier, invert,
+void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
+{
+	int ledcontrol=1;
+	int n=0, i=0;
+	uint8_t clk = arg1 >> 8;
+	uint8_t carrier = arg1 & 0xFF;
+	uint8_t invert = arg2 & 0xFF;
+	uint8_t curPhase = 0;
+	for (i=0; i<size; i++){
+		if (BitStream[i] == curPhase){
+			pskSimBit(carrier, &n, clk, &curPhase, FALSE);
+		} else {
+			pskSimBit(carrier, &n, clk, &curPhase, TRUE);
+		}
+	}
+	Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n);
+	//Dbprintf("DEBUG: First 32:");
+	//uint8_t *dest = BigBuf_get_addr();
+	//i=0;
+	//Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
+	//i+=16;
+	//Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
+		   
+	if (ledcontrol)
+		LED_A_ON();
+	SimulateTagLowFrequency(n, 0, ledcontrol);
 
+	if (ledcontrol)
+		LED_A_OFF();
+}
+
+// loop to get raw HID waveform then FSK demodulate the TAG ID from it
+void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
+{
+	uint8_t *dest = BigBuf_get_addr();
+	//const size_t sizeOfBigBuff = BigBuf_max_traceLen();
+	size_t size = 0; 
+	uint32_t hi2=0, hi=0, lo=0;
+	int idx=0;
 	// Configure to go in 125Khz listen mode
-	LFSetupFPGAForADC(0, true);
+	LFSetupFPGAForADC(95, true);
 
 	while(!BUTTON_PRESS()) {
 
 		WDT_HIT();
 		if (ledcontrol) LED_A_ON();
 
-		DoAcquisition125k_internal(-1,true);
-		size  = sizeof(BigBuf);
-
+		DoAcquisition_default(-1,true);
 		// FSK demodulator
-		size = fsk_demod(dest, size);
-
-		// we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
-		// 1->0 : fc/8 in sets of 6
-		// 0->1 : fc/10 in sets of 5
-		size = aggregate_bits(dest,size, 6,5,5);
-
-		WDT_HIT();
-
-		// final loop, go over previously decoded manchester data and decode into usable tag ID
-		// 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
-		uint8_t frame_marker_mask[] = {1,1,1,0,0,0};
-		int numshifts = 0;
-		idx = 0;
-		while( idx + sizeof(frame_marker_mask) < size) {
-			// search for a start of frame marker
-			if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
-			{ // frame marker found
-				idx+=sizeof(frame_marker_mask);
-
-				while(dest[idx] != dest[idx+1] && idx < size-2)
-				{	
-					// Keep going until next frame marker (or error)
-					// Shift in a bit. Start by shifting high registers
-          hi2=(hi2<<1)|(hi>>31);
-					hi=(hi<<1)|(lo>>31);
-					//Then, shift in a 0 or one into low
-					if (dest[idx] && !dest[idx+1])	// 1 0
-					lo=(lo<<1)|0;
-					else // 0 1
-						lo=(lo<<1)|
-								1;
-					numshifts ++;
-					idx += 2;
-				}
-				//Dbprintf("Num shifts: %d ", numshifts);
-				// Hopefully, we read a tag and	 hit upon the next frame marker
-				if(idx + sizeof(frame_marker_mask) < size)
-				{
-				if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
-				{
-					if (hi2 != 0){
-						Dbprintf("TAG ID: %x%08x%08x (%d)",
-							 (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
+		//size = sizeOfBigBuff;  //variable size will change after demod so re initialize it before use
+		size = 50*128*2; //big enough to catch 2 sequences of largest format
+		idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo);
+		
+		if (idx>0 && lo>0 && (size==96 || size==192)){
+			// go over previously decoded manchester data and decode into usable tag ID
+			if (hi2 != 0){ //extra large HID tags  88/192 bits
+				Dbprintf("TAG ID: %x%08x%08x (%d)",
+				  (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
+			}else {  //standard HID tags 44/96 bits
+				//Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
+				uint8_t bitlen = 0;
+				uint32_t fc = 0;
+				uint32_t cardnum = 0;
+				if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
+					uint32_t lo2=0;
+					lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
+					uint8_t idx3 = 1;
+					while(lo2 > 1){ //find last bit set to 1 (format len bit)
+						lo2=lo2 >> 1;
+						idx3++;
+					}
+					bitlen = idx3+19;
+					fc =0;
+					cardnum=0;
+					if(bitlen == 26){
+						cardnum = (lo>>1)&0xFFFF;
+						fc = (lo>>17)&0xFF;
 					}
-					else {
-						Dbprintf("TAG ID: %x%08x (%d)",
-						 (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
+					if(bitlen == 37){
+						cardnum = (lo>>1)&0x7FFFF;
+						fc = ((hi&0xF)<<12)|(lo>>20);
+					}
+					if(bitlen == 34){
+						cardnum = (lo>>1)&0xFFFF;
+						fc= ((hi&1)<<15)|(lo>>17);
+					}
+					if(bitlen == 35){
+						cardnum = (lo>>1)&0xFFFFF;
+						fc = ((hi&1)<<11)|(lo>>21);
 					}
 				}
-
+				else { //if bit 38 is not set then 37 bit format is used
+					bitlen= 37;
+					fc =0;
+					cardnum=0;
+					if(bitlen==37){
+						cardnum = (lo>>1)&0x7FFFF;
+						fc = ((hi&0xF)<<12)|(lo>>20);
+					}
 				}
-
-				// reset
-				hi2 = hi = lo = 0;
-				numshifts = 0;
-			}else
-			{
-				idx++;
+				//Dbprintf("TAG ID: %x%08x (%d)",
+				// (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
+				Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
+						 (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
+						 (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
+			}
+			if (findone){
+				if (ledcontrol)	LED_A_OFF();
+				*high = hi;
+				*low = lo;
+				return;
 			}
+			// reset
 		}
+		hi2 = hi = lo = idx = 0;
 		WDT_HIT();
-
 	}
 	DbpString("Stopped");
 	if (ledcontrol) LED_A_OFF();
 }
 
-uint32_t bytebits_to_byte(uint8_t* src, int numbits)
-{
-	uint32_t num = 0;
-	for(int i = 0 ; i < numbits ; i++)
-	{
-		num = (num << 1) | (*src);
-		src++;
-	}
-	return num;
-}
-
-
-void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
+void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
 {
-	uint8_t *dest = (uint8_t *)BigBuf;
+	uint8_t *dest = BigBuf_get_addr();
 
 	size_t size=0, idx=0;
-	uint32_t code=0, code2=0;
-
+	int clk=0, invert=0, errCnt=0, maxErr=20;
+	uint32_t hi=0;
+	uint64_t lo=0;
 	// Configure to go in 125Khz listen mode
-	LFSetupFPGAForADC(0, true);
+	LFSetupFPGAForADC(95, true);
 
 	while(!BUTTON_PRESS()) {
+
 		WDT_HIT();
 		if (ledcontrol) LED_A_ON();
 
-		DoAcquisition125k_internal(-1,true);
-		size  = sizeof(BigBuf);
+		DoAcquisition_default(-1,true);
+		size  = BigBuf_max_traceLen();
+		//askdemod and manchester decode
+		if (size > 16385) size = 16385; //big enough to catch 2 sequences of largest format
+		errCnt = askdemod(dest, &size, &clk, &invert, maxErr, 0, 1);
+		WDT_HIT();
 
-		// FSK demodulator
-		size = fsk_demod(dest, size);
+		if (errCnt<0) continue;
+	
+			errCnt = Em410xDecode(dest, &size, &idx, &hi, &lo);
+			if (errCnt){
+				if (size>64){
+					Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)",
+					  hi,
+					  (uint32_t)(lo>>32),
+					  (uint32_t)lo,
+					  (uint32_t)(lo&0xFFFF),
+					  (uint32_t)((lo>>16LL) & 0xFF),
+					  (uint32_t)(lo & 0xFFFFFF));
+				} else {
+					Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
+					  (uint32_t)(lo>>32),
+					  (uint32_t)lo,
+					  (uint32_t)(lo&0xFFFF),
+					  (uint32_t)((lo>>16LL) & 0xFF),
+					  (uint32_t)(lo & 0xFFFFFF));
+				}
+
+			if (findone){
+				if (ledcontrol) LED_A_OFF();
+				*high=lo>>32;
+				*low=lo & 0xFFFFFFFF;
+				return;
+			}
+		}
+		WDT_HIT();
+		hi = lo = size = idx = 0;
+		clk = invert = errCnt = 0;
+	}
+	DbpString("Stopped");
+	if (ledcontrol) LED_A_OFF();
+}
 
-		// we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
-		// 1->0 : fc/8 in sets of 7
-		// 0->1 : fc/10 in sets of 6
-		size = aggregate_bits(dest, size, 7,6,13);
+void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
+{
+	uint8_t *dest = BigBuf_get_addr();
+	int idx=0;
+	uint32_t code=0, code2=0;
+	uint8_t version=0;
+	uint8_t facilitycode=0;
+	uint16_t number=0;
+	uint8_t crc = 0;
+	uint16_t calccrc = 0;
+	// Configure to go in 125Khz listen mode
+	LFSetupFPGAForADC(95, true);
 
+	while(!BUTTON_PRESS()) {
 		WDT_HIT();
-		
-		//Handle the data
- 	    uint8_t mask[] = {0,0,0,0,0,0,0,0,0,1};
-		for( idx=0; idx < size - 64; idx++) {
-
- 	    	if ( memcmp(dest + idx, mask, sizeof(mask)) ) continue;
-
-		    Dbprintf("%d%d%d%d%d%d%d%d",dest[idx],   dest[idx+1],   dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7]);
-		    Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+8], dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15]);			  
-		    Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+16],dest[idx+17],dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23]);
-		    Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+24],dest[idx+25],dest[idx+26],dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31]);
-		    Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35],dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39]);
-		    Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44],dest[idx+45],dest[idx+46],dest[idx+47]);
-		    Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53],dest[idx+54],dest[idx+55]);
-		    Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
-		
-		    code = bytebits_to_byte(dest+idx,32);
-		    code2 = bytebits_to_byte(dest+idx+32,32); 
+		if (ledcontrol) LED_A_ON();
+		DoAcquisition_default(-1,true);
+		//fskdemod and get start index
+		WDT_HIT();
+		idx = IOdemodFSK(dest, BigBuf_max_traceLen());
+		if (idx<0) continue;
+			//valid tag found
+
+			//Index map
+			//0           10          20          30          40          50          60
+			//|           |           |           |           |           |           |
+			//01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
+			//-----------------------------------------------------------------------------
+            //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 checksum 11
+			//
+			//Checksum:  
+			//00000000 0 11110000 1 11100000 1 00000001 1 00000011 1 10110110 1 01110101 11
+			//preamble      F0         E0         01         03         B6         75
+			// How to calc checksum,
+			// http://www.proxmark.org/forum/viewtopic.php?id=364&p=6
+			//   F0 + E0 + 01 + 03 + B6 = 28A
+			//   28A & FF = 8A
+			//   FF - 8A = 75
+			// Checksum: 0x75
+			//XSF(version)facility:codeone+codetwo
+			//Handle the data
+			if(findone){ //only print binary if we are doing one
+				Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx],   dest[idx+1],   dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
+				Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
+				Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
+				Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
+				Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
+				Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
+				Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
+			}
+			code = bytebits_to_byte(dest+idx,32);
+			code2 = bytebits_to_byte(dest+idx+32,32);
+			version = bytebits_to_byte(dest+idx+27,8); //14,4
+		facilitycode = bytebits_to_byte(dest+idx+18,8);
+			number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
+
+			crc = bytebits_to_byte(dest+idx+54,8);
+			for (uint8_t i=1; i<6; ++i)
+				calccrc += bytebits_to_byte(dest+idx+9*i,8);
+			calccrc &= 0xff;
+			calccrc = 0xff - calccrc;
 			
-		    short version = bytebits_to_byte(dest+idx+14,4); 
-		    char unknown = bytebits_to_byte(dest+idx+19,8) ;
-		    uint16_t number = bytebits_to_byte(dest+idx+36,9); 
-		    
-		    Dbprintf("XSF(%02d)%02x:%d (%08x%08x)",version,unknown,number,code,code2);
-		    if (ledcontrol)	LED_D_OFF();
-		
-		// if we're only looking for one tag 
-		if (findone){
-			LED_A_OFF();
-			return;
-		}
-	}
-	WDT_HIT();
+			char *crcStr = (crc == calccrc) ? "ok":"!crc";
+
+            Dbprintf("IO Prox XSF(%02d)%02x:%05d (%08x%08x)  [%02x %s]",version,facilitycode,number,code,code2, crc, crcStr);
+			// if we're only looking for one tag
+			if (findone){
+				if (ledcontrol)	LED_A_OFF();
+				//LED_A_OFF();
+				*high=code;
+				*low=code2;
+				return;
+			}
+			code=code2=0;
+			version=facilitycode=0;
+			number=0;
+			idx=0;
+
+		WDT_HIT();
 	}
 	DbpString("Stopped");
 	if (ledcontrol) LED_A_OFF();
@@ -852,14 +990,14 @@ void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
  */
 
 /* T55x7 configuration register definitions */
-#define T55x7_POR_DELAY				0x00000001
-#define T55x7_ST_TERMINATOR			0x00000008
-#define T55x7_PWD					0x00000010
+#define T55x7_POR_DELAY			0x00000001
+#define T55x7_ST_TERMINATOR		0x00000008
+#define T55x7_PWD			0x00000010
 #define T55x7_MAXBLOCK_SHIFT		5
-#define T55x7_AOR					0x00000200
-#define T55x7_PSKCF_RF_2			0
-#define T55x7_PSKCF_RF_4			0x00000400
-#define T55x7_PSKCF_RF_8			0x00000800
+#define T55x7_AOR			0x00000200
+#define T55x7_PSKCF_RF_2		0
+#define T55x7_PSKCF_RF_4		0x00000400
+#define T55x7_PSKCF_RF_8		0x00000800
 #define T55x7_MODULATION_DIRECT		0
 #define T55x7_MODULATION_PSK1		0x00001000
 #define T55x7_MODULATION_PSK2		0x00002000
@@ -870,17 +1008,17 @@ void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
 #define T55x7_MODULATION_FSK2a		0x00007000
 #define T55x7_MODULATION_MANCHESTER	0x00008000
 #define T55x7_MODULATION_BIPHASE	0x00010000
-#define T55x7_BITRATE_RF_8			0
-#define T55x7_BITRATE_RF_16			0x00040000
-#define T55x7_BITRATE_RF_32			0x00080000
-#define T55x7_BITRATE_RF_40			0x000C0000
-#define T55x7_BITRATE_RF_50			0x00100000
-#define T55x7_BITRATE_RF_64			0x00140000
+#define T55x7_BITRATE_RF_8		0
+#define T55x7_BITRATE_RF_16		0x00040000
+#define T55x7_BITRATE_RF_32		0x00080000
+#define T55x7_BITRATE_RF_40		0x000C0000
+#define T55x7_BITRATE_RF_50		0x00100000
+#define T55x7_BITRATE_RF_64		0x00140000
 #define T55x7_BITRATE_RF_100		0x00180000
 #define T55x7_BITRATE_RF_128		0x001C0000
 
 /* T5555 (Q5) configuration register definitions */
-#define T5555_ST_TERMINATOR			0x00000001
+#define T5555_ST_TERMINATOR		0x00000001
 #define T5555_MAXBLOCK_SHIFT		0x00000001
 #define T5555_MODULATION_MANCHESTER	0
 #define T5555_MODULATION_PSK1		0x00000010
@@ -890,22 +1028,22 @@ void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
 #define T5555_MODULATION_FSK2		0x00000050
 #define T5555_MODULATION_BIPHASE	0x00000060
 #define T5555_MODULATION_DIRECT		0x00000070
-#define T5555_INVERT_OUTPUT			0x00000080
-#define T5555_PSK_RF_2				0
-#define T5555_PSK_RF_4				0x00000100
-#define T5555_PSK_RF_8				0x00000200
-#define T5555_USE_PWD				0x00000400
-#define T5555_USE_AOR				0x00000800
-#define T5555_BITRATE_SHIFT			12
-#define T5555_FAST_WRITE			0x00004000
-#define T5555_PAGE_SELECT			0x00008000
+#define T5555_INVERT_OUTPUT		0x00000080
+#define T5555_PSK_RF_2			0
+#define T5555_PSK_RF_4			0x00000100
+#define T5555_PSK_RF_8			0x00000200
+#define T5555_USE_PWD			0x00000400
+#define T5555_USE_AOR			0x00000800
+#define T5555_BITRATE_SHIFT		12
+#define T5555_FAST_WRITE		0x00004000
+#define T5555_PAGE_SELECT		0x00008000
 
 /*
  * Relevant times in microsecond
  * To compensate antenna falling times shorten the write times
  * and enlarge the gap ones.
  */
-#define START_GAP 30*8 // 10 - 50fc 250
+#define START_GAP 50*8 // 10 - 50fc 250
 #define WRITE_GAP 20*8 //  8 - 30fc
 #define WRITE_0   24*8 // 16 - 31fc 24fc 192
 #define WRITE_1   54*8 // 48 - 63fc 54fc 432 for T55x7; 448 for E5550
@@ -918,7 +1056,13 @@ void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
 //  These timings work for 4469/4269/4305 (with the 55*8 above)
 //  WRITE_0 = 23*8 , 9*8  SpinDelayUs(23*8); 
 
-#define T55xx_SAMPLES_SIZE		12000 // 32 x 32 x 10  (32 bit times numofblock (7), times clock skip..)
+// Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK)
+// TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
+// Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier)
+// T0 = TIMER_CLOCK1 / 125000 = 192
+// 1 Cycle = 8 microseconds(us)
+
+#define T55xx_SAMPLES_SIZE      12000 // 32 x 32 x 10  (32 bit times numofblock (7), times clock skip..)
 
 // Write one bit to card
 void T55xxWriteBit(int bit)
@@ -974,23 +1118,31 @@ void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMod
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
 }
 
+void TurnReadLFOn(){
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+	// Give it a bit of time for the resonant antenna to settle.
+	SpinDelayUs(8*150);
+}
+
+
 // Read one card block in page 0
 void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
 {
-	uint8_t *dest =  mifare_get_bigbufptr();
-	uint16_t bufferlength = T55xx_SAMPLES_SIZE;
 	uint32_t i = 0;
+	uint8_t *dest = BigBuf_get_addr();
+	uint16_t bufferlength = BigBuf_max_traceLen();
+	if ( bufferlength > T55xx_SAMPLES_SIZE )
+		bufferlength = T55xx_SAMPLES_SIZE;
 
-	// Clear destination buffer before sending the command  0x80 = average.
+	// Clear destination buffer before sending the command
 	memset(dest, 0x80, bufferlength);
 
 	// Set up FPGA, 125kHz
 	// Wait for config.. (192+8190xPOW)x8 == 67ms
 	LFSetupFPGAForADC(0, true);
-
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
 	SpinDelayUs(START_GAP);
-  
+
 	// Opcode
 	T55xxWriteBit(1);
 	T55xxWriteBit(0); //Page 0
@@ -1004,10 +1156,9 @@ void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
 	// Block
 	for (i = 0x04; i != 0; i >>= 1)
 		T55xxWriteBit(Block & i);
-  
+
 	// Turn field on to read the response
 	TurnReadLFOn();
-  
 	// Now do the acquisition
 	i = 0;
 	for(;;) {
@@ -1017,38 +1168,40 @@ void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
 		}
 		if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
 			dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
-			++i;
+			i++;
 			LED_D_OFF();
-			if (i > bufferlength) break;
+			if (i >= bufferlength) break;
 		}
 	}
- 
-	cmd_send(CMD_ACK,0,0,0,0,0);
-    FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+
+	cmd_send(CMD_ACK,0,0,0,0,0);    
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
 	LED_D_OFF();
 }
 
 // Read card traceability data (page 1)
 void T55xxReadTrace(void){
-	uint8_t *dest =  mifare_get_bigbufptr();
-	uint16_t bufferlength = T55xx_SAMPLES_SIZE;
-	int i=0;
 	
-	// Clear destination buffer before sending the command 0x80 = average
-	memset(dest, 0x80, bufferlength);  
-  
+	uint32_t i = 0;
+	uint8_t *dest = BigBuf_get_addr();
+	uint16_t bufferlength = BigBuf_max_traceLen();
+	if ( bufferlength > T55xx_SAMPLES_SIZE )
+		bufferlength= T55xx_SAMPLES_SIZE;
+
+	// Clear destination buffer before sending the command
+	memset(dest, 0x80, bufferlength);
+
 	LFSetupFPGAForADC(0, true);
-  
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
 	SpinDelayUs(START_GAP);
-  
+
 	// Opcode
 	T55xxWriteBit(1);
 	T55xxWriteBit(1); //Page 1
-  
+
 	// Turn field on to read the response
 	TurnReadLFOn();
-  
+
 	// Now do the acquisition
 	for(;;) {
 		if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
@@ -1057,167 +1210,159 @@ void T55xxReadTrace(void){
 		}
 		if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
 			dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
-			++i;
+			i++;
 			LED_D_OFF();
-		
+
 			if (i >= bufferlength) break;
 		}
 	}
-  
+
 	cmd_send(CMD_ACK,0,0,0,0,0);
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
 	LED_D_OFF();
 }
 
-void TurnReadLFOn(){
-	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
-	// Give it a bit of time for the resonant antenna to settle.
-	//SpinDelay(30);
-	SpinDelayUs(8*150);
-}
-
 /*-------------- Cloning routines -----------*/
 // Copy HID id to card and setup block 0 config
 void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT)
 {
 	int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format
 	int last_block = 0;
-  
-  if (longFMT){
-	  // Ensure no more than 84 bits supplied
-	  if (hi2>0xFFFFF) {
-		  DbpString("Tags can only have 84 bits.");
-		  return;
-	  }
-    // Build the 6 data blocks for supplied 84bit ID
-    last_block = 6;
-    data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
-	  for (int i=0;i<4;i++) {
-		  if (hi2 & (1<<(19-i)))
-			  data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10
-		  else
-			  data1 |= (1<<((3-i)*2)); // 0 -> 01
-	  }
-    
-  	data2 = 0;
-  	for (int i=0;i<16;i++) {
-  		if (hi2 & (1<<(15-i)))
-  			data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
-  		else
-  			data2 |= (1<<((15-i)*2)); // 0 -> 01
-    }
-    
-  	data3 = 0;
-  	for (int i=0;i<16;i++) {
-  		if (hi & (1<<(31-i)))
-  			data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
-  		else
-  			data3 |= (1<<((15-i)*2)); // 0 -> 01
-  	}
-    
-  	data4 = 0;
-  	for (int i=0;i<16;i++) {
-  		if (hi & (1<<(15-i)))
-  			data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10
-  		else
-  			data4 |= (1<<((15-i)*2)); // 0 -> 01
-    }
-    
-  	data5 = 0;
-  	for (int i=0;i<16;i++) {
-  		if (lo & (1<<(31-i)))
-  			data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10
-  		else
-  			data5 |= (1<<((15-i)*2)); // 0 -> 01
-  	}
-    
-  	data6 = 0;
-  	for (int i=0;i<16;i++) {
-  		if (lo & (1<<(15-i)))
-  			data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10
-  		else
-  			data6 |= (1<<((15-i)*2)); // 0 -> 01
-    }
-  }
-  else {
-	  // Ensure no more than 44 bits supplied
-	  if (hi>0xFFF) {
-		  DbpString("Tags can only have 44 bits.");
-		  return;
-	  }
-    
-  	// Build the 3 data blocks for supplied 44bit ID
-  	last_block = 3;
-  	
-  	data1 = 0x1D000000; // load preamble
-    
-    for (int i=0;i<12;i++) {
-      if (hi & (1<<(11-i)))
-        data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10
-      else
-        data1 |= (1<<((11-i)*2)); // 0 -> 01
-    }
-    
-  	data2 = 0;
-  	for (int i=0;i<16;i++) {
-  		if (lo & (1<<(31-i)))
-  			data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
-  		else
-  			data2 |= (1<<((15-i)*2)); // 0 -> 01
-  	}
-    
-  	data3 = 0;
-  	for (int i=0;i<16;i++) {
-  		if (lo & (1<<(15-i)))
-  			data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
-  		else
-  			data3 |= (1<<((15-i)*2)); // 0 -> 01
-  	}
-  }
-  
+
+	if (longFMT){
+		// Ensure no more than 84 bits supplied
+		if (hi2>0xFFFFF) {
+			DbpString("Tags can only have 84 bits.");
+			return;
+		}
+		// Build the 6 data blocks for supplied 84bit ID
+		last_block = 6;
+		data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
+		for (int i=0;i<4;i++) {
+			if (hi2 & (1<<(19-i)))
+				data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10
+			else
+				data1 |= (1<<((3-i)*2)); // 0 -> 01
+		}
+
+		data2 = 0;
+		for (int i=0;i<16;i++) {
+			if (hi2 & (1<<(15-i)))
+				data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+			else
+				data2 |= (1<<((15-i)*2)); // 0 -> 01
+		}
+
+		data3 = 0;
+		for (int i=0;i<16;i++) {
+			if (hi & (1<<(31-i)))
+				data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+			else
+				data3 |= (1<<((15-i)*2)); // 0 -> 01
+		}
+
+		data4 = 0;
+		for (int i=0;i<16;i++) {
+			if (hi & (1<<(15-i)))
+				data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+			else
+				data4 |= (1<<((15-i)*2)); // 0 -> 01
+		}
+
+		data5 = 0;
+		for (int i=0;i<16;i++) {
+			if (lo & (1<<(31-i)))
+				data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+			else
+				data5 |= (1<<((15-i)*2)); // 0 -> 01
+		}
+
+		data6 = 0;
+		for (int i=0;i<16;i++) {
+			if (lo & (1<<(15-i)))
+				data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+			else
+				data6 |= (1<<((15-i)*2)); // 0 -> 01
+		}
+	}
+	else {
+		// Ensure no more than 44 bits supplied
+		if (hi>0xFFF) {
+			DbpString("Tags can only have 44 bits.");
+			return;
+		}
+
+		// Build the 3 data blocks for supplied 44bit ID
+		last_block = 3;
+
+		data1 = 0x1D000000; // load preamble
+
+		for (int i=0;i<12;i++) {
+			if (hi & (1<<(11-i)))
+				data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10
+			else
+				data1 |= (1<<((11-i)*2)); // 0 -> 01
+		}
+
+		data2 = 0;
+		for (int i=0;i<16;i++) {
+			if (lo & (1<<(31-i)))
+				data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+			else
+				data2 |= (1<<((15-i)*2)); // 0 -> 01
+		}
+
+		data3 = 0;
+		for (int i=0;i<16;i++) {
+			if (lo & (1<<(15-i)))
+				data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+			else
+				data3 |= (1<<((15-i)*2)); // 0 -> 01
+		}
+	}
+
 	LED_D_ON();
 	// Program the data blocks for supplied ID
 	// and the block 0 for HID format
 	T55xxWriteBlock(data1,1,0,0);
 	T55xxWriteBlock(data2,2,0,0);
 	T55xxWriteBlock(data3,3,0,0);
-	
+
 	if (longFMT) { // if long format there are 6 blocks
-	  T55xxWriteBlock(data4,4,0,0);
-	  T55xxWriteBlock(data5,5,0,0);
-	  T55xxWriteBlock(data6,6,0,0);
-  }
-  
+		T55xxWriteBlock(data4,4,0,0);
+		T55xxWriteBlock(data5,5,0,0);
+		T55xxWriteBlock(data6,6,0,0);
+	}
+
 	// Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
-	T55xxWriteBlock(T55x7_BITRATE_RF_50  |
-                  T55x7_MODULATION_FSK2a |
-                  last_block << T55x7_MAXBLOCK_SHIFT,
-                  0,0,0);
-  
+	T55xxWriteBlock(T55x7_BITRATE_RF_50    |
+					T55x7_MODULATION_FSK2a |
+					last_block << T55x7_MAXBLOCK_SHIFT,
+					0,0,0);
+
 	LED_D_OFF();
-	
+
 	DbpString("DONE!");
 }
 
 void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT)
 {
-   int data1=0, data2=0; //up to six blocks for long format
-  	
-    data1 = hi;  // load preamble
-    data2 = lo;
-    
-    LED_D_ON();
-    // Program the data blocks for supplied ID
-    // and the block 0 for HID format
-    T55xxWriteBlock(data1,1,0,0);
-    T55xxWriteBlock(data2,2,0,0);
-	
-    //Config Block
-    T55xxWriteBlock(0x00147040,0,0,0);
-    LED_D_OFF();
-	
-    DbpString("DONE!");
+	int data1=0, data2=0; //up to six blocks for long format
+
+	data1 = hi;  // load preamble
+	data2 = lo;
+
+	LED_D_ON();
+	// Program the data blocks for supplied ID
+	// and the block 0 for HID format
+	T55xxWriteBlock(data1,1,0,0);
+	T55xxWriteBlock(data2,2,0,0);
+
+	//Config Block
+	T55xxWriteBlock(0x00147040,0,0,0);
+	LED_D_OFF();
+
+	DbpString("DONE!");
 }
 
 // Define 9bit header for EM410x tags
@@ -1295,61 +1440,64 @@ void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo)
 		Dbprintf("Clock rate: %d", clock);
 		switch (clock)
 		{
-			case 32:
-				clock = T55x7_BITRATE_RF_32;
-				break;
-			case 16:
-				clock = T55x7_BITRATE_RF_16;
-				break;
-			case 0:
-				// A value of 0 is assumed to be 64 for backwards-compatibility
-				// Fall through...
-			case 64:
-				clock = T55x7_BITRATE_RF_64;
-				break;      
-			default:
-				Dbprintf("Invalid clock rate: %d", clock);
-				return;
+		case 32:
+			clock = T55x7_BITRATE_RF_32;
+			break;
+		case 16:
+			clock = T55x7_BITRATE_RF_16;
+			break;
+		case 0:
+			// A value of 0 is assumed to be 64 for backwards-compatibility
+			// Fall through...
+		case 64:
+			clock = T55x7_BITRATE_RF_64;
+			break;
+		default:
+			Dbprintf("Invalid clock rate: %d", clock);
+			return;
 		}
 
 		// Writing configuration for T55x7 tag
 		T55xxWriteBlock(clock	    |
-				T55x7_MODULATION_MANCHESTER |
-				2 << T55x7_MAXBLOCK_SHIFT,
-				0, 0, 0);
-  }
+						T55x7_MODULATION_MANCHESTER |
+						2 << T55x7_MAXBLOCK_SHIFT,
+						0, 0, 0);
+	}
 	else
 		// Writing configuration for T5555(Q5) tag
 		T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT |
-				T5555_MODULATION_MANCHESTER   |
-				2 << T5555_MAXBLOCK_SHIFT,
-				0, 0, 0);
+						T5555_MODULATION_MANCHESTER |
+						2 << T5555_MAXBLOCK_SHIFT,
+						0, 0, 0);
 
 	LED_D_OFF();
 	Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
-					(uint32_t)(id >> 32), (uint32_t)id);
+			 (uint32_t)(id >> 32), (uint32_t)id);
 }
 
 // Clone Indala 64-bit tag by UID to T55x7
 void CopyIndala64toT55x7(int hi, int lo)
 {
+
 	//Program the 2 data blocks for supplied 64bit UID
 	// and the block 0 for Indala64 format
 	T55xxWriteBlock(hi,1,0,0);
 	T55xxWriteBlock(lo,2,0,0);
 	//Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
 	T55xxWriteBlock(T55x7_BITRATE_RF_32    |
-			T55x7_MODULATION_PSK1 |
-			2 << T55x7_MAXBLOCK_SHIFT,
-			0, 0, 0);
+					T55x7_MODULATION_PSK1 |
+					2 << T55x7_MAXBLOCK_SHIFT,
+					0, 0, 0);
 	//Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
 	//	T5567WriteBlock(0x603E1042,0);
 
 	DbpString("DONE!");
-}	
+
+}
 
 void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7)
 {
+
 	//Program the 7 data blocks for supplied 224bit UID
 	// and the block 0 for Indala224 format
 	T55xxWriteBlock(uid1,1,0,0);
@@ -1361,13 +1509,14 @@ void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int
 	T55xxWriteBlock(uid7,7,0,0);
 	//Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
 	T55xxWriteBlock(T55x7_BITRATE_RF_32    |
-			T55x7_MODULATION_PSK1 |
-			7 << T55x7_MAXBLOCK_SHIFT,
-			0,0,0);
+					T55x7_MODULATION_PSK1 |
+					7 << T55x7_MAXBLOCK_SHIFT,
+					0,0,0);
 	//Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
 	//	T5567WriteBlock(0x603E10E2,0);
 
 	DbpString("DONE!");
+
 }
 
 
@@ -1375,10 +1524,16 @@ void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int
 #define max(x,y) ( x<y ? y:x)
 
 int DemodPCF7931(uint8_t **outBlocks) {
-	uint8_t BitStream[256];
-	uint8_t Blocks[8][16];
-	uint8_t *GraphBuffer = (uint8_t *)BigBuf;
-	int GraphTraceLen = sizeof(BigBuf);
+
+    uint8_t bits[256] = {0x00};
+	uint8_t blocks[8][16];
+    uint8_t *dest = BigBuf_get_addr();
+    
+	int GraphTraceLen = BigBuf_max_traceLen();
+	if (  GraphTraceLen > 18000 )
+		GraphTraceLen = 18000;
+	
+	
 	int i, j, lastval, bitidx, half_switch;
 	int clock = 64;
 	int tolerance = clock / 8;
@@ -1387,133 +1542,136 @@ int DemodPCF7931(uint8_t **outBlocks) {
 	int num_blocks = 0;
 	int lmin=128, lmax=128;
 	uint8_t dir;
-	
-	AcquireRawAdcSamples125k(0);
-	
+
+	LFSetupFPGAForADC(95, true);
+	DoAcquisition_default(0, true);
+
 	lmin = 64;
 	lmax = 192;
-	
+
 	i = 2;
-	
+
 	/* Find first local max/min */
-	if(GraphBuffer[1] > GraphBuffer[0]) {
-    while(i < GraphTraceLen) {
-      if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax)
-        break;
-      i++;
-    }
-    dir = 0;
+    if(dest[1] > dest[0]) {
+		while(i < GraphTraceLen) {
+            if( !(dest[i] > dest[i-1]) && dest[i] > lmax)
+				break;
+			i++;
+		}
+		dir = 0;
 	}
 	else {
-    while(i < GraphTraceLen) {
-      if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin)
-        break;
-      i++;
-    }
-    dir = 1;
+		while(i < GraphTraceLen) {
+            if( !(dest[i] < dest[i-1]) && dest[i] < lmin)
+				break;
+			i++;
+		}
+		dir = 1;
 	}
-	
+
 	lastval = i++;
 	half_switch = 0;
 	pmc = 0;
 	block_done = 0;
-	
+
 	for (bitidx = 0; i < GraphTraceLen; i++)
 	{
-    if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin))
-    {
-      lc = i - lastval;
-      lastval = i;
-      
-      // Switch depending on lc length:
-      // Tolerance is 1/8 of clock rate (arbitrary)
-      if (abs(lc-clock/4) < tolerance) {
-        // 16T0
-        if((i - pmc) == lc) { /* 16T0 was previous one */
-          /* It's a PMC ! */
-          i += (128+127+16+32+33+16)-1;
-          lastval = i;
-          pmc = 0;
-          block_done = 1;
-        }
-        else {
-          pmc = i;
-        }
-      } else if (abs(lc-clock/2) < tolerance) {
-        // 32TO
-        if((i - pmc) == lc) { /* 16T0 was previous one */
-          /* It's a PMC ! */
-          i += (128+127+16+32+33)-1;
-          lastval = i;
-          pmc = 0;
-          block_done = 1;
-        }
-        else if(half_switch == 1) {
-          BitStream[bitidx++] = 0;
-          half_switch = 0;
-        }
-        else
-          half_switch++;
-      } else if (abs(lc-clock) < tolerance) {
-        // 64TO
-        BitStream[bitidx++] = 1;
-      } else {
-        // Error
-        warnings++;
-        if (warnings > 10)
-        {
-          Dbprintf("Error: too many detection errors, aborting.");
-          return 0;
-        }
-      }
-      
-      if(block_done == 1) {
-        if(bitidx == 128) {
-          for(j=0; j<16; j++) {
-            Blocks[num_blocks][j] = 128*BitStream[j*8+7]+
-            64*BitStream[j*8+6]+
-            32*BitStream[j*8+5]+
-            16*BitStream[j*8+4]+
-            8*BitStream[j*8+3]+
-            4*BitStream[j*8+2]+
-            2*BitStream[j*8+1]+
-            BitStream[j*8];
-          }
-          num_blocks++;
-        }
-        bitidx = 0;
-        block_done = 0;
-        half_switch = 0;
-      }
-      if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0;
-      else dir = 1;
-    }
-    if(bitidx==255)
-      bitidx=0;
-    warnings = 0;
-    if(num_blocks == 4) break;
+        if ( (dest[i-1] > dest[i] && dir == 1 && dest[i] > lmax) || (dest[i-1] < dest[i] && dir == 0 && dest[i] < lmin))
+		{
+			lc = i - lastval;
+			lastval = i;
+
+			// Switch depending on lc length:
+			// Tolerance is 1/8 of clock rate (arbitrary)
+			if (abs(lc-clock/4) < tolerance) {
+				// 16T0
+				if((i - pmc) == lc) { /* 16T0 was previous one */
+					/* It's a PMC ! */
+					i += (128+127+16+32+33+16)-1;
+					lastval = i;
+					pmc = 0;
+					block_done = 1;
+				}
+				else {
+					pmc = i;
+				}
+			} else if (abs(lc-clock/2) < tolerance) {
+				// 32TO
+				if((i - pmc) == lc) { /* 16T0 was previous one */
+					/* It's a PMC ! */
+					i += (128+127+16+32+33)-1;
+					lastval = i;
+					pmc = 0;
+					block_done = 1;
+				}
+				else if(half_switch == 1) {
+                    bits[bitidx++] = 0;
+					half_switch = 0;
+				}
+				else
+					half_switch++;
+			} else if (abs(lc-clock) < tolerance) {
+				// 64TO
+                bits[bitidx++] = 1;
+			} else {
+				// Error
+				warnings++;
+				if (warnings > 10)
+				{
+					Dbprintf("Error: too many detection errors, aborting.");
+					return 0;
+				}
+			}
+
+			if(block_done == 1) {
+				if(bitidx == 128) {
+					for(j=0; j<16; j++) {
+                        blocks[num_blocks][j] = 128*bits[j*8+7]+
+                                64*bits[j*8+6]+
+                                32*bits[j*8+5]+
+                                16*bits[j*8+4]+
+                                8*bits[j*8+3]+
+                                4*bits[j*8+2]+
+                                2*bits[j*8+1]+
+                                bits[j*8];
+						
+					}
+					num_blocks++;
+				}
+				bitidx = 0;
+				block_done = 0;
+				half_switch = 0;
+			}
+			if(i < GraphTraceLen)
+                dir =(dest[i-1] > dest[i]) ? 0 : 1;
+		}
+		if(bitidx==255)
+			bitidx=0;
+		warnings = 0;
+		if(num_blocks == 4) break;
 	}
-	memcpy(outBlocks, Blocks, 16*num_blocks);
+    memcpy(outBlocks, blocks, 16*num_blocks);
 	return num_blocks;
 }
 
 int IsBlock0PCF7931(uint8_t *Block) {
 	// Assume RFU means 0 :)
 	if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
-    return 1;
+		return 1;
 	if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ?
-    return 1;
+		return 1;
 	return 0;
 }
 
 int IsBlock1PCF7931(uint8_t *Block) {
 	// Assume RFU means 0 :)
 	if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0)
-    if((Block[14] & 0x7f) <= 9 && Block[15] <= 9)
-      return 1;
-	
+		if((Block[14] & 0x7f) <= 9 && Block[15] <= 9)
+			return 1;
+
 	return 0;
 }
+
 #define ALLOC 16
 
 void ReadPCF7931() {
@@ -1525,106 +1683,106 @@ void ReadPCF7931() {
 	int ident = 0;
 	int error = 0;
 	int tries = 0;
-	
+
 	memset(Blocks, 0, 8*17*sizeof(uint8_t));
-	
+
 	do {
-    memset(tmpBlocks, 0, 4*16*sizeof(uint8_t));
-    n = DemodPCF7931((uint8_t**)tmpBlocks);
-    if(!n)
-      error++;
-    if(error==10 && num_blocks == 0) {
-      Dbprintf("Error, no tag or bad tag");
-      return;
-    }
-    else if (tries==20 || error==10) {
-      Dbprintf("Error reading the tag");
-      Dbprintf("Here is the partial content");
-      goto end;
-    }
-    
-    for(i=0; i<n; i++)
-      Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
-               tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7],
-               tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]);
-    if(!ident) {
-      for(i=0; i<n; i++) {
-        if(IsBlock0PCF7931(tmpBlocks[i])) {
-          // Found block 0 ?
-          if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) {
-            // Found block 1!
-            // \o/
-            ident = 1;
-            memcpy(Blocks[0], tmpBlocks[i], 16);
-            Blocks[0][ALLOC] = 1;
-            memcpy(Blocks[1], tmpBlocks[i+1], 16);
-            Blocks[1][ALLOC] = 1;
-            max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1;
-            // Debug print
-            Dbprintf("(dbg) Max blocks: %d", max_blocks);
-            num_blocks = 2;
-            // Handle following blocks
-            for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) {
-              if(j==n) j=0;
-              if(j==i) break;
-              memcpy(Blocks[ind2], tmpBlocks[j], 16);
-              Blocks[ind2][ALLOC] = 1;
-            }
-            break;
-          }
-        }
-      }
-    }
-    else {
-      for(i=0; i<n; i++) { // Look for identical block in known blocks
-        if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
-          for(j=0; j<max_blocks; j++) {
-            if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) {
-              // Found an identical block
-              for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) {
-                if(ind2 < 0)
-                  ind2 = max_blocks;
-                if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
-                  // Dbprintf("Tmp %d -> Block %d", ind, ind2);
-                  memcpy(Blocks[ind2], tmpBlocks[ind], 16);
-                  Blocks[ind2][ALLOC] = 1;
-                  num_blocks++;
-                  if(num_blocks == max_blocks) goto end;
-                }
-              }
-              for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) {
-                if(ind2 > max_blocks)
-                  ind2 = 0;
-                if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
-                  // Dbprintf("Tmp %d -> Block %d", ind, ind2);
-                  memcpy(Blocks[ind2], tmpBlocks[ind], 16);
-                  Blocks[ind2][ALLOC] = 1;
-                  num_blocks++;
-                  if(num_blocks == max_blocks) goto end;
-                }
-              }
-            }
-          }
-        }
-      }
-    }
-    tries++;
-    if (BUTTON_PRESS()) return;
+		memset(tmpBlocks, 0, 4*16*sizeof(uint8_t));
+		n = DemodPCF7931((uint8_t**)tmpBlocks);
+		if(!n)
+			error++;
+		if(error==10 && num_blocks == 0) {
+			Dbprintf("Error, no tag or bad tag");
+			return;
+		}
+		else if (tries==20 || error==10) {
+			Dbprintf("Error reading the tag");
+			Dbprintf("Here is the partial content");
+			goto end;
+		}
+
+		for(i=0; i<n; i++)
+			Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
+					 tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7],
+					tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]);
+		if(!ident) {
+			for(i=0; i<n; i++) {
+				if(IsBlock0PCF7931(tmpBlocks[i])) {
+					// Found block 0 ?
+					if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) {
+						// Found block 1!
+						// \o/
+						ident = 1;
+						memcpy(Blocks[0], tmpBlocks[i], 16);
+						Blocks[0][ALLOC] = 1;
+						memcpy(Blocks[1], tmpBlocks[i+1], 16);
+						Blocks[1][ALLOC] = 1;
+						max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1;
+						// Debug print
+						Dbprintf("(dbg) Max blocks: %d", max_blocks);
+						num_blocks = 2;
+						// Handle following blocks
+						for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) {
+							if(j==n) j=0;
+							if(j==i) break;
+							memcpy(Blocks[ind2], tmpBlocks[j], 16);
+							Blocks[ind2][ALLOC] = 1;
+						}
+						break;
+					}
+				}
+			}
+		}
+		else {
+			for(i=0; i<n; i++) { // Look for identical block in known blocks
+				if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
+					for(j=0; j<max_blocks; j++) {
+						if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) {
+							// Found an identical block
+							for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) {
+								if(ind2 < 0)
+									ind2 = max_blocks;
+								if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
+									// Dbprintf("Tmp %d -> Block %d", ind, ind2);
+									memcpy(Blocks[ind2], tmpBlocks[ind], 16);
+									Blocks[ind2][ALLOC] = 1;
+									num_blocks++;
+									if(num_blocks == max_blocks) goto end;
+								}
+							}
+							for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) {
+								if(ind2 > max_blocks)
+									ind2 = 0;
+								if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
+									// Dbprintf("Tmp %d -> Block %d", ind, ind2);
+									memcpy(Blocks[ind2], tmpBlocks[ind], 16);
+									Blocks[ind2][ALLOC] = 1;
+									num_blocks++;
+									if(num_blocks == max_blocks) goto end;
+								}
+							}
+						}
+					}
+				}
+			}
+		}
+		tries++;
+		if (BUTTON_PRESS()) return;
 	} while (num_blocks != max_blocks);
-end:
+ end:
 	Dbprintf("-----------------------------------------");
 	Dbprintf("Memory content:");
 	Dbprintf("-----------------------------------------");
 	for(i=0; i<max_blocks; i++) {
-    if(Blocks[i][ALLOC]==1)
-      Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
-               Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7],
-               Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]);
-    else
-      Dbprintf("<missing block %d>", i);
+		if(Blocks[i][ALLOC]==1)
+			Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
+					 Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7],
+					Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]);
+		else
+			Dbprintf("<missing block %d>", i);
 	}
 	Dbprintf("-----------------------------------------");
-	
+
 	return ;
 }
 
@@ -1649,20 +1807,20 @@ uint8_t * fwd_write_ptr; //forwardlink bit pointer
 //====================================================================
 //--------------------------------------------------------------------
 uint8_t Prepare_Cmd( uint8_t cmd ) {
-  //--------------------------------------------------------------------
-  
-  *forward_ptr++ = 0; //start bit
-  *forward_ptr++ = 0; //second pause for 4050 code
-  
-  *forward_ptr++ = cmd;
-  cmd >>= 1;
-  *forward_ptr++ = cmd;
-  cmd >>= 1;
-  *forward_ptr++ = cmd;
-  cmd >>= 1;
-  *forward_ptr++ = cmd;
-  
-  return 6; //return number of emited bits
+	//--------------------------------------------------------------------
+
+	*forward_ptr++ = 0; //start bit
+	*forward_ptr++ = 0; //second pause for 4050 code
+
+	*forward_ptr++ = cmd;
+	cmd >>= 1;
+	*forward_ptr++ = cmd;
+	cmd >>= 1;
+	*forward_ptr++ = cmd;
+	cmd >>= 1;
+	*forward_ptr++ = cmd;
+
+	return 6; //return number of emited bits
 }
 
 //====================================================================
@@ -1672,21 +1830,21 @@ uint8_t Prepare_Cmd( uint8_t cmd ) {
 
 //--------------------------------------------------------------------
 uint8_t Prepare_Addr( uint8_t addr ) {
-  //--------------------------------------------------------------------
-  
-  register uint8_t line_parity;
-  
-  uint8_t i;
-  line_parity = 0;
-  for(i=0;i<6;i++) {
-    *forward_ptr++ = addr;
-    line_parity ^= addr;
-    addr >>= 1;
-  }
-  
-  *forward_ptr++ = (line_parity & 1);
-  
-  return 7; //return number of emited bits
+	//--------------------------------------------------------------------
+
+	register uint8_t line_parity;
+
+	uint8_t i;
+	line_parity = 0;
+	for(i=0;i<6;i++) {
+		*forward_ptr++ = addr;
+		line_parity ^= addr;
+		addr >>= 1;
+	}
+
+	*forward_ptr++ = (line_parity & 1);
+
+	return 7; //return number of emited bits
 }
 
 //====================================================================
@@ -1696,36 +1854,36 @@ uint8_t Prepare_Addr( uint8_t addr ) {
 
 //--------------------------------------------------------------------
 uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
-  //--------------------------------------------------------------------
-  
-  register uint8_t line_parity;
-  register uint8_t column_parity;
-  register uint8_t i, j;
-  register uint16_t data;
-  
-  data = data_low;
-  column_parity = 0;
-  
-  for(i=0; i<4; i++) {
-    line_parity = 0;
-    for(j=0; j<8; j++) {
-      line_parity ^= data;
-      column_parity ^= (data & 1) << j;
-      *forward_ptr++ = data;
-      data >>= 1;
-    }
-    *forward_ptr++ = line_parity;
-    if(i == 1)
-      data = data_hi;
-  }
-  
-  for(j=0; j<8; j++) {
-    *forward_ptr++ = column_parity;
-    column_parity >>= 1;
-  }
-  *forward_ptr = 0;
-  
-  return 45; //return number of emited bits
+	//--------------------------------------------------------------------
+
+	register uint8_t line_parity;
+	register uint8_t column_parity;
+	register uint8_t i, j;
+	register uint16_t data;
+
+	data = data_low;
+	column_parity = 0;
+
+	for(i=0; i<4; i++) {
+		line_parity = 0;
+		for(j=0; j<8; j++) {
+			line_parity ^= data;
+			column_parity ^= (data & 1) << j;
+			*forward_ptr++ = data;
+			data >>= 1;
+		}
+		*forward_ptr++ = line_parity;
+		if(i == 1)
+			data = data_hi;
+	}
+
+	for(j=0; j<8; j++) {
+		*forward_ptr++ = column_parity;
+		column_parity >>= 1;
+	}
+	*forward_ptr = 0;
+
+	return 45; //return number of emited bits
 }
 
 //====================================================================
@@ -1734,89 +1892,85 @@ uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
 // fwd_bit_count set with number of bits to be sent
 //====================================================================
 void SendForward(uint8_t fwd_bit_count) {
-  
-  fwd_write_ptr = forwardLink_data;
-  fwd_bit_sz = fwd_bit_count;
-  
-  LED_D_ON();
-  
-  //Field on
-  FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
-  FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-  FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
-  
-  // Give it a bit of time for the resonant antenna to settle.
-  // And for the tag to fully power up
-  SpinDelay(150);
-  
-  // force 1st mod pulse (start gap must be longer for 4305)
-  fwd_bit_sz--; //prepare next bit modulation
-  fwd_write_ptr++;
-  FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
-  SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
-  FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-  FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
-  SpinDelayUs(16*8); //16 cycles on (8us each)
-  
-  // now start writting
-  while(fwd_bit_sz-- > 0) { //prepare next bit modulation
-    if(((*fwd_write_ptr++) & 1) == 1)
-      SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
-    else {
-      //These timings work for 4469/4269/4305 (with the 55*8 above)
-      FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
-      SpinDelayUs(23*8); //16-4 cycles off (8us each)
-      FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-      FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
-      SpinDelayUs(9*8); //16 cycles on (8us each)
-    }
-  }
-}
 
+	fwd_write_ptr = forwardLink_data;
+	fwd_bit_sz = fwd_bit_count;
+
+	LED_D_ON();
+
+	//Field on
+	FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+
+	// Give it a bit of time for the resonant antenna to settle.
+	// And for the tag to fully power up
+	SpinDelay(150);
+
+	// force 1st mod pulse (start gap must be longer for 4305)
+	fwd_bit_sz--; //prepare next bit modulation
+	fwd_write_ptr++;
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+	SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
+	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
+	SpinDelayUs(16*8); //16 cycles on (8us each)
+
+	// now start writting
+	while(fwd_bit_sz-- > 0) { //prepare next bit modulation
+		if(((*fwd_write_ptr++) & 1) == 1)
+			SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
+		else {
+			//These timings work for 4469/4269/4305 (with the 55*8 above)
+			FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+			SpinDelayUs(23*8); //16-4 cycles off (8us each)
+			FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+			FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
+			SpinDelayUs(9*8); //16 cycles on (8us each)
+		}
+	}
+}
 
 void EM4xLogin(uint32_t Password) {
-  
-  uint8_t fwd_bit_count;
-  
-  forward_ptr = forwardLink_data;
-  fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
-  fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
-  
-  SendForward(fwd_bit_count);
-  
-  //Wait for command to complete
-  SpinDelay(20);
-  
+
+	uint8_t fwd_bit_count;
+
+	forward_ptr = forwardLink_data;
+	fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
+	fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
+
+	SendForward(fwd_bit_count);
+
+	//Wait for command to complete
+	SpinDelay(20);
+
 }
 
 void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
-  
-  	uint8_t *dest =  mifare_get_bigbufptr();
-	uint16_t bufferlength = 12000;
+
+	uint8_t *dest = BigBuf_get_addr();
+	uint16_t bufferlength = BigBuf_max_traceLen();
 	uint32_t i = 0;
 
 	// Clear destination buffer before sending the command  0x80 = average.
 	memset(dest, 0x80, bufferlength);
 	
-	uint8_t fwd_bit_count;
-  
+    uint8_t fwd_bit_count;
+
 	//If password mode do login
 	if (PwdMode == 1) EM4xLogin(Pwd);
-  
+
 	forward_ptr = forwardLink_data;
 	fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
 	fwd_bit_count += Prepare_Addr( Address );
-  
+
 	// Connect the A/D to the peak-detected low-frequency path.
 	SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
 	// Now set up the SSC to get the ADC samples that are now streaming at us.
 	FpgaSetupSsc();
-  
+
 	SendForward(fwd_bit_count);
-  
-	// // Turn field on to read the response
-	// TurnReadLFOn();
-	
+
 	// Now do the acquisition
 	i = 0;
 	for(;;) {
@@ -1836,21 +1990,21 @@ void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
 }
 
 void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
-  
-  uint8_t fwd_bit_count;
-  
-  //If password mode do login
-  if (PwdMode == 1) EM4xLogin(Pwd);
-  
-  forward_ptr = forwardLink_data;
-  fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
-  fwd_bit_count += Prepare_Addr( Address );
-  fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
-  
-  SendForward(fwd_bit_count);
-  
-  //Wait for write to complete
-  SpinDelay(20);
-  FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
-  LED_D_OFF();
+
+	uint8_t fwd_bit_count;
+
+	//If password mode do login
+	if (PwdMode == 1) EM4xLogin(Pwd);
+
+	forward_ptr = forwardLink_data;
+	fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
+	fwd_bit_count += Prepare_Addr( Address );
+	fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
+
+	SendForward(fwd_bit_count);
+
+	//Wait for write to complete
+	SpinDelay(20);
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+	LED_D_OFF();
 }