X-Git-Url: http://cvs.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/bf8328e92802fd5f2b63a038ac0b3fc0eeac8581..3c6354e99a34b09e6cdcba1961033aca4b98710c:/armsrc/iso14443a.c

diff --git a/armsrc/iso14443a.c b/armsrc/iso14443a.c
index c2f809fe..61c018bb 100644
--- a/armsrc/iso14443a.c
+++ b/armsrc/iso14443a.c
@@ -1,4 +1,4 @@
-//-----------------------------------------------------------------------------
+ //-----------------------------------------------------------------------------
 // Merlok - June 2011, 2012
 // Gerhard de Koning Gans - May 2008
 // Hagen Fritsch - June 2010
@@ -9,27 +9,16 @@
 //-----------------------------------------------------------------------------
 // Routines to support ISO 14443 type A.
 //-----------------------------------------------------------------------------
-
-#include "proxmark3.h"
-#include "apps.h"
-#include "util.h"
-#include "string.h"
-#include "cmd.h"
-
-#include "iso14443crc.h"
 #include "iso14443a.h"
-#include "crapto1.h"
-#include "mifareutil.h"
 
 static uint32_t iso14a_timeout;
-uint8_t *trace = (uint8_t *) BigBuf+TRACE_OFFSET;
 int rsamples = 0;
-int traceLen = 0;
-int tracing = TRUE;
 uint8_t trigger = 0;
 // the block number for the ISO14443-4 PCB
 static uint8_t iso14_pcb_blocknum = 0;
 
+static uint8_t* free_buffer_pointer;
+
 //
 // ISO14443 timing:
 //
@@ -108,8 +97,6 @@ static uint32_t NextTransferTime;
 static uint32_t LastTimeProxToAirStart;
 static uint32_t LastProxToAirDuration;
 
-
-
 // CARD TO READER - manchester
 // Sequence D: 11110000 modulation with subcarrier during first half
 // Sequence E: 00001111 modulation with subcarrier during second half
@@ -125,60 +112,50 @@ static uint32_t LastProxToAirDuration;
 #define	SEC_Y 0x00
 #define	SEC_Z 0xc0
 
-const uint8_t OddByteParity[256] = {
-  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
-  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
-  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
-  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
-  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
-  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
-  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
-  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
-  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
-  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
-  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
-  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
-  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
-  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
-  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
-  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
-};
-
 void iso14a_set_trigger(bool enable) {
 	trigger = enable;
 }
 
-void iso14a_clear_trace() {
-	memset(trace, 0x44, TRACE_SIZE);
-	traceLen = 0;
+void iso14a_set_timeout(uint32_t timeout) {
+	iso14a_timeout = timeout;
+	if(MF_DBGLEVEL >= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", iso14a_timeout, iso14a_timeout / 106);
 }
 
-void iso14a_set_tracing(bool enable) {
-	tracing = enable;
-}
+void iso14a_set_ATS_timeout(uint8_t *ats) {
+	uint8_t tb1;
+	uint8_t fwi; 
+	uint32_t fwt;
+	
+	if (ats[0] > 1) {							// there is a format byte T0
+		if ((ats[1] & 0x20) == 0x20) {			// there is an interface byte TB(1)
 
-void iso14a_set_timeout(uint32_t timeout) {
-	iso14a_timeout = timeout;
+			if ((ats[1] & 0x10) == 0x10)		// there is an interface byte TA(1) preceding TB(1)
+				tb1 = ats[3];
+			else
+				tb1 = ats[2];
+
+			fwi = (tb1 & 0xf0) >> 4;			// frame waiting indicator (FWI)
+			fwt = 256 * 16 * (1 << fwi);		// frame waiting time (FWT) in 1/fc
+			//fwt = 4096 * (1 << fwi);
+			
+			iso14a_set_timeout(fwt/(8*16));
+			//iso14a_set_timeout(fwt/128);
+		}
+	}
 }
 
 //-----------------------------------------------------------------------------
 // Generate the parity value for a byte sequence
 //
 //-----------------------------------------------------------------------------
-byte_t oddparity (const byte_t bt)
-{
-	return OddByteParity[bt];
-}
-
-void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par)
-{
+void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par) {
 	uint16_t paritybit_cnt = 0;
 	uint16_t paritybyte_cnt = 0;
 	uint8_t parityBits = 0;
 
 	for (uint16_t i = 0; i < iLen; i++) {
 		// Generate the parity bits
-		parityBits |= ((OddByteParity[pbtCmd[i]]) << (7-paritybit_cnt));
+		parityBits |= ((oddparity8(pbtCmd[i])) << (7-paritybit_cnt));
 		if (paritybit_cnt == 7) {
 			par[paritybyte_cnt] = parityBits;	// save 8 Bits parity
 			parityBits = 0;						// and advance to next Parity Byte
@@ -190,70 +167,13 @@ void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par)
 	}
 
 	// save remaining parity bits
-	par[paritybyte_cnt] = parityBits;
-	
+	par[paritybyte_cnt] = parityBits;	
 }
 
-void AppendCrc14443a(uint8_t* data, int len)
-{
+void AppendCrc14443a(uint8_t* data, int len) {
 	ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
 }
 
-// The function LogTrace() is also used by the iClass implementation in iClass.c
-bool RAMFUNC LogTrace(const uint8_t *btBytes, uint16_t iLen, uint32_t timestamp_start, uint32_t timestamp_end, uint8_t *parity, bool readerToTag)
-{
-	if (!tracing) return FALSE;
-	
-	uint16_t num_paritybytes = (iLen-1)/8 + 1;	// number of valid paritybytes in *parity
-	uint16_t duration = timestamp_end - timestamp_start;
-
-	// Return when trace is full
-	if (traceLen + sizeof(iLen) + sizeof(timestamp_start) + sizeof(duration) + num_paritybytes + iLen >= TRACE_SIZE) {
-		tracing = FALSE;	// don't trace any more
-		return FALSE;
-	}
-	
-	// Traceformat:
-	// 32 bits timestamp (little endian)
-	// 16 bits duration (little endian)
-	// 16 bits data length (little endian, Highest Bit used as readerToTag flag)
-	// y Bytes data
-	// x Bytes parity (one byte per 8 bytes data)
-	
-	// timestamp (start)
-	trace[traceLen++] = ((timestamp_start >> 0) & 0xff);
-	trace[traceLen++] = ((timestamp_start >> 8) & 0xff);
-	trace[traceLen++] = ((timestamp_start >> 16) & 0xff);
-	trace[traceLen++] = ((timestamp_start >> 24) & 0xff);
-	
-	// duration
-	trace[traceLen++] = ((duration >> 0) & 0xff);
-	trace[traceLen++] = ((duration >> 8) & 0xff);
-
-	// data length
-	trace[traceLen++] = ((iLen >> 0) & 0xff);
-	trace[traceLen++] = ((iLen >> 8) & 0xff);
-
-	// readerToTag flag
-	if (!readerToTag) {
-		trace[traceLen - 1] |= 0x80;
-	}
-
-	// data bytes
-	if (btBytes != NULL && iLen != 0) {
-		memcpy(trace + traceLen, btBytes, iLen);
-	}
-	traceLen += iLen;
-
-	// parity bytes
-	if (parity != NULL && iLen != 0) {
-		memcpy(trace + traceLen, parity, num_paritybytes);
-	}
-	traceLen += num_paritybytes;
-
-	return TRUE;
-}
-
 //=============================================================================
 // ISO 14443 Type A - Miller decoder
 //=============================================================================
@@ -273,78 +193,82 @@ bool RAMFUNC LogTrace(const uint8_t *btBytes, uint16_t iLen, uint32_t timestamp_
 static tUart Uart;
 
 // Lookup-Table to decide if 4 raw bits are a modulation.
-// We accept two or three consecutive "0" in any position with the rest "1"
+// We accept the following:
+// 0001  -   a 3 tick wide pause
+// 0011  -   a 2 tick wide pause, or a three tick wide pause shifted left
+// 0111  -   a 2 tick wide pause shifted left
+// 1001  -   a 2 tick wide pause shifted right
 const bool Mod_Miller_LUT[] = {
-	TRUE,  TRUE,  FALSE, TRUE,  FALSE, FALSE, FALSE, FALSE,
-	TRUE,  TRUE,  FALSE, FALSE, TRUE,  FALSE, FALSE, FALSE
+	FALSE,  TRUE, FALSE, TRUE,  FALSE, FALSE, FALSE, TRUE,
+	FALSE,  TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE
 };
-#define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x00F0) >> 4])
-#define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x000F)])
+#define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x000000F0) >> 4])
+#define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x0000000F)])
 
-void UartReset()
-{
+void UartReset() {
 	Uart.state = STATE_UNSYNCD;
 	Uart.bitCount = 0;
 	Uart.len = 0;						// number of decoded data bytes
 	Uart.parityLen = 0;					// number of decoded parity bytes
 	Uart.shiftReg = 0;					// shiftreg to hold decoded data bits
 	Uart.parityBits = 0;				// holds 8 parity bits
-	Uart.twoBits = 0x0000;	 			// buffer for 2 Bits
-	Uart.highCnt = 0;
 	Uart.startTime = 0;
 	Uart.endTime = 0;
+	
+	Uart.byteCntMax = 0;
+	Uart.posCnt = 0;
+	Uart.syncBit = 9999;
 }
 
-void UartInit(uint8_t *data, uint8_t *parity)
-{
+void UartInit(uint8_t *data, uint8_t *parity) {
 	Uart.output = data;
 	Uart.parity = parity;
+	Uart.fourBits = 0x00000000;			// clear the buffer for 4 Bits
 	UartReset();
 }
 
 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
-static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
-{
-
-	Uart.twoBits = (Uart.twoBits << 8) | bit;
+static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time) {
+	Uart.fourBits = (Uart.fourBits << 8) | bit;
 	
-	if (Uart.state == STATE_UNSYNCD) {												// not yet synced
-	
-		if (Uart.highCnt < 7) {													// wait for a stable unmodulated signal
-			if (Uart.twoBits == 0xffff) {
-				Uart.highCnt++;
-			} else {
-				Uart.highCnt = 0;
-			}
-		} else {	
-			Uart.syncBit = 0xFFFF; // not set
-			// look for 00xx1111 (the start bit)
-			if 		((Uart.twoBits & 0x6780) == 0x0780) Uart.syncBit = 7; 
-			else if ((Uart.twoBits & 0x33C0) == 0x03C0) Uart.syncBit = 6;
-			else if ((Uart.twoBits & 0x19E0) == 0x01E0) Uart.syncBit = 5;
-			else if ((Uart.twoBits & 0x0CF0) == 0x00F0) Uart.syncBit = 4;
-			else if ((Uart.twoBits & 0x0678) == 0x0078) Uart.syncBit = 3;
-			else if ((Uart.twoBits & 0x033C) == 0x003C) Uart.syncBit = 2;
-			else if ((Uart.twoBits & 0x019E) == 0x001E) Uart.syncBit = 1;
-			else if ((Uart.twoBits & 0x00CF) == 0x000F) Uart.syncBit = 0;
-			if (Uart.syncBit != 0xFFFF) {
-				Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
-				Uart.startTime -= Uart.syncBit;
-				Uart.endTime = Uart.startTime;
-				Uart.state = STATE_START_OF_COMMUNICATION;
-			}
+	if (Uart.state == STATE_UNSYNCD) {											// not yet synced
+			Uart.syncBit = 9999; 												// not set
+		
+		// 00x11111 2|3 ticks pause followed by 6|5 ticks unmodulated	 	Sequence Z (a "0" or "start of communication")
+		// 11111111 8 ticks unmodulation									Sequence Y (a "0" or "end of communication" or "no information")
+		// 111100x1 4 ticks unmodulated followed by 2|3 ticks pause			Sequence X (a "1")
+
+		// The start bit is one ore more Sequence Y followed by a Sequence Z (... 11111111 00x11111). We need to distinguish from
+		// Sequence X followed by Sequence Y followed by Sequence Z     (111100x1 11111111 00x11111)
+		// we therefore look for a ...xx1111 11111111 00x11111xxxxxx... pattern 
+		// (12 '1's followed by 2 '0's, eventually followed by another '0', followed by 5 '1's)
+		//
+#define ISO14443A_STARTBIT_MASK		0x07FFEF80		// mask is    00001111 11111111 1110 1111 10000000
+#define ISO14443A_STARTBIT_PATTERN	0x07FF8F80		// pattern is 00001111 11111111 1000 1111 10000000
+
+		if		((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 0)) == ISO14443A_STARTBIT_PATTERN >> 0) Uart.syncBit = 7;
+		else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 1)) == ISO14443A_STARTBIT_PATTERN >> 1) Uart.syncBit = 6;
+		else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 2)) == ISO14443A_STARTBIT_PATTERN >> 2) Uart.syncBit = 5;
+		else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 3)) == ISO14443A_STARTBIT_PATTERN >> 3) Uart.syncBit = 4;
+		else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 4)) == ISO14443A_STARTBIT_PATTERN >> 4) Uart.syncBit = 3;
+		else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 5)) == ISO14443A_STARTBIT_PATTERN >> 5) Uart.syncBit = 2;
+		else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 6)) == ISO14443A_STARTBIT_PATTERN >> 6) Uart.syncBit = 1;
+		else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 7)) == ISO14443A_STARTBIT_PATTERN >> 7) Uart.syncBit = 0;
+
+		if (Uart.syncBit != 9999) {												// found a sync bit
+			Uart.startTime = non_real_time ? non_real_time : (GetCountSspClk() & 0xfffffff8);
+			Uart.startTime -= Uart.syncBit;
+			Uart.endTime = Uart.startTime;
+			Uart.state = STATE_START_OF_COMMUNICATION;
 		}
-
 	} else {
 
-		if (IsMillerModulationNibble1(Uart.twoBits >> Uart.syncBit)) {			
-			if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) {		// Modulation in both halves - error
+		if (IsMillerModulationNibble1(Uart.fourBits >> Uart.syncBit)) {			
+			if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) {		// Modulation in both halves - error
 				UartReset();
-				Uart.highCnt = 6;
 			} else {															// Modulation in first half = Sequence Z = logic "0"
 				if (Uart.state == STATE_MILLER_X) {								// error - must not follow after X
 					UartReset();
-					Uart.highCnt = 6;
 				} else {
 					Uart.bitCount++;
 					Uart.shiftReg = (Uart.shiftReg >> 1);						// add a 0 to the shiftreg
@@ -364,7 +288,7 @@ static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
 				}
 			}
 		} else {
-			if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) {		// Modulation second half = Sequence X = logic "1"
+			if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) {		// Modulation second half = Sequence X = logic "1"
 				Uart.bitCount++;
 				Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100;					// add a 1 to the shiftreg
 				Uart.state = STATE_MILLER_X;
@@ -399,12 +323,11 @@ static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
 					if (Uart.len) {
 						return TRUE;											// we are finished with decoding the raw data sequence
 					} else {
-						UartReset();					// Nothing receiver - start over
+						UartReset();											// Nothing received - start over
 					}
 				}
 				if (Uart.state == STATE_START_OF_COMMUNICATION) {				// error - must not follow directly after SOC
 					UartReset();
-					Uart.highCnt = 6;
 				} else {														// a logic "0"
 					Uart.bitCount++;
 					Uart.shiftReg = (Uart.shiftReg >> 1);						// add a 0 to the shiftreg
@@ -423,14 +346,10 @@ static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
 				}
 			}
 		}
-			
 	} 
-
     return FALSE;	// not finished yet, need more data
 }
 
-
-
 //=============================================================================
 // ISO 14443 Type A - Manchester decoder
 //=============================================================================
@@ -458,9 +377,7 @@ const bool Mod_Manchester_LUT[] = {
 #define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
 #define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
 
-
-void DemodReset()
-{
+void DemodReset() {
 	Demod.state = DEMOD_UNSYNCD;
 	Demod.len = 0;						// number of decoded data bytes
 	Demod.parityLen = 0;
@@ -470,20 +387,20 @@ void DemodReset()
 	Demod.twoBits = 0xffff;				// buffer for 2 Bits
 	Demod.highCnt = 0;
 	Demod.startTime = 0;
-	Demod.endTime = 0;
+	Demod.endTime = 0;	
+	Demod.bitCount = 0;
+	Demod.syncBit = 0xFFFF;
+	Demod.samples = 0;
 }
 
-void DemodInit(uint8_t *data, uint8_t *parity)
-{
+void DemodInit(uint8_t *data, uint8_t *parity) {
 	Demod.output = data;
 	Demod.parity = parity;
 	DemodReset();
 }
 
 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
-static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time)
-{
-
+static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time) {
 	Demod.twoBits = (Demod.twoBits << 8) | bit;
 	
 	if (Demod.state == DEMOD_UNSYNCD) {
@@ -511,7 +428,6 @@ static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non
 				Demod.state = DEMOD_MANCHESTER_DATA;
 			}
 		}
-
 	} else {
 
 		if (IsManchesterModulationNibble1(Demod.twoBits >> Demod.syncBit)) {		// modulation in first half
@@ -569,9 +485,7 @@ static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non
 				}
 			}
 		}
-			
 	} 
-
     return FALSE;	// not finished yet, need more data
 }
 
@@ -584,39 +498,33 @@ static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non
 // Record the sequence of commands sent by the reader to the tag, with
 // triggering so that we start recording at the point that the tag is moved
 // near the reader.
+// "hf 14a sniff"
 //-----------------------------------------------------------------------------
-void RAMFUNC SnoopIso14443a(uint8_t param) {
+void RAMFUNC SniffIso14443a(uint8_t param) {
 	// param:
 	// bit 0 - trigger from first card answer
 	// bit 1 - trigger from first reader 7-bit request
-	
 	LEDsoff();
-	// init trace buffer
-	iso14a_clear_trace();
-	iso14a_set_tracing(TRUE);
 
-	// We won't start recording the frames that we acquire until we trigger;
-	// a good trigger condition to get started is probably when we see a
-	// response from the tag.
-	// triggered == FALSE -- to wait first for card
-	bool triggered = !(param & 0x03); 
+	iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
+	
+	// Allocate memory from BigBuf for some buffers
+	// free all previous allocations first
+	BigBuf_free(); BigBuf_Clear_ext(false);
+	clear_trace();
+	set_tracing(TRUE);
 	
 	// The command (reader -> tag) that we're receiving.
-	// The length of a received command will in most cases be no more than 18 bytes.
-	// So 32 should be enough!
-	uint8_t *receivedCmd = ((uint8_t *)BigBuf) + RECV_CMD_OFFSET;
-	uint8_t *receivedCmdPar = ((uint8_t *)BigBuf) + RECV_CMD_PAR_OFFSET;
+	uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
+	uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
 	
 	// The response (tag -> reader) that we're receiving.
-	uint8_t *receivedResponse = ((uint8_t *)BigBuf) + RECV_RESP_OFFSET;
-	uint8_t *receivedResponsePar = ((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET;
-	
-	// As we receive stuff, we copy it from receivedCmd or receivedResponse
-	// into trace, along with its length and other annotations.
-	//uint8_t *trace = (uint8_t *)BigBuf;
+	uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE);
+	uint8_t *receivedResponsePar = BigBuf_malloc(MAX_PARITY_SIZE);
 	
 	// The DMA buffer, used to stream samples from the FPGA
-	uint8_t *dmaBuf = ((uint8_t *)BigBuf) + DMA_BUFFER_OFFSET;
+	uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
+
 	uint8_t *data = dmaBuf;
 	uint8_t previous_data = 0;
 	int maxDataLen = 0;
@@ -624,8 +532,6 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
 	bool TagIsActive = FALSE;
 	bool ReaderIsActive = FALSE;
 	
-	iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
-
 	// Set up the demodulator for tag -> reader responses.
 	DemodInit(receivedResponse, receivedResponsePar);
 	
@@ -633,7 +539,16 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
 	UartInit(receivedCmd, receivedCmdPar);
 	
 	// Setup and start DMA.
-	FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
+	if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, DMA_BUFFER_SIZE) ){
+		if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting"); 
+		return;
+	}
+	
+	// We won't start recording the frames that we acquire until we trigger;
+	// a good trigger condition to get started is probably when we see a
+	// response from the tag.
+	// triggered == FALSE -- to wait first for card
+	bool triggered = !(param & 0x03); 
 	
 	// And now we loop, receiving samples.
 	for(uint32_t rsamples = 0; TRUE; ) {
@@ -656,7 +571,7 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
 		// test for length of buffer
 		if(dataLen > maxDataLen) {
 			maxDataLen = dataLen;
-			if(dataLen > 400) {
+			if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
 				Dbprintf("blew circular buffer! dataLen=%d", dataLen);
 				break;
 			}
@@ -721,6 +636,8 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
 
 					// And ready to receive another response.
 					DemodReset();
+					// And reset the Miller decoder including itS (now outdated) input buffer
+					UartInit(receivedCmd, receivedCmdPar);
 					LED_C_OFF();
 				} 
 				TagIsActive = (Demod.state != DEMOD_UNSYNCD);
@@ -735,19 +652,20 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
 		}
 	} // main cycle
 
-	DbpString("COMMAND FINISHED");
-
+	if (MF_DBGLEVEL >= 1) {
+		Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len);
+		Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart.output[0]);
+	}
 	FpgaDisableSscDma();
-	Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len);
-	Dbprintf("traceLen=%d, Uart.output[0]=%08x", traceLen, (uint32_t)Uart.output[0]);
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
 	LEDsoff();
+	set_tracing(FALSE);	
 }
 
 //-----------------------------------------------------------------------------
 // Prepare tag messages
 //-----------------------------------------------------------------------------
-static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *parity)
-{
+static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *parity) {
 	ToSendReset();
 
 	// Correction bit, might be removed when not needed
@@ -791,21 +709,17 @@ static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *par
 	ToSend[++ToSendMax] = SEC_F;
 
 	// Convert from last byte pos to length
-	ToSendMax++;
+	++ToSendMax;
 }
 
-static void CodeIso14443aAsTag(const uint8_t *cmd, uint16_t len)
-{
-	uint8_t par[MAX_PARITY_SIZE];
-	
+static void CodeIso14443aAsTag(const uint8_t *cmd, uint16_t len) {
+	uint8_t par[MAX_PARITY_SIZE] = {0};
 	GetParity(cmd, len, par);
 	CodeIso14443aAsTagPar(cmd, len, par);
 }
 
-
-static void Code4bitAnswerAsTag(uint8_t cmd)
-{
-	int i;
+static void Code4bitAnswerAsTag(uint8_t cmd) {
+	uint8_t b = cmd;
 
 	ToSendReset();
 
@@ -822,8 +736,7 @@ static void Code4bitAnswerAsTag(uint8_t cmd)
 	// Send startbit
 	ToSend[++ToSendMax] = SEC_D;
 
-	uint8_t b = cmd;
-	for(i = 0; i < 4; i++) {
+	for(uint8_t i = 0; i < 4; i++) {
 		if(b & 1) {
 			ToSend[++ToSendMax] = SEC_D;
 			LastProxToAirDuration = 8 * ToSendMax - 4;
@@ -846,15 +759,14 @@ static void Code4bitAnswerAsTag(uint8_t cmd)
 // Stop when button is pressed
 // Or return TRUE when command is captured
 //-----------------------------------------------------------------------------
-static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int *len)
-{
+static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int *len) {
     // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
     // only, since we are receiving, not transmitting).
     // Signal field is off with the appropriate LED
     LED_D_OFF();
     FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
 
-    // Now run a `software UART' on the stream of incoming samples.
+    // Now run a `software UART` on the stream of incoming samples.
 	UartInit(received, parity);
 
 	// clear RXRDY:
@@ -875,30 +787,6 @@ static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int
     }
 }
 
-static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
-int EmSend4bitEx(uint8_t resp, bool correctionNeeded);
-int EmSend4bit(uint8_t resp);
-int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par);
-int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
-int EmSendCmd(uint8_t *resp, uint16_t respLen);
-int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par);
-bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
-				 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity);
-
-static uint8_t* free_buffer_pointer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
-
-typedef struct {
-  uint8_t* response;
-  size_t   response_n;
-  uint8_t* modulation;
-  size_t   modulation_n;
-  uint32_t ProxToAirDuration;
-} tag_response_info_t;
-
-void reset_free_buffer() {
-  free_buffer_pointer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
-}
-
 bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) {
 	// Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
 	// This will need the following byte array for a modulation sequence
@@ -910,89 +798,130 @@ bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffe
 	// ----------- +
 	//    166 bytes, since every bit that needs to be send costs us a byte
 	//
-  
-  // Prepare the tag modulation bits from the message
-  CodeIso14443aAsTag(response_info->response,response_info->response_n);
-  
-  // Make sure we do not exceed the free buffer space
-  if (ToSendMax > max_buffer_size) {
-    Dbprintf("Out of memory, when modulating bits for tag answer:");
-    Dbhexdump(response_info->response_n,response_info->response,false);
-    return false;
-  }
-  
-  // Copy the byte array, used for this modulation to the buffer position
-  memcpy(response_info->modulation,ToSend,ToSendMax);
-  
-  // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
-  response_info->modulation_n = ToSendMax;
-  response_info->ProxToAirDuration = LastProxToAirDuration;
-  
-  return true;
+	// Prepare the tag modulation bits from the message
+	CodeIso14443aAsTag(response_info->response,response_info->response_n);
+
+	// Make sure we do not exceed the free buffer space
+	if (ToSendMax > max_buffer_size) {
+		Dbprintf("Out of memory, when modulating bits for tag answer:");
+		Dbhexdump(response_info->response_n,response_info->response,false);
+		return FALSE;
+	}
+
+	// Copy the byte array, used for this modulation to the buffer position
+	memcpy(response_info->modulation,ToSend,ToSendMax);
+
+	// Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
+	response_info->modulation_n = ToSendMax;
+	response_info->ProxToAirDuration = LastProxToAirDuration;
+	return TRUE;
 }
 
+// "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit.
+// Coded responses need one byte per bit to transfer (data, parity, start, stop, correction) 
+// 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits
+// -> need 273 bytes buffer
+// 44 * 8 data bits, 44 * 1 parity bits, 9 start bits, 9 stop bits, 9 correction bits --370
+// 47 * 8 data bits, 47 * 1 parity bits, 10 start bits, 10 stop bits, 10 correction bits 
+#define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 453 
+
 bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
-  // Retrieve and store the current buffer index
-  response_info->modulation = free_buffer_pointer;
-  
-  // Determine the maximum size we can use from our buffer
-  size_t max_buffer_size = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + FREE_BUFFER_SIZE) - free_buffer_pointer;
-  
-  // Forward the prepare tag modulation function to the inner function
-  if (prepare_tag_modulation(response_info,max_buffer_size)) {
-    // Update the free buffer offset
-    free_buffer_pointer += ToSendMax;
-    return true;
-  } else {
-    return false;
-  }
+	// Retrieve and store the current buffer index
+	response_info->modulation = free_buffer_pointer;
+
+	// Determine the maximum size we can use from our buffer
+	size_t max_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE;
+
+	// Forward the prepare tag modulation function to the inner function
+	if (prepare_tag_modulation(response_info, max_buffer_size)) {
+		// Update the free buffer offset
+		free_buffer_pointer += ToSendMax;
+		return true;
+	} else {
+		return false;
+	}
 }
 
 //-----------------------------------------------------------------------------
 // Main loop of simulated tag: receive commands from reader, decide what
 // response to send, and send it.
+// 'hf 14a sim'
 //-----------------------------------------------------------------------------
-void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
-{
-	// Enable and clear the trace
-	iso14a_clear_trace();
-	iso14a_set_tracing(TRUE);
-
-	uint8_t sak;
+void SimulateIso14443aTag(int tagType, int flags, byte_t* data) {
 
+	uint8_t sak = 0;
+	uint32_t cuid = 0;			
+	uint32_t nonce = 0;
+	
+	// PACK response to PWD AUTH for EV1/NTAG
+	uint8_t response8[4] = {0,0,0,0};
+	// Counter for EV1/NTAG
+	uint32_t counters[] = {0,0,0};
+	
 	// The first response contains the ATQA (note: bytes are transmitted in reverse order).
-	uint8_t response1[2];
+	uint8_t response1[] = {0,0};
+
+	// Here, we collect CUID, block1, keytype1, NT1, NR1, AR1, CUID, block2, keytyp2, NT2, NR2, AR2
+	// it should also collect block, keytype.
+	uint8_t cardAUTHSC = 0;
+	uint8_t cardAUTHKEY = 0xff;  // no authentication
+	// allow collecting up to 8 sets of nonces to allow recovery of up to 8 keys
+	#define ATTACK_KEY_COUNT 8 // keep same as define in cmdhfmf.c -> readerAttack()
+	nonces_t ar_nr_resp[ATTACK_KEY_COUNT*2]; // for 2 separate attack types (nml, moebius)
+	memset(ar_nr_resp, 0x00, sizeof(ar_nr_resp));
+
+	uint8_t ar_nr_collected[ATTACK_KEY_COUNT*2]; // for 2nd attack type (moebius)
+	memset(ar_nr_collected, 0x00, sizeof(ar_nr_collected));
+	uint8_t	nonce1_count = 0;
+	uint8_t	nonce2_count = 0;
+	uint8_t	moebius_n_count = 0;
+	bool gettingMoebius = false;
+	uint8_t	mM = 0; // moebius_modifier for collection storage
+
 	
 	switch (tagType) {
-		case 1: { // MIFARE Classic
-			// Says: I am Mifare 1k - original line
+		case 1: { // MIFARE Classic 1k 
 			response1[0] = 0x04;
-			response1[1] = 0x00;
 			sak = 0x08;
 		} break;
 		case 2: { // MIFARE Ultralight
-			// Says: I am a stupid memory tag, no crypto
-			response1[0] = 0x04;
-			response1[1] = 0x00;
+			response1[0] = 0x44;
 			sak = 0x00;
 		} break;
 		case 3: { // MIFARE DESFire
-			// Says: I am a DESFire tag, ph33r me
 			response1[0] = 0x04;
 			response1[1] = 0x03;
 			sak = 0x20;
 		} break;
-		case 4: { // ISO/IEC 14443-4
-			// Says: I am a javacard (JCOP)
+		case 4: { // ISO/IEC 14443-4 - javacard (JCOP)
 			response1[0] = 0x04;
-			response1[1] = 0x00;
 			sak = 0x28;
 		} break;
 		case 5: { // MIFARE TNP3XXX
-			// Says: I am a toy
 			response1[0] = 0x01;
 			response1[1] = 0x0f;
 			sak = 0x01;
+		} break;
+		case 6: { // MIFARE Mini 320b
+			response1[0] = 0x44;
+			sak = 0x09;
+		} break;
+		case 7: { // NTAG
+			response1[0] = 0x44;
+			sak = 0x00;
+			// PACK
+			response8[0] = 0x80;
+			response8[1] = 0x80;
+			ComputeCrc14443(CRC_14443_A, response8, 2, &response8[2], &response8[3]);
+			// uid not supplied then get from emulator memory
+			if (data[0]==0) {
+				uint16_t start = 4 * (0+12);  
+				uint8_t emdata[8];
+				emlGetMemBt( emdata, start, sizeof(emdata));
+				memcpy(data, emdata, 3); // uid bytes 0-2
+				memcpy(data+3, emdata+4, 4); // uid bytes 3-7
+				flags |= FLAG_7B_UID_IN_DATA;
+			}
 		} break;		
 		default: {
 			Dbprintf("Error: unkown tagtype (%d)",tagType);
@@ -1001,48 +930,66 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 	}
 	
 	// The second response contains the (mandatory) first 24 bits of the UID
-	uint8_t response2[5];
-
-	// Check if the uid uses the (optional) part
-	uint8_t response2a[5];
-	if (uid_2nd) {
-		response2[0] = 0x88;
-		num_to_bytes(uid_1st,3,response2+1);
-		num_to_bytes(uid_2nd,4,response2a);
+	uint8_t response2[5] = {0x00};
+
+	// For UID size 7, 
+	uint8_t response2a[5] = {0x00};
+	
+	if ( (flags & FLAG_7B_UID_IN_DATA) == FLAG_7B_UID_IN_DATA ) {
+		response2[0] = 0x88;  // Cascade Tag marker
+		response2[1] = data[0];
+		response2[2] = data[1];
+		response2[3] = data[2];
+
+		response2a[0] = data[3];
+		response2a[1] = data[4];
+		response2a[2] = data[5];
+		response2a[3] = data[6]; //??
 		response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3];
 
 		// Configure the ATQA and SAK accordingly
 		response1[0] |= 0x40;
 		sak |= 0x04;
+		
+		cuid = bytes_to_num(data+3, 4);
 	} else {
-		num_to_bytes(uid_1st,4,response2);
+		memcpy(response2, data, 4);
 		// Configure the ATQA and SAK accordingly
 		response1[0] &= 0xBF;
 		sak &= 0xFB;
+		cuid = bytes_to_num(data, 4);
 	}
 
 	// Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
 	response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3];
 
 	// Prepare the mandatory SAK (for 4 and 7 byte UID)
-	uint8_t response3[3];
-	response3[0] = sak;
+	uint8_t response3[3]  = {sak, 0x00, 0x00};
 	ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
 
 	// Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
-	uint8_t response3a[3];
+	uint8_t response3a[3]  = {0x00};
 	response3a[0] = sak & 0xFB;
 	ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
 
-	uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
-	uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS: 
+	uint8_t response5[] = { 0x01, 0x01, 0x01, 0x01 }; 				// Very random tag nonce
+	uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; 	// dummy ATS (pseudo-ATR), answer to RATS: 
 	// Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present, 
 	// TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
 	// TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
 	// TC(1) = 0x02: CID supported, NAD not supported
 	ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]);
 
-	#define TAG_RESPONSE_COUNT 7
+	// the randon nonce
+	nonce = bytes_to_num(response5, 4);	
+	
+	// Prepare GET_VERSION (different for UL EV-1 / NTAG)
+	// uint8_t response7_EV1[] = {0x00, 0x04, 0x03, 0x01, 0x01, 0x00, 0x0b, 0x03, 0xfd, 0xf7};  //EV1 48bytes VERSION.
+	// uint8_t response7_NTAG[] = {0x00, 0x04, 0x04, 0x02, 0x01, 0x00, 0x11, 0x03, 0x01, 0x9e}; //NTAG 215	
+	// Prepare CHK_TEARING
+	// uint8_t response9[] =  {0xBD,0x90,0x3f};
+	
+	#define TAG_RESPONSE_COUNT 10
 	tag_response_info_t responses[TAG_RESPONSE_COUNT] = {
 		{ .response = response1,  .response_n = sizeof(response1)  },  // Answer to request - respond with card type
 		{ .response = response2,  .response_n = sizeof(response2)  },  // Anticollision cascade1 - respond with uid
@@ -1051,7 +998,12 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 		{ .response = response3a, .response_n = sizeof(response3a) },  // Acknowledge select - cascade 2
 		{ .response = response5,  .response_n = sizeof(response5)  },  // Authentication answer (random nonce)
 		{ .response = response6,  .response_n = sizeof(response6)  },  // dummy ATS (pseudo-ATR), answer to RATS
-	};
+
+		{ .response = response8,   .response_n = sizeof(response8) }  // EV1/NTAG PACK response
+	};	
+		// { .response = response7_NTAG, .response_n = sizeof(response7_NTAG)}, // EV1/NTAG GET_VERSION response
+		// { .response = response9,      .response_n = sizeof(response9)     }  // EV1/NTAG CHK_TEAR response
+	
 
 	// Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
 	// Such a response is less time critical, so we can prepare them on the fly
@@ -1066,14 +1018,22 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 		.modulation_n = 0
 	};
   
-	// Reset the offset pointer of the free buffer
-	reset_free_buffer();
-  
+	// We need to listen to the high-frequency, peak-detected path.
+	iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
+
+	BigBuf_free_keep_EM();
+	clear_trace();
+	set_tracing(TRUE);
+
+	// allocate buffers:
+	uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
+	uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
+	free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE);
+
 	// Prepare the responses of the anticollision phase
 	// there will be not enough time to do this at the moment the reader sends it REQA
-	for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) {
+	for (size_t i=0; i<TAG_RESPONSE_COUNT; i++)
 		prepare_allocated_tag_modulation(&responses[i]);
-	}
 
 	int len = 0;
 
@@ -1085,56 +1045,121 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 	int happened = 0;
 	int happened2 = 0;
 	int cmdsRecvd = 0;
-
-	// We need to listen to the high-frequency, peak-detected path.
-	iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
-
-	// buffers used on software Uart:
-	uint8_t *receivedCmd = ((uint8_t *)BigBuf) + RECV_CMD_OFFSET;
-	uint8_t *receivedCmdPar = ((uint8_t *)BigBuf) + RECV_CMD_PAR_OFFSET;
-
-	cmdsRecvd = 0;
 	tag_response_info_t* p_response;
 
 	LED_A_ON();
-	for(;;) {
-		// Clean receive command buffer
+	for(;;) {	
+		WDT_HIT();
 		
+		// Clean receive command buffer
 		if(!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)) {
 			DbpString("Button press");
 			break;
 		}
-
+		
+		// incease nonce at every command recieved
+		nonce++;
+		num_to_bytes(nonce, 4, response5);
+		
 		p_response = NULL;
 		
 		// Okay, look at the command now.
 		lastorder = order;
-		if(receivedCmd[0] == 0x26) { // Received a REQUEST
+		if(receivedCmd[0] == ISO14443A_CMD_REQA) { // Received a REQUEST
 			p_response = &responses[0]; order = 1;
-		} else if(receivedCmd[0] == 0x52) { // Received a WAKEUP
+		} else if(receivedCmd[0] == ISO14443A_CMD_WUPA) { // Received a WAKEUP
 			p_response = &responses[0]; order = 6;
-		} else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) {	// Received request for UID (cascade 1)
+		} else if(receivedCmd[1] == 0x20 && receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT) {	// Received request for UID (cascade 1)
 			p_response = &responses[1]; order = 2;
-		} else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { 	// Received request for UID (cascade 2)
+		} else if(receivedCmd[1] == 0x20 && receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2) { 	// Received request for UID (cascade 2)
 			p_response = &responses[2]; order = 20;
-		} else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) {	// Received a SELECT (cascade 1)
+		} else if(receivedCmd[1] == 0x70 && receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT) {	// Received a SELECT (cascade 1)
 			p_response = &responses[3]; order = 3;
-		} else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) {	// Received a SELECT (cascade 2)
-			p_response = &responses[4]; order = 30;
-		} else if(receivedCmd[0] == 0x30) {	// Received a (plain) READ
-			EmSendCmdEx(data+(4*receivedCmd[1]),16,false);
-			// Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
-			// We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
-			p_response = NULL;
-		} else if(receivedCmd[0] == 0x50) {	// Received a HALT
-
-			if (tracing) {
-				LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
+		} else if(receivedCmd[1] == 0x70 && receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2) {	// Received a SELECT (cascade 2)
+			p_response = &responses[4]; order = 30;		
+		} else if(receivedCmd[0] == ISO14443A_CMD_READBLOCK) {	// Received a (plain) READ
+			uint8_t block = receivedCmd[1];
+			// if Ultralight or NTAG (4 byte blocks)
+			if ( tagType == 7 || tagType == 2 ) {
+				// first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
+				uint16_t start = 4 * (block+12);  
+				uint8_t emdata[MAX_MIFARE_FRAME_SIZE];
+				emlGetMemBt( emdata, start, 16);
+				AppendCrc14443a(emdata, 16);
+				EmSendCmdEx(emdata, sizeof(emdata), false);
+				// We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
+				p_response = NULL;
+			} else { // all other tags (16 byte block tags)
+				uint8_t emdata[MAX_MIFARE_FRAME_SIZE];
+				emlGetMemBt( emdata, block, 16);
+				AppendCrc14443a(emdata, 16);
+				EmSendCmdEx(emdata, sizeof(emdata), false);
+				// EmSendCmdEx(data+(4*receivedCmd[1]),16,false);
+				// Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
+				// We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
+				p_response = NULL;
 			}
+		} else if(receivedCmd[0] == MIFARE_ULEV1_FASTREAD) {	// Received a FAST READ (ranged read)				
+			uint8_t emdata[MAX_FRAME_SIZE];
+			// first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
+			int start =  (receivedCmd[1]+12) * 4; 
+			int len   = (receivedCmd[2] - receivedCmd[1] + 1) * 4;
+			emlGetMemBt( emdata, start, len);
+			AppendCrc14443a(emdata, len);
+			EmSendCmdEx(emdata, len+2, false);				
+			p_response = NULL;		
+		} else if(receivedCmd[0] == MIFARE_ULEV1_READSIG && tagType == 7) {	// Received a READ SIGNATURE -- 
+			// first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
+			uint16_t start = 4 * 4;
+			uint8_t emdata[34];
+			emlGetMemBt( emdata, start, 32);
+			AppendCrc14443a(emdata, 32);
+			EmSendCmdEx(emdata, sizeof(emdata), false);
+			p_response = NULL;					
+		} else if (receivedCmd[0] == MIFARE_ULEV1_READ_CNT && tagType == 7) {	// Received a READ COUNTER -- 
+			uint8_t index = receivedCmd[1];
+			uint8_t data[] =  {0x00,0x00,0x00,0x14,0xa5};
+			if ( counters[index] > 0) {
+				num_to_bytes(counters[index], 3, data);
+				AppendCrc14443a(data, sizeof(data)-2);
+			}
+			EmSendCmdEx(data,sizeof(data),false);				
+			p_response = NULL;
+		} else if (receivedCmd[0] == MIFARE_ULEV1_INCR_CNT && tagType == 7) {	// Received a INC COUNTER -- 
+			// number of counter
+			uint8_t counter = receivedCmd[1];
+			uint32_t val = bytes_to_num(receivedCmd+2,4);
+			counters[counter] = val;
+		
+			// send ACK
+			uint8_t ack[] = {0x0a};
+			EmSendCmdEx(ack,sizeof(ack),false);
+			p_response = NULL;			
+		} else if(receivedCmd[0] == MIFARE_ULEV1_CHECKTEAR && tagType == 7) {	// Received a CHECK_TEARING_EVENT -- 
+			// first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
+			uint8_t emdata[3];
+			uint8_t counter=0;
+			if (receivedCmd[1]<3) counter = receivedCmd[1];
+			emlGetMemBt( emdata, 10+counter, 1);
+			AppendCrc14443a(emdata, sizeof(emdata)-2);
+			EmSendCmdEx(emdata, sizeof(emdata), false);	
+			p_response = NULL;		
+		} else if(receivedCmd[0] == ISO14443A_CMD_HALT) {	// Received a HALT
+			LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
 			p_response = NULL;
-		} else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) {	// Received an authentication request
-			p_response = &responses[5]; order = 7;
-		} else if(receivedCmd[0] == 0xE0) {	// Received a RATS request
+		} else if(receivedCmd[0] == MIFARE_AUTH_KEYA || receivedCmd[0] == MIFARE_AUTH_KEYB) {	// Received an authentication request				
+			if ( tagType == 7 ) {   // IF NTAG /EV1  0x60 == GET_VERSION, not a authentication request.
+				uint8_t emdata[10];
+				emlGetMemBt( emdata, 0, 8 );
+				AppendCrc14443a(emdata, sizeof(emdata)-2);
+				EmSendCmdEx(emdata, sizeof(emdata), false);
+				p_response = NULL;
+			} else {
+				cardAUTHSC = receivedCmd[1] / 4; // received block num
+				cardAUTHKEY = receivedCmd[0] - 0x60;
+				p_response = &responses[5]; order = 7;
+			}
+		} else if(receivedCmd[0] == ISO14443A_CMD_RATS) {	// Received a RATS request
 			if (tagType == 1 || tagType == 2) {	// RATS not supported
 				EmSend4bit(CARD_NACK_NA);
 				p_response = NULL;
@@ -1142,18 +1167,98 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 				p_response = &responses[6]; order = 70;
 			}
 		} else if (order == 7 && len == 8) { // Received {nr] and {ar} (part of authentication)
-			if (tracing) {
-				LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
-			}
+			LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
 			uint32_t nr = bytes_to_num(receivedCmd,4);
 			uint32_t ar = bytes_to_num(receivedCmd+4,4);
-			Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr,ar);
+
+			// Collect AR/NR per keytype & sector
+			if ( (flags & FLAG_NR_AR_ATTACK) == FLAG_NR_AR_ATTACK ) {
+					for (uint8_t i = 0; i < ATTACK_KEY_COUNT; i++) {
+						if ( ar_nr_collected[i+mM]==0 || ((cardAUTHSC == ar_nr_resp[i+mM].sector) && (cardAUTHKEY == ar_nr_resp[i+mM].keytype) && (ar_nr_collected[i+mM] > 0)) ) {
+							// if first auth for sector, or matches sector and keytype of previous auth
+							if (ar_nr_collected[i+mM] < 2) {
+								// if we haven't already collected 2 nonces for this sector
+								if (ar_nr_resp[ar_nr_collected[i+mM]].ar != ar) {
+									// Avoid duplicates... probably not necessary, ar should vary. 
+									if (ar_nr_collected[i+mM]==0) {
+										// first nonce collect
+										ar_nr_resp[i+mM].cuid = cuid;
+										ar_nr_resp[i+mM].sector = cardAUTHSC;
+										ar_nr_resp[i+mM].keytype = cardAUTHKEY;
+										ar_nr_resp[i+mM].nonce = nonce;
+										ar_nr_resp[i+mM].nr = nr;
+										ar_nr_resp[i+mM].ar = ar;
+										nonce1_count++;
+										// add this nonce to first moebius nonce
+										ar_nr_resp[i+ATTACK_KEY_COUNT].cuid = cuid;
+										ar_nr_resp[i+ATTACK_KEY_COUNT].sector = cardAUTHSC;
+										ar_nr_resp[i+ATTACK_KEY_COUNT].keytype = cardAUTHKEY;
+										ar_nr_resp[i+ATTACK_KEY_COUNT].nonce = nonce;
+										ar_nr_resp[i+ATTACK_KEY_COUNT].nr = nr;
+										ar_nr_resp[i+ATTACK_KEY_COUNT].ar = ar;
+										ar_nr_collected[i+ATTACK_KEY_COUNT]++;
+									} else { // second nonce collect (std and moebius)
+										ar_nr_resp[i+mM].nonce2 = nonce;
+										ar_nr_resp[i+mM].nr2 = nr;
+										ar_nr_resp[i+mM].ar2 = ar;
+										if (!gettingMoebius) {
+											nonce2_count++;
+											// check if this was the last second nonce we need for std attack
+											if ( nonce2_count == nonce1_count ) {
+												// done collecting std test switch to moebius
+												// first finish incrementing last sample
+												ar_nr_collected[i+mM]++; 
+												// switch to moebius collection
+												gettingMoebius = true;
+												mM = ATTACK_KEY_COUNT;
+												break;
+											}
+										} else {
+											moebius_n_count++;
+											// if we've collected all the nonces we need - finish.
+											if (nonce1_count == moebius_n_count) {
+												cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,0,0,&ar_nr_resp,sizeof(ar_nr_resp));
+												nonce1_count = 0;
+												nonce2_count = 0;
+												moebius_n_count = 0;
+												gettingMoebius = false;
+											}
+										}
+									}
+									ar_nr_collected[i+mM]++;
+								}
+							}
+							// we found right spot for this nonce stop looking
+							break;
+						}
+					}
+				}
+			
+		} else if (receivedCmd[0] == MIFARE_ULC_AUTH_1 ) { // ULC authentication, or Desfire Authentication
+		} else if (receivedCmd[0] == MIFARE_ULEV1_AUTH) { // NTAG / EV-1 authentication
+			if ( tagType == 7 ) {
+				uint16_t start = 13; // first 4 blocks of emu are [getversion answer - check tearing - pack - 0x00]
+				uint8_t emdata[4];
+				emlGetMemBt( emdata, start, 2);
+				AppendCrc14443a(emdata, 2);
+				EmSendCmdEx(emdata, sizeof(emdata), false);
+				p_response = NULL;
+				uint32_t pwd = bytes_to_num(receivedCmd+1,4);
+				
+				if ( MF_DBGLEVEL >= 3) Dbprintf("Auth attempt: %08x", pwd);	
+			}
 		} else {
 			// Check for ISO 14443A-4 compliant commands, look at left nibble
 			switch (receivedCmd[0]) {
-
+				case 0x02:
+				case 0x03: {  // IBlock (command no CID)
+					dynamic_response_info.response[0] = receivedCmd[0];
+					dynamic_response_info.response[1] = 0x90;
+					dynamic_response_info.response[2] = 0x00;
+					dynamic_response_info.response_n = 3;
+				} break;
 				case 0x0B:
-				case 0x0A: { // IBlock (command)
+				case 0x0A: { // IBlock (command CID)
 				  dynamic_response_info.response[0] = receivedCmd[0];
 				  dynamic_response_info.response[1] = 0x00;
 				  dynamic_response_info.response[2] = 0x90;
@@ -1173,22 +1278,22 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 				  dynamic_response_info.response_n = 2;
 				} break;
 				  
-				case 0xBA: { //
-				  memcpy(dynamic_response_info.response,"\xAB\x00",2);
-				  dynamic_response_info.response_n = 2;
+				case 0xBA: { // ping / pong
+					dynamic_response_info.response[0] = 0xAB;
+					dynamic_response_info.response[1] = 0x00;
+					dynamic_response_info.response_n = 2;
 				} break;
 
 				case 0xCA:
 				case 0xC2: { // Readers sends deselect command
-				  memcpy(dynamic_response_info.response,"\xCA\x00",2);
-				  dynamic_response_info.response_n = 2;
+					dynamic_response_info.response[0] = 0xCA;
+					dynamic_response_info.response[1] = 0x00;
+					dynamic_response_info.response_n = 2;
 				} break;
 
 				default: {
 					// Never seen this command before
-					if (tracing) {
-						LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
-					}
+					LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
 					Dbprintf("Received unknown command (len=%d):",len);
 					Dbhexdump(len,receivedCmd,false);
 					// Do not respond
@@ -1206,9 +1311,7 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
         
 				if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) {
 					Dbprintf("Error preparing tag response");
-					if (tracing) {
-						LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
-					}
+					LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
 					break;
 				}
 				p_response = &dynamic_response_info;
@@ -1221,6 +1324,12 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 		// Count number of other messages after a halt
 		if(order != 6 && lastorder == 5) { happened2++; }
 
+		// comment this limit if you want to simulation longer		
+		if (!tracing) {
+			Dbprintf("Trace Full. Simulation stopped.");
+			break;
+		}
+		// comment this limit if you want to simulation longer
 		if(cmdsRecvd > 999) {
 			DbpString("1000 commands later...");
 			break;
@@ -1230,7 +1339,7 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 		if (p_response != NULL) {
 			EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52);
 			// do the tracing for the previous reader request and this tag answer:
-			uint8_t par[MAX_PARITY_SIZE];
+			uint8_t par[MAX_PARITY_SIZE] = {0x00};
 			GetParity(p_response->response, p_response->response_n, par);
 	
 			EmLogTrace(Uart.output, 
@@ -1244,40 +1353,73 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 						(LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG, 
 						par);
 		}
-		
-		if (!tracing) {
-			Dbprintf("Trace Full. Simulation stopped.");
-			break;
-		}
 	}
 
-	Dbprintf("%x %x %x", happened, happened2, cmdsRecvd);
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+	set_tracing(FALSE);
+	BigBuf_free_keep_EM();
 	LED_A_OFF();
+	
+		if(flags & FLAG_NR_AR_ATTACK && MF_DBGLEVEL >= 1) {
+		for ( uint8_t	i = 0; i < ATTACK_KEY_COUNT; i++) {
+			if (ar_nr_collected[i] == 2) {
+				Dbprintf("Collected two pairs of AR/NR which can be used to extract %s from reader for sector %d:", (i<ATTACK_KEY_COUNT/2) ? "keyA" : "keyB", ar_nr_resp[i].sector);
+				Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
+						ar_nr_resp[i].cuid,  //UID
+						ar_nr_resp[i].nonce, //NT
+						ar_nr_resp[i].nr,    //NR1
+						ar_nr_resp[i].ar,    //AR1
+						ar_nr_resp[i].nr2,   //NR2
+						ar_nr_resp[i].ar2    //AR2
+						);
+			}
+		}	
+		for ( uint8_t	i = ATTACK_KEY_COUNT; i < ATTACK_KEY_COUNT*2; i++) {
+			if (ar_nr_collected[i] == 2) {
+				Dbprintf("Collected two pairs of AR/NR which can be used to extract %s from reader for sector %d:", (i<ATTACK_KEY_COUNT/2) ? "keyA" : "keyB", ar_nr_resp[i].sector);
+				Dbprintf("../tools/mfkey/mfkey32v2 %08x %08x %08x %08x %08x %08x %08x",
+						ar_nr_resp[i].cuid,  //UID
+						ar_nr_resp[i].nonce, //NT
+						ar_nr_resp[i].nr,    //NR1
+						ar_nr_resp[i].ar,    //AR1
+						ar_nr_resp[i].nonce2,//NT2
+						ar_nr_resp[i].nr2,   //NR2
+						ar_nr_resp[i].ar2    //AR2
+						);
+			}
+		}
+	}
+	
+	if (MF_DBGLEVEL >= 4){
+		Dbprintf("-[ Wake ups after halt [%d]", happened);
+		Dbprintf("-[ Messages after halt [%d]", happened2);
+		Dbprintf("-[ Num of received cmd [%d]", cmdsRecvd);
+	}
 }
 
-
 // prepare a delayed transfer. This simply shifts ToSend[] by a number
 // of bits specified in the delay parameter.
-void PrepareDelayedTransfer(uint16_t delay)
-{
+void PrepareDelayedTransfer(uint16_t delay) {
+	delay &= 0x07;
+	if (!delay) return;
+
 	uint8_t bitmask = 0;
 	uint8_t bits_to_shift = 0;
 	uint8_t bits_shifted = 0;
-	
-	delay &= 0x07;
-	if (delay) {
-		for (uint16_t i = 0; i < delay; i++) {
-			bitmask |= (0x01 << i);
-		}
-		ToSend[ToSendMax++] = 0x00;
-		for (uint16_t i = 0; i < ToSendMax; i++) {
+	uint16_t i = 0;
+
+	for (i = 0; i < delay; ++i)
+		bitmask |= (0x01 << i);
+
+	ToSend[++ToSendMax] = 0x00;
+
+	for (i = 0; i < ToSendMax; ++i) {
 			bits_to_shift = ToSend[i] & bitmask;
 			ToSend[i] = ToSend[i] >> delay;
 			ToSend[i] = ToSend[i] | (bits_shifted << (8 - delay));
 			bits_shifted = bits_to_shift;
 		}
 	}
-}
 
 
 //-------------------------------------------------------------------------------------
@@ -1288,9 +1430,7 @@ void PrepareDelayedTransfer(uint16_t delay)
 // if == 0:	transfer immediately and return time of transfer
 // if != 0: delay transfer until time specified
 //-------------------------------------------------------------------------------------
-static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing)
-{
-	
+static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing) {
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
 
 	uint32_t ThisTransferTime = 0;
@@ -1306,7 +1446,9 @@ static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing
 		LastTimeProxToAirStart = *timing;
 	} else {
 		ThisTransferTime = ((MAX(NextTransferTime, GetCountSspClk()) & 0xfffffff8) + 8);
+
 		while(GetCountSspClk() < ThisTransferTime);
+
 		LastTimeProxToAirStart = ThisTransferTime;
 	}
 	
@@ -1317,24 +1459,21 @@ static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing
 	for(;;) {
 		if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
 			AT91C_BASE_SSC->SSC_THR = cmd[c];
-			c++;
-			if(c >= len) {
+			++c;
+			if(c >= len)
 				break;
-			}
 		}
 	}
 	
 	NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME);
 }
 
-
 //-----------------------------------------------------------------------------
 // Prepare reader command (in bits, support short frames) to send to FPGA
 //-----------------------------------------------------------------------------
-void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity)
-{
+void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity) {
 	int i, j;
-	int last;
+	int last = 0;
 	uint8_t b;
 
 	ToSendReset();
@@ -1342,7 +1481,6 @@ void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8
 	// Start of Communication (Seq. Z)
 	ToSend[++ToSendMax] = SEC_Z;
 	LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
-	last = 0;
 
 	size_t bytecount = nbytes(bits);
 	// Generate send structure for the data bits
@@ -1372,7 +1510,7 @@ void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8
 		}
 
 		// Only transmit parity bit if we transmitted a complete byte
-		if (j == 8) {
+		if (j == 8 && parity != NULL) {
 			// Get the parity bit
 			if (parity[i>>3] & (0x80 >> (i&0x0007))) {
 				// Sequence X
@@ -1406,14 +1544,13 @@ void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8
 	ToSend[++ToSendMax] = SEC_Y;
 
 	// Convert to length of command:
-	ToSendMax++;
+	++ToSendMax;
 }
 
 //-----------------------------------------------------------------------------
 // Prepare reader command to send to FPGA
 //-----------------------------------------------------------------------------
-void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *parity)
-{
+void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *parity) {
   CodeIso14443aBitsAsReaderPar(cmd, len*8, parity);
 }
 
@@ -1422,8 +1559,7 @@ void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *p
 // Stop when button is pressed (return 1) or field was gone (return 2)
 // Or return 0 when command is captured
 //-----------------------------------------------------------------------------
-static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
-{
+static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity) {
 	*len = 0;
 
 	uint32_t timer = 0, vtime = 0;
@@ -1439,9 +1575,9 @@ static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
 	// Set ADC to read field strength
 	AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
 	AT91C_BASE_ADC->ADC_MR =
-				ADC_MODE_PRESCALE(32) |
-				ADC_MODE_STARTUP_TIME(16) |
-				ADC_MODE_SAMPLE_HOLD_TIME(8);
+				ADC_MODE_PRESCALE(63) |
+				ADC_MODE_STARTUP_TIME(1) |
+				ADC_MODE_SAMPLE_HOLD_TIME(15);
 	AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF);
 	// start ADC
 	AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
@@ -1451,7 +1587,7 @@ static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
 
 	// Clear RXRDY:
     uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
-
+	
 	for(;;) {
 		WDT_HIT();
 
@@ -1463,7 +1599,7 @@ static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
 			analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF];
 			AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
 			if (analogCnt >= 32) {
-				if ((33000 * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
+				if ((MAX_ADC_HF_VOLTAGE * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
 					vtime = GetTickCount();
 					if (!timer) timer = vtime;
 					// 50ms no field --> card to idle state
@@ -1483,13 +1619,10 @@ static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
 				return 0;
 			}
         }
-
 	}
 }
 
-
-static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded)
-{
+int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded) {
 	uint8_t b;
 	uint16_t i = 0;
 	uint32_t ThisTransferTime;
@@ -1501,12 +1634,8 @@ static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNe
 	if (Uart.parityBits & 0x01) {
 		correctionNeeded = TRUE;
 	}
-	if(correctionNeeded) {
-		// 1236, so correction bit needed
-		i = 0;
-	} else {
-		i = 1;
-	}
+	// 1236, so correction bit needed
+	i = (correctionNeeded) ? 0 : 1;
 
  	// clear receiving shift register and holding register
 	while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
@@ -1515,7 +1644,7 @@ static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNe
 	b = AT91C_BASE_SSC->SSC_RHR; (void) b;
 	
 	// wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
-	for (uint16_t j = 0; j < 5; j++) {	// allow timeout - better late than never
+	for (uint8_t j = 0; j < 5; j++) {	// allow timeout - better late than never
 		while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
 		if (AT91C_BASE_SSC->SSC_RHR) break;
 	}
@@ -1526,28 +1655,25 @@ static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNe
 	AT91C_BASE_SSC->SSC_THR = SEC_F;
 
 	// send cycle
-	for(; i <= respLen; ) {
+	for(; i < respLen; ) {
 		if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
 			AT91C_BASE_SSC->SSC_THR = resp[i++];
 			FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
 		}
 	
-		if(BUTTON_PRESS()) {
-			break;
-		}
+		if(BUTTON_PRESS()) break;
 	}
 
 	// Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
-	for (i = 0; i < 2 ; ) {
+	uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3;  // twich /8 ??   >>3, 
+	for (i = 0; i <= fpga_queued_bits/8 + 1; ) {
 		if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
 			AT91C_BASE_SSC->SSC_THR = SEC_F;
 			FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
 			i++;
 		}
 	}
-	
 	LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0);
-
 	return 0;
 }
 
@@ -1555,7 +1681,7 @@ int EmSend4bitEx(uint8_t resp, bool correctionNeeded){
 	Code4bitAnswerAsTag(resp);
 	int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
 	// do the tracing for the previous reader request and this tag answer:
-	uint8_t par[1];
+	uint8_t par[1] = {0x00};
 	GetParity(&resp, 1, par);
 	EmLogTrace(Uart.output, 
 				Uart.len, 
@@ -1592,13 +1718,13 @@ int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8
 }
 
 int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded){
-	uint8_t par[MAX_PARITY_SIZE];
+	uint8_t par[MAX_PARITY_SIZE] = {0x00};
 	GetParity(resp, respLen, par);
 	return EmSendCmdExPar(resp, respLen, correctionNeeded, par);
 }
 
 int EmSendCmd(uint8_t *resp, uint16_t respLen){
-	uint8_t par[MAX_PARITY_SIZE];
+	uint8_t par[MAX_PARITY_SIZE] = {0x00};
 	GetParity(resp, respLen, par);
 	return EmSendCmdExPar(resp, respLen, false, par);
 }
@@ -1610,21 +1736,20 @@ int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par){
 bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
 				 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity)
 {
-	if (tracing) {
-		// we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
-		// end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
-		// with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
-		uint16_t reader_modlen = reader_EndTime - reader_StartTime;
-		uint16_t approx_fdt = tag_StartTime - reader_EndTime;
-		uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20;
-		reader_EndTime = tag_StartTime - exact_fdt;
-		reader_StartTime = reader_EndTime - reader_modlen;
-		if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, TRUE)) {
-			return FALSE;
-		} else return(!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, FALSE));
-	} else {
-		return TRUE;
-	}
+	// we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
+	// end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
+	// with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
+	uint16_t reader_modlen = reader_EndTime - reader_StartTime;
+	uint16_t approx_fdt = tag_StartTime - reader_EndTime;
+	uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20;
+	reader_EndTime = tag_StartTime - exact_fdt;
+	reader_StartTime = reader_EndTime - reader_modlen;
+		
+	if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, TRUE))
+		return FALSE;
+	else 
+		return(!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, FALSE));
+
 }
 
 //-----------------------------------------------------------------------------
@@ -1632,9 +1757,8 @@ bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_Start
 //  If a response is captured return TRUE
 //  If it takes too long return FALSE
 //-----------------------------------------------------------------------------
-static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset)
-{
-	uint32_t c;
+static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset) {
+	uint32_t c = 0x00;
 	
 	// Set FPGA mode to "reader listen mode", no modulation (listen
 	// only, since we are receiving, not transmitting).
@@ -1647,8 +1771,7 @@ static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receive
 
 	// clear RXRDY:
     uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
-	
-	c = 0;
+
 	for(;;) {
 		WDT_HIT();
 
@@ -1657,86 +1780,76 @@ static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receive
 			if(ManchesterDecoding(b, offset, 0)) {
 				NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD);
 				return TRUE;
-			} else if (c++ > iso14a_timeout) {
+			} else if (c++ > iso14a_timeout && Demod.state == DEMOD_UNSYNCD) {
 				return FALSE; 
 			}
 		}
 	}
 }
 
-void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing)
-{
+void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing) {
+
 	CodeIso14443aBitsAsReaderPar(frame, bits, par);
-  
 	// Send command to tag
 	TransmitFor14443a(ToSend, ToSendMax, timing);
-	if(trigger)
-		LED_A_ON();
+	if(trigger) LED_A_ON();
   
-	// Log reader command in trace buffer
-	if (tracing) {
-		LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, TRUE);
-	}
+	LogTrace(frame, nbytes(bits), (LastTimeProxToAirStart<<4) + DELAY_ARM2AIR_AS_READER, ((LastTimeProxToAirStart + LastProxToAirDuration)<<4) + DELAY_ARM2AIR_AS_READER, par, TRUE);
 }
 
-void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing)
-{
+void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing) {
   ReaderTransmitBitsPar(frame, len*8, par, timing);
 }
 
-void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing)
-{
-  // Generate parity and redirect
-  uint8_t par[MAX_PARITY_SIZE];
-  GetParity(frame, len/8, par);
-  ReaderTransmitBitsPar(frame, len, par, timing);
+void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing) {
+	// Generate parity and redirect
+	uint8_t par[MAX_PARITY_SIZE] = {0x00};
+	GetParity(frame, len/8, par);  
+	ReaderTransmitBitsPar(frame, len, par, timing);
 }
 
-void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing)
-{
-  // Generate parity and redirect
-  uint8_t par[MAX_PARITY_SIZE];
-  GetParity(frame, len, par);
-  ReaderTransmitBitsPar(frame, len*8, par, timing);
+void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing) {
+	// Generate parity and redirect
+	uint8_t par[MAX_PARITY_SIZE] = {0x00};
+	GetParity(frame, len, par);
+	ReaderTransmitBitsPar(frame, len*8, par, timing);
 }
 
-int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity)
-{
-	if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset)) return FALSE;
-	if (tracing) {
-		LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
-	}
+int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity) {
+	if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset))
+		return FALSE;
+	LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
 	return Demod.len;
 }
 
-int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity)
-{
-	if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) return FALSE;
-	if (tracing) {
-		LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
-	}
+int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity) {
+	if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0))
+		return FALSE;
+	LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
 	return Demod.len;
 }
 
-/* performs iso14443a anticollision procedure
- * fills the uid pointer unless NULL
- * fills resp_data unless NULL */
-int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr) {
-	uint8_t wupa[]       = { 0x52 };  // 0x26 - REQA  0x52 - WAKE-UP
-	uint8_t sel_all[]    = { 0x93,0x20 };
-	uint8_t sel_uid[]    = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
-	uint8_t rats[]       = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
-	uint8_t *resp = ((uint8_t *)BigBuf) + RECV_RESP_OFFSET;
-	uint8_t *resp_par = ((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET;
-	byte_t uid_resp[4];
-	size_t uid_resp_len;
+// performs iso14443a anticollision (optional) and card select procedure
+// fills the uid and cuid pointer unless NULL
+// fills the card info record unless NULL
+// if anticollision is false, then the UID must be provided in uid_ptr[] 
+// and num_cascades must be set (1: 4 Byte UID, 2: 7 Byte UID, 3: 10 Byte UID)
+int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr, bool anticollision, uint8_t num_cascades) {
+	uint8_t wupa[]       = { ISO14443A_CMD_WUPA };  // 0x26 - ISO14443A_CMD_REQA  0x52 - ISO14443A_CMD_WUPA
+	uint8_t sel_all[]    = { ISO14443A_CMD_ANTICOLL_OR_SELECT,0x20 };
+	uint8_t sel_uid[]    = { ISO14443A_CMD_ANTICOLL_OR_SELECT,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
+	uint8_t rats[]       = { ISO14443A_CMD_RATS,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
+	uint8_t resp[MAX_FRAME_SIZE] = {0}; // theoretically. A usual RATS will be much smaller
+	uint8_t resp_par[MAX_PARITY_SIZE] = {0};
+	byte_t uid_resp[4] = {0};
+	size_t uid_resp_len = 0;
 
 	uint8_t sak = 0x04; // cascade uid
 	int cascade_level = 0;
 	int len;
 
 	// Broadcast for a card, WUPA (0x52) will force response from all cards in the field
-    ReaderTransmitBitsPar(wupa,7,0, NULL);
+    ReaderTransmitBitsPar(wupa, 7, NULL, NULL);
 	
 	// Receive the ATQA
 	if(!ReaderReceive(resp, resp_par)) return 0;
@@ -1747,11 +1860,15 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u
 		memset(p_hi14a_card->uid,0,10);
 	}
 
-	// clear uid
-	if (uid_ptr) {
-		memset(uid_ptr,0,10);
+	if (anticollision) {
+		// clear uid
+		if (uid_ptr)
+			memset(uid_ptr,0,10);
 	}
 
+	// check for proprietary anticollision:
+	if ((resp[0] & 0x1F) == 0) return 3;
+	
 	// OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
 	// which case we need to make a cascade 2 request and select - this is a long UID
 	// While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
@@ -1759,73 +1876,81 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u
 		// SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
 		sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
 
+		if (anticollision) {
 		// SELECT_ALL
-		ReaderTransmit(sel_all, sizeof(sel_all), NULL);
-		if (!ReaderReceive(resp, resp_par)) return 0;
-
-		if (Demod.collisionPos) {			// we had a collision and need to construct the UID bit by bit
-			memset(uid_resp, 0, 4);
-			uint16_t uid_resp_bits = 0;
-			uint16_t collision_answer_offset = 0;
-			// anti-collision-loop:
-			while (Demod.collisionPos) {
-				Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
-				for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) {	// add valid UID bits before collision point
-					uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
-					uid_resp[uid_resp_bits & 0xf8] |= UIDbit << (uid_resp_bits % 8);
+			ReaderTransmit(sel_all, sizeof(sel_all), NULL);
+			if (!ReaderReceive(resp, resp_par)) return 0;
+
+			if (Demod.collisionPos) {			// we had a collision and need to construct the UID bit by bit
+				memset(uid_resp, 0, 4);
+				uint16_t uid_resp_bits = 0;
+				uint16_t collision_answer_offset = 0;
+				// anti-collision-loop:
+				while (Demod.collisionPos) {
+					Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
+					for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) {	// add valid UID bits before collision point
+						uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
+						uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8);
+					}
+					uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8);					// next time select the card(s) with a 1 in the collision position
+					uid_resp_bits++;
+					// construct anticollosion command:
+					sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07);  	// length of data in bytes and bits
+					for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
+						sel_uid[2+i] = uid_resp[i];
+					}
+					collision_answer_offset = uid_resp_bits%8;
+					ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
+					if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0;
 				}
-				uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8);					// next time select the card(s) with a 1 in the collision position
-				uid_resp_bits++;
-				// construct anticollosion command:
-				sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07);  	// length of data in bytes and bits
-				for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
-					sel_uid[2+i] = uid_resp[i];
+				// finally, add the last bits and BCC of the UID
+				for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
+					uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
+					uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
 				}
-				collision_answer_offset = uid_resp_bits%8;
-				ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
-				if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0;
+
+			} else {		// no collision, use the response to SELECT_ALL as current uid
+				memcpy(uid_resp, resp, 4);
 			}
-			// finally, add the last bits and BCC of the UID
-			for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
-				uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
-				uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
+			
+		} else {
+			if (cascade_level < num_cascades - 1) {
+				uid_resp[0] = 0x88;
+				memcpy(uid_resp+1, uid_ptr+cascade_level*3, 3);
+			} else {
+				memcpy(uid_resp, uid_ptr+cascade_level*3, 4);
 			}
-
-		} else {		// no collision, use the response to SELECT_ALL as current uid
-			memcpy(uid_resp, resp, 4);
 		}
 		uid_resp_len = 4;
 
 		// calculate crypto UID. Always use last 4 Bytes.
-		if(cuid_ptr) {
+		if(cuid_ptr)
 			*cuid_ptr = bytes_to_num(uid_resp, 4);
-		}
 
 		// Construct SELECT UID command
 		sel_uid[1] = 0x70;													// transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
-		memcpy(sel_uid+2, uid_resp, 4);										// the UID
+		memcpy(sel_uid+2, uid_resp, 4);										// the UID received during anticollision, or the provided UID
 		sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5];  	// calculate and add BCC
 		AppendCrc14443a(sel_uid, 7);										// calculate and add CRC
 		ReaderTransmit(sel_uid, sizeof(sel_uid), NULL);
 
 		// Receive the SAK
 		if (!ReaderReceive(resp, resp_par)) return 0;
+		
 		sak = resp[0];
 
-		// Test if more parts of the uid are comming
+		// Test if more parts of the uid are coming
 		if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) {
 			// Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
 			// http://www.nxp.com/documents/application_note/AN10927.pdf
 			uid_resp[0] = uid_resp[1];
 			uid_resp[1] = uid_resp[2];
 			uid_resp[2] = uid_resp[3]; 
-
 			uid_resp_len = 3;
 		}
 
-		if(uid_ptr) {
+		if(uid_ptr && anticollision)
 			memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
-		}
 
 		if(p_hi14a_card) {
 			memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len);
@@ -1846,7 +1971,6 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u
 	ReaderTransmit(rats, sizeof(rats), NULL);
 
 	if (!(len = ReaderReceive(resp, resp_par))) return 0;
-
 	
 	if(p_hi14a_card) {
 		memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats));
@@ -1855,36 +1979,43 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u
 
 	// reset the PCB block number
 	iso14_pcb_blocknum = 0;
+
+	// set default timeout based on ATS
+	iso14a_set_ATS_timeout(resp);
+
 	return 1;	
 }
 
 void iso14443a_setup(uint8_t fpga_minor_mode) {
+
 	FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
 	// Set up the synchronous serial port
 	FpgaSetupSsc();
 	// connect Demodulated Signal to ADC:
 	SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
 
+	LED_D_OFF();
 	// Signal field is on with the appropriate LED
-	if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD
-		|| fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN) {
+	if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD ||
+		fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN)
 		LED_D_ON();
-	} else {
-		LED_D_OFF();
-	}
+
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode);
 
+	SpinDelay(20);
+	
 	// Start the timer
 	StartCountSspClk();
 	
+	// Prepare the demodulation functions
 	DemodReset();
 	UartReset();
-	NextTransferTime = 2*DELAY_ARM2AIR_AS_READER;
-	iso14a_set_timeout(1050); // 10ms default
+	NextTransferTime = 2 * DELAY_ARM2AIR_AS_READER;
+	iso14a_set_timeout(10*106); // 20ms default	
 }
 
 int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) {
-	uint8_t parity[MAX_PARITY_SIZE];
+	uint8_t parity[MAX_PARITY_SIZE] = {0x00};
 	uint8_t real_cmd[cmd_len+4];
 	real_cmd[0] = 0x0a; //I-Block
 	// put block number into the PCB
@@ -1895,12 +2026,14 @@ int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) {
  
 	ReaderTransmit(real_cmd, cmd_len+4, NULL);
 	size_t len = ReaderReceive(data, parity);
+	 //DATA LINK ERROR
+	if (!len) return 0;
+	
 	uint8_t *data_bytes = (uint8_t *) data;
-	if (!len)
-		return 0; //DATA LINK ERROR
+
 	// if we received an I- or R(ACK)-Block with a block number equal to the
 	// current block number, toggle the current block number
-	else if (len >= 4 // PCB+CID+CRC = 4 bytes
+	if (len >= 4 // PCB+CID+CRC = 4 bytes
 	         && ((data_bytes[0] & 0xC0) == 0 // I-Block
 	             || (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
 	         && (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers
@@ -1911,100 +2044,135 @@ int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) {
 	return len;
 }
 
+
 //-----------------------------------------------------------------------------
 // Read an ISO 14443a tag. Send out commands and store answers.
-//
 //-----------------------------------------------------------------------------
-void ReaderIso14443a(UsbCommand *c)
-{
+void ReaderIso14443a(UsbCommand *c) {
 	iso14a_command_t param = c->arg[0];
+	size_t len = c->arg[1] & 0xffff;
+	size_t lenbits = c->arg[1] >> 16;
+	uint32_t timeout = c->arg[2];
 	uint8_t *cmd = c->d.asBytes;
-	size_t len = c->arg[1];
-	size_t lenbits = c->arg[2];
 	uint32_t arg0 = 0;
-	byte_t buf[USB_CMD_DATA_SIZE];
-	uint8_t par[MAX_PARITY_SIZE];
+	byte_t buf[USB_CMD_DATA_SIZE] = {0x00};
+	uint8_t par[MAX_PARITY_SIZE] = {0x00};
   
-	if(param & ISO14A_CONNECT) {
-		iso14a_clear_trace();
-	}
+	if (param & ISO14A_CONNECT)
+		clear_trace();
 
-	iso14a_set_tracing(TRUE);
+	set_tracing(TRUE);
 
-	if(param & ISO14A_REQUEST_TRIGGER) {
+	if (param & ISO14A_REQUEST_TRIGGER)
 		iso14a_set_trigger(TRUE);
-	}
 
-	if(param & ISO14A_CONNECT) {
+	if (param & ISO14A_CONNECT) {
 		iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
 		if(!(param & ISO14A_NO_SELECT)) {
 			iso14a_card_select_t *card = (iso14a_card_select_t*)buf;
-			arg0 = iso14443a_select_card(NULL,card,NULL);
-			cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t));
+			arg0 = iso14443a_select_card(NULL,card,NULL, true, 0);
+			cmd_send(CMD_ACK, arg0, card->uidlen, 0, buf, sizeof(iso14a_card_select_t));
+			// if it fails,  the cmdhf14a.c client quites.. however this one still executes.
+			if ( arg0 == 0 ) return;
 		}
 	}
 
-	if(param & ISO14A_SET_TIMEOUT) {
-		iso14a_set_timeout(c->arg[2]);
-	}
+	if (param & ISO14A_SET_TIMEOUT)
+		iso14a_set_timeout(timeout);
 
-	if(param & ISO14A_APDU) {
+	if (param & ISO14A_APDU) {
 		arg0 = iso14_apdu(cmd, len, buf);
 		cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
 	}
 
-	if(param & ISO14A_RAW) {
+	if (param & ISO14A_RAW) {
 		if(param & ISO14A_APPEND_CRC) {
-			AppendCrc14443a(cmd,len);
+			if(param & ISO14A_TOPAZMODE) {
+				AppendCrc14443b(cmd,len);
+			} else {
+				AppendCrc14443a(cmd,len);
+			}
 			len += 2;
 			if (lenbits) lenbits += 16;
 		}
-		if(lenbits>0) {
+		if(lenbits>0) {				// want to send a specific number of bits (e.g. short commands)
+			if(param & ISO14A_TOPAZMODE) {
+				int bits_to_send = lenbits;
+				uint16_t i = 0;
+				ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 7), NULL, NULL);		// first byte is always short (7bits) and no parity
+				bits_to_send -= 7;
+				while (bits_to_send > 0) {
+					ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 8), NULL, NULL);	// following bytes are 8 bit and no parity
+					bits_to_send -= 8;
+				}
+			} else {
 			GetParity(cmd, lenbits/8, par);
-			ReaderTransmitBitsPar(cmd, lenbits, par, NULL);
+				ReaderTransmitBitsPar(cmd, lenbits, par, NULL);							// bytes are 8 bit with odd parity
+			}
+		} else {					// want to send complete bytes only
+			if(param & ISO14A_TOPAZMODE) {
+				uint16_t i = 0;
+				ReaderTransmitBitsPar(&cmd[i++], 7, NULL, NULL);						// first byte: 7 bits, no paritiy
+				while (i < len) {
+					ReaderTransmitBitsPar(&cmd[i++], 8, NULL, NULL);					// following bytes: 8 bits, no paritiy
+				}
 		} else {
-			ReaderTransmit(cmd,len, NULL);
+				ReaderTransmit(cmd,len, NULL);											// 8 bits, odd parity
+			}
 		}
 		arg0 = ReaderReceive(buf, par);
 		cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
 	}
 
-	if(param & ISO14A_REQUEST_TRIGGER) {
+	if (param & ISO14A_REQUEST_TRIGGER)
 		iso14a_set_trigger(FALSE);
-	}
 
-	if(param & ISO14A_NO_DISCONNECT) {
+	if (param & ISO14A_NO_DISCONNECT)
 		return;
-	}
 
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+	set_tracing(FALSE);
 	LEDsoff();
 }
 
-
 // Determine the distance between two nonces.
 // Assume that the difference is small, but we don't know which is first.
 // Therefore try in alternating directions.
 int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
 
-	uint16_t i;
-	uint32_t nttmp1, nttmp2;
-
 	if (nt1 == nt2) return 0;
-
-	nttmp1 = nt1;
-	nttmp2 = nt2;
-	
-	for (i = 1; i < 32768; i++) {
-		nttmp1 = prng_successor(nttmp1, 1);
-		if (nttmp1 == nt2) return i;
-		nttmp2 = prng_successor(nttmp2, 1);
-			if (nttmp2 == nt1) return -i;
-		}
 	
-	return(-99999); // either nt1 or nt2 are invalid nonces
-}
+	uint32_t nttmp1 = nt1;
+	uint32_t nttmp2 = nt2;
+
+	for (uint16_t i = 1; i < 32768/8; ++i) {
+		nttmp1 = prng_successor(nttmp1, 1);	if (nttmp1 == nt2) return i;
+		nttmp2 = prng_successor(nttmp2, 1);	if (nttmp2 == nt1) return -i;
+		
+		nttmp1 = prng_successor(nttmp1, 1);	if (nttmp1 == nt2) return i+1;
+		nttmp2 = prng_successor(nttmp2, 1);	if (nttmp2 == nt1) return -(i+1);
+		
+		nttmp1 = prng_successor(nttmp1, 1);	if (nttmp1 == nt2) return i+2;
+		nttmp2 = prng_successor(nttmp2, 1);	if (nttmp2 == nt1) return -(i+2);
 
+		nttmp1 = prng_successor(nttmp1, 1);	if (nttmp1 == nt2) return i+3;
+		nttmp2 = prng_successor(nttmp2, 1);	if (nttmp2 == nt1) return -(i+3);
+		
+		nttmp1 = prng_successor(nttmp1, 1);	if (nttmp1 == nt2) return i+4;
+		nttmp2 = prng_successor(nttmp2, 1);	if (nttmp2 == nt1) return -(i+4);
+		
+		nttmp1 = prng_successor(nttmp1, 1);	if (nttmp1 == nt2) return i+5;
+		nttmp2 = prng_successor(nttmp2, 1);	if (nttmp2 == nt1) return -(i+5);
+		
+		nttmp1 = prng_successor(nttmp1, 1);	if (nttmp1 == nt2) return i+6;
+		nttmp2 = prng_successor(nttmp2, 1);	if (nttmp2 == nt1) return -(i+6);
+		
+		nttmp1 = prng_successor(nttmp1, 1);	if (nttmp1 == nt2) return i+7;
+		nttmp2 = prng_successor(nttmp2, 1);	if (nttmp2 == nt1) return -(i+7);		
+	}
+	// either nt1 or nt2 are invalid nonces	
+	return(-99999); 
+}
 
 //-----------------------------------------------------------------------------
 // Recover several bits of the cypher stream. This implements (first stages of)
@@ -2012,154 +2180,209 @@ int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
 // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
 // (article by Nicolas T. Courtois, 2009)
 //-----------------------------------------------------------------------------
-void ReaderMifare(bool first_try)
-{
-	// Mifare AUTH
-	uint8_t mf_auth[]    = { 0x60,0x00,0xf5,0x7b };
-	uint8_t mf_nr_ar[]   = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
-	static uint8_t mf_nr_ar3;
-
-	uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + RECV_RESP_OFFSET);
-	uint8_t* receivedAnswerPar = (((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET);
 
-	iso14a_clear_trace();
-	iso14a_set_tracing(TRUE);
-
-	byte_t nt_diff = 0;
+void ReaderMifare(bool first_try, uint8_t block, uint8_t keytype ) {
+	
+	uint8_t mf_auth[] 	= { keytype, block, 0x00, 0x00 };
+	uint8_t mf_nr_ar[]	= { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
+	uint8_t uid[10]		= {0,0,0,0,0,0,0,0,0,0};
+	uint8_t par_list[8]	= {0,0,0,0,0,0,0,0};
+	uint8_t ks_list[8]	= {0,0,0,0,0,0,0,0};
+	uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0x00};
+	uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE] = {0x00};
 	uint8_t par[1] = {0};	// maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
-	static byte_t par_low = 0;
-	bool led_on = TRUE;
-	uint8_t uid[10]  ={0};
-	uint32_t cuid;
-
+	byte_t nt_diff = 0;
 	uint32_t nt = 0;
-	uint32_t previous_nt = 0;
-	static uint32_t nt_attacked = 0;
-	byte_t par_list[8] = {0x00};
-	byte_t ks_list[8] = {0x00};
-
-	static uint32_t sync_time;
-	static uint32_t sync_cycles;
-	int catch_up_cycles = 0;
-	int last_catch_up = 0;
+	uint32_t previous_nt = 0;	
+	uint32_t cuid = 0;
+	
+	int32_t catch_up_cycles = 0;
+	int32_t last_catch_up = 0;
+	int32_t isOK = 0;
+	int32_t nt_distance = 0;
+	
+	uint16_t elapsed_prng_sequences = 1;
 	uint16_t consecutive_resyncs = 0;
-	int isOK = 0;
+	uint16_t unexpected_random = 0;
+	uint16_t sync_tries = 0;
 
-	if (first_try) { 
+	// static variables here, is re-used in the next call
+	static uint32_t nt_attacked = 0;
+	static uint32_t sync_time = 0;
+	static uint32_t sync_cycles = 0;
+	static uint8_t par_low = 0;
+	static uint8_t mf_nr_ar3 = 0;
+	
+	#define PRNG_SEQUENCE_LENGTH	(1 << 16)
+	#define MAX_UNEXPECTED_RANDOM	4		// maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up.
+	#define MAX_SYNC_TRIES		32
+	
+	AppendCrc14443a(mf_auth, 2);
+	
+	BigBuf_free(); BigBuf_Clear_ext(false);	
+	clear_trace();
+	set_tracing(TRUE);	
+	iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
+
+	sync_time = GetCountSspClk() & 0xfffffff8;
+	sync_cycles = PRNG_SEQUENCE_LENGTH; // Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).		
+	nt_attacked = 0;
+	
+   if (MF_DBGLEVEL >= 4)	Dbprintf("Mifare::Sync %08x", sync_time);
+				
+	if (first_try) {
 		mf_nr_ar3 = 0;
-		iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
-		sync_time = GetCountSspClk() & 0xfffffff8;
-		sync_cycles = 65536;									// theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
-		nt_attacked = 0;
-		nt = 0;
-		par[0] = 0;
-	}
-	else {
-		// we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
-		mf_nr_ar3++;
+		par_low = 0;
+	} else {
+		// we were unsuccessful on a previous call. 
+		// Try another READER nonce (first 3 parity bits remain the same)
+		++mf_nr_ar3;
 		mf_nr_ar[3] = mf_nr_ar3;
 		par[0] = par_low;
 	}
 
-	LED_A_ON();
-	LED_B_OFF();
-	LED_C_OFF();
-	
-  
-	for(uint16_t i = 0; TRUE; i++) {
-		
+	bool have_uid = FALSE;
+	uint8_t cascade_levels = 0;
+
+	LED_C_ON(); 
+	uint16_t i;
+	for(i = 0; TRUE; ++i) {
+
 		WDT_HIT();
 
 		// Test if the action was cancelled
 		if(BUTTON_PRESS()) {
+			isOK = -1;
 			break;
 		}
 		
-		LED_C_ON();
-
-		if(!iso14443a_select_card(uid, NULL, &cuid)) {
-			if (MF_DBGLEVEL >= 1)	Dbprintf("Mifare: Can't select card");
-			continue;
+		// this part is from Piwi's faster nonce collecting part in Hardnested.
+		if (!have_uid) { // need a full select cycle to get the uid first
+			iso14a_card_select_t card_info;		
+			if(!iso14443a_select_card(uid, &card_info, &cuid, true, 0)) {
+				if (MF_DBGLEVEL >= 4)	Dbprintf("Mifare: Can't select card (ALL)");
+				break;
+			}
+			switch (card_info.uidlen) {
+				case 4 : cascade_levels = 1; break;
+				case 7 : cascade_levels = 2; break;
+				case 10: cascade_levels = 3; break;
+				default: break;
+			}
+			have_uid = TRUE;	
+		} else { // no need for anticollision. We can directly select the card
+			if(!iso14443a_select_card(uid, NULL, &cuid, false, cascade_levels)) {
+				if (MF_DBGLEVEL >= 4)	Dbprintf("Mifare: Can't select card (UID)");
+				continue;
+			}
 		}
-
-		sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
+		
+		// Sending timeslot of ISO14443a frame		
+		sync_time = (sync_time & 0xfffffff8 ) + sync_cycles + catch_up_cycles;
 		catch_up_cycles = 0;
-
+								
 		// if we missed the sync time already, advance to the next nonce repeat
-		while(GetCountSspClk() > sync_time) {
-			sync_time = (sync_time & 0xfffffff8) + sync_cycles;
-		}
+		while( GetCountSspClk() > sync_time) {
+			++elapsed_prng_sequences;
+			sync_time = (sync_time & 0xfffffff8 ) + sync_cycles;
+		}		
 
-		// Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked) 
+		// Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
 		ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
 
-		// Receive the (4 Byte) "random" nonce
-		if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) {
-			if (MF_DBGLEVEL >= 1)	Dbprintf("Mifare: Couldn't receive tag nonce");
+		// Receive the (4 Byte) "random" nonce from TAG
+		if (!ReaderReceive(receivedAnswer, receivedAnswerPar))
 			continue;
-		  }
 
 		previous_nt = nt;
 		nt = bytes_to_num(receivedAnswer, 4);
-
+		
 		// Transmit reader nonce with fake par
 		ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);
+	
+		// we didn't calibrate our clock yet,
+		// iceman: has to be calibrated every time.
+		if (previous_nt && !nt_attacked) { 
 
-		if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet
-			int nt_distance = dist_nt(previous_nt, nt);
+			nt_distance = dist_nt(previous_nt, nt);
+			
+			// if no distance between,  then we are in sync.
 			if (nt_distance == 0) {
 				nt_attacked = nt;
-			}
-			else {
-				if (nt_distance == -99999) { // invalid nonce received, try again
-					continue;
+			} else {
+				if (nt_distance == -99999) { // invalid nonce received
+					++unexpected_random;
+					if (unexpected_random > MAX_UNEXPECTED_RANDOM) {
+						isOK = -3;		// Card has an unpredictable PRNG. Give up	
+						break;
+					} else {						
+						if (sync_cycles <= 0) sync_cycles += PRNG_SEQUENCE_LENGTH;
+						LED_B_OFF();
+						continue;		// continue trying...
+					}
 				}
-				sync_cycles = (sync_cycles - nt_distance);
-				if (MF_DBGLEVEL >= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i, nt_distance, sync_cycles);
+				
+				if (++sync_tries > MAX_SYNC_TRIES) {
+					isOK = -4; 			// Card's PRNG runs at an unexpected frequency or resets unexpectedly
+					break;
+				}
+				
+				sync_cycles = (sync_cycles - nt_distance)/elapsed_prng_sequences;
+				
+				if (sync_cycles <= 0)
+					sync_cycles += PRNG_SEQUENCE_LENGTH;
+				
+				if (MF_DBGLEVEL >= 4)
+					Dbprintf("calibrating in cycle %d. nt_distance=%d, elapsed_prng_sequences=%d, new sync_cycles: %d\n", i, nt_distance, elapsed_prng_sequences, sync_cycles);
+
+				LED_B_OFF();
 				continue;
 			}
 		}
+		LED_B_OFF();
 
-		if ((nt != nt_attacked) && nt_attacked) { 	// we somehow lost sync. Try to catch up again...
-			catch_up_cycles = -dist_nt(nt_attacked, nt);
+		if ( (nt != nt_attacked) && nt_attacked) { 	// we somehow lost sync. Try to catch up again...
+			
+			catch_up_cycles = ABS(dist_nt(nt_attacked, nt));
 			if (catch_up_cycles == 99999) {			// invalid nonce received. Don't resync on that one.
 				catch_up_cycles = 0;
 				continue;
-			}
+			}		
+			// average? 
+			catch_up_cycles /= elapsed_prng_sequences;
+		
 			if (catch_up_cycles == last_catch_up) {
-				consecutive_resyncs++;
-			}
-			else {
+				++consecutive_resyncs;
+			} else {
 				last_catch_up = catch_up_cycles;
 			    consecutive_resyncs = 0;
-			}
+			}		
+			
 			if (consecutive_resyncs < 3) {
-				if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs);
-			}
-			else {	
-				sync_cycles = sync_cycles + catch_up_cycles;
-				if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
+				if (MF_DBGLEVEL >= 4)
+					Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, catch_up_cycles, consecutive_resyncs);
+			} else {	
+				sync_cycles += catch_up_cycles;
+				
+				if (MF_DBGLEVEL >= 4) 
+					Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, catch_up_cycles, sync_cycles);
+
+				last_catch_up = 0;
+				catch_up_cycles = 0;
+				consecutive_resyncs = 0;
 			}
 			continue;
 		}
  
-		consecutive_resyncs = 0;
-		
 		// Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
-		if (ReaderReceive(receivedAnswer, receivedAnswerPar))
-		{
+		if (ReaderReceive(receivedAnswer, receivedAnswerPar)) {
 			catch_up_cycles = 8; 	// the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
 	
 			if (nt_diff == 0)
-			{
 				par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
-			}
-
-			led_on = !led_on;
-			if(led_on) LED_B_ON(); else LED_B_OFF();
 
 			par_list[nt_diff] = SwapBits(par[0], 8);
-			ks_list[nt_diff] = receivedAnswer[0] ^ 0x05;
+			ks_list[nt_diff] = receivedAnswer[0] ^ 0x05;  // xor with NACK value to get keystream
 
 			// Test if the information is complete
 			if (nt_diff == 0x07) {
@@ -2170,184 +2393,240 @@ void ReaderMifare(bool first_try)
 			nt_diff = (nt_diff + 1) & 0x07;
 			mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5);
 			par[0] = par_low;
+			
 		} else {
-			if (nt_diff == 0 && first_try)
-			{
+			// No NACK.	
+			if (nt_diff == 0 && first_try) {
 				par[0]++;
+				if (par[0] == 0x00) {	// tried all 256 possible parities without success. Card doesn't send NACK.
+					isOK = -2;
+					break;
+				}
 			} else {
+				// Why this?
 				par[0] = ((par[0] & 0x1F) + 1) | par_low;
 			}
 		}
-	}
-
+		
+		// reset the resyncs since we got a complete transaction on right time.
+		consecutive_resyncs = 0;
+	} // end for loop
 
 	mf_nr_ar[3] &= 0x1F;
+
+	if (MF_DBGLEVEL >= 4) Dbprintf("Number of sent auth requestes: %u", i);
 	
-	byte_t buf[28];
-	memcpy(buf + 0,  uid, 4);
+	uint8_t buf[28] = {0x00};
+	memset(buf, 0x00, sizeof(buf));
+	num_to_bytes(cuid, 4, buf);
 	num_to_bytes(nt, 4, buf + 4);
 	memcpy(buf + 8,  par_list, 8);
 	memcpy(buf + 16, ks_list, 8);
 	memcpy(buf + 24, mf_nr_ar, 4);
 		
-	cmd_send(CMD_ACK,isOK,0,0,buf,28);
+	cmd_send(CMD_ACK, isOK, 0, 0, buf, sizeof(buf) );
 
-	// Thats it...
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
 	LEDsoff();
-
-	iso14a_set_tracing(FALSE);
+	set_tracing(FALSE);
 }
 
+
 /**
   *MIFARE 1K simulate.
   *
   *@param flags :
-  *	FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
-  * 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
-  * 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
-  *	FLAG_NR_AR_ATTACK  - means we should collect NR_AR responses for bruteforcing later
+  *	FLAG_INTERACTIVE		- In interactive mode, we are expected to finish the operation with an ACK
+  * FLAG_4B_UID_IN_DATA		- use 4-byte UID in the data-section
+  * FLAG_7B_UID_IN_DATA		- use 7-byte UID in the data-section
+  * FLAG_10B_UID_IN_DATA	- use 10-byte UID in the data-section
+  * FLAG_UID_IN_EMUL 		- use 4-byte UID from emulator memory
+  *	FLAG_NR_AR_ATTACK  		- collect NR_AR responses for bruteforcing later
   *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
   */
-void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain)
-{
+void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain) {
 	int cardSTATE = MFEMUL_NOFIELD;
-	int _7BUID = 0;
+	int _UID_LEN = 0;  // 4, 7, 10
 	int vHf = 0;	// in mV
-	int res;
+	int res = 0;
 	uint32_t selTimer = 0;
 	uint32_t authTimer = 0;
 	uint16_t len = 0;
 	uint8_t cardWRBL = 0;
 	uint8_t cardAUTHSC = 0;
 	uint8_t cardAUTHKEY = 0xff;  // no authentication
-	uint32_t cardRr = 0;
 	uint32_t cuid = 0;
-	//uint32_t rn_enc = 0;
 	uint32_t ans = 0;
 	uint32_t cardINTREG = 0;
 	uint8_t cardINTBLOCK = 0;
 	struct Crypto1State mpcs = {0, 0};
 	struct Crypto1State *pcs;
 	pcs = &mpcs;
-	uint32_t numReads = 0;//Counts numer of times reader read a block
-	uint8_t* receivedCmd = get_bigbufptr_recvcmdbuf();
-	uint8_t* receivedCmd_par = receivedCmd + MAX_FRAME_SIZE;
-	uint8_t* response = get_bigbufptr_recvrespbuf();
-	uint8_t* response_par = response + MAX_FRAME_SIZE;
+	uint32_t numReads = 0;	// Counts numer of times reader read a block
+	uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE] = {0x00};
+	uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE] = {0x00};
+	uint8_t response[MAX_MIFARE_FRAME_SIZE] = {0x00};
+	uint8_t response_par[MAX_MIFARE_PARITY_SIZE] = {0x00};
+	
+	uint8_t atqa[]   = {0x04, 0x00}; // Mifare classic 1k
+	uint8_t sak_4[]  = {0x0C, 0x00, 0x00}; // CL1 - 4b uid
+	uint8_t sak_7[]  = {0x0C, 0x00, 0x00}; // CL2 - 7b uid
+	uint8_t sak_10[] = {0x0C, 0x00, 0x00}; // CL3 - 10b uid
+	// uint8_t sak[] = {0x09, 0x3f, 0xcc };  // Mifare Mini 
 	
-	uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
-	uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
-	uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
-	uint8_t rSAK[] = {0x08, 0xb6, 0xdd};
-	uint8_t rSAK1[] = {0x04, 0xda, 0x17};
+	uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; 
+	uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; 
+	uint8_t rUIDBCC3[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
 
-	uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04};
+	uint8_t rAUTH_NT[] = {0x01, 0x01, 0x01, 0x01};	// very random nonce
+	// uint8_t rAUTH_NT[] = {0x55, 0x41, 0x49, 0x92};// nonce from nested? why this?
 	uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
 		
-	//Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
+	// Here, we collect CUID, NT, NR, AR, CUID2, NT2, NR2, AR2
 	// This can be used in a reader-only attack.
-	// (it can also be retrieved via 'hf 14a list', but hey...
-	uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0};
+	uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0,0};
 	uint8_t ar_nr_collected = 0;
 
-	// clear trace
-    iso14a_clear_trace();
-	iso14a_set_tracing(TRUE);
-
 	// Authenticate response - nonce
 	uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
+	ar_nr_responses[1] = nonce;
 	
-	//-- Determine the UID
-	// Can be set from emulator memory, incoming data
-	// and can be 7 or 4 bytes long
-	if (flags & FLAG_4B_UID_IN_DATA)
-	{
-		// 4B uid comes from data-portion of packet
-		memcpy(rUIDBCC1,datain,4);
-		rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
-
-	} else if (flags & FLAG_7B_UID_IN_DATA) {
-		// 7B uid comes from data-portion of packet
-		memcpy(&rUIDBCC1[1],datain,3);
-		memcpy(rUIDBCC2, datain+3, 4);
-		_7BUID = true;
-	} else {
-		// get UID from emul memory
-		emlGetMemBt(receivedCmd, 7, 1);
-		_7BUID = !(receivedCmd[0] == 0x00);
-		if (!_7BUID) {                     // ---------- 4BUID
-			emlGetMemBt(rUIDBCC1, 0, 4);
-		} else {                           // ---------- 7BUID
-			emlGetMemBt(&rUIDBCC1[1], 0, 3);
-			emlGetMemBt(rUIDBCC2, 3, 4);
-		}
+	// -- Determine the UID
+	// Can be set from emulator memory or incoming data
+	// Length: 4,7,or 10 bytes
+	if ( (flags & FLAG_UID_IN_EMUL) == FLAG_UID_IN_EMUL)
+		emlGetMemBt(datain, 0, 10);  // load 10bytes from EMUL to the datain pointer. to be used below.
+	
+	if ( (flags & FLAG_4B_UID_IN_DATA) == FLAG_4B_UID_IN_DATA) {
+		memcpy(rUIDBCC1, datain, 4);
+		_UID_LEN = 4;
+	} else if ( (flags & FLAG_7B_UID_IN_DATA) == FLAG_7B_UID_IN_DATA) {
+		memcpy(&rUIDBCC1[1], datain,   3);
+		memcpy( rUIDBCC2,    datain+3, 4);
+		_UID_LEN = 7;
+	} else if ( (flags & FLAG_10B_UID_IN_DATA) == FLAG_10B_UID_IN_DATA) {
+		memcpy(&rUIDBCC1[1], datain,   3);
+		memcpy(&rUIDBCC2[1], datain+3, 3);
+		memcpy( rUIDBCC3,    datain+6, 4);
+		_UID_LEN = 10;
 	}
 
-	/*
-	 * Regardless of what method was used to set the UID, set fifth byte and modify
-	 * the ATQA for 4 or 7-byte UID
-	 */
-	rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
-	if (_7BUID) {
-		rATQA[0] = 0x44;
-		rUIDBCC1[0] = 0x88;
-		rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
+	switch (_UID_LEN) {
+		case 4:
+			sak_4[0] &= 0xFB;		
+			// save CUID
+			ar_nr_responses[0] = cuid = bytes_to_num(rUIDBCC1, 4);
+			// BCC
+			rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
+			if (MF_DBGLEVEL >= 2)	{
+				Dbprintf("4B UID: %02x%02x%02x%02x", 
+					rUIDBCC1[0],
+					rUIDBCC1[1],
+					rUIDBCC1[2],
+					rUIDBCC1[3]
+				);
+			}
+			break;
+		case 7:
+			atqa[0] |= 0x40;
+			sak_7[0] &= 0xFB;						
+			// save CUID
+			ar_nr_responses[0] = cuid = bytes_to_num(rUIDBCC2, 4);			
+			 // CascadeTag, CT
+			rUIDBCC1[0] = 0x88;
+			// BCC
+			rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; 
+			rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3]; 
+			if (MF_DBGLEVEL >= 2)	{
+				Dbprintf("7B UID: %02x %02x %02x %02x %02x %02x %02x",
+					rUIDBCC1[1],
+					rUIDBCC1[2],
+					rUIDBCC1[3],
+					rUIDBCC2[0],
+					rUIDBCC2[1],
+					rUIDBCC2[2],
+					rUIDBCC2[3]
+				);
+			}
+			break;
+		case 10:
+			atqa[0] |= 0x80;
+			sak_10[0] &= 0xFB;					
+			// save CUID
+			ar_nr_responses[0] = cuid = bytes_to_num(rUIDBCC3, 4);
+			 // CascadeTag, CT
+			rUIDBCC1[0] = 0x88;
+			rUIDBCC2[0] = 0x88;
+			// BCC
+			rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
+			rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
+			rUIDBCC3[4] = rUIDBCC3[0] ^ rUIDBCC3[1] ^ rUIDBCC3[2] ^ rUIDBCC3[3];
+
+			if (MF_DBGLEVEL >= 2)	{
+				Dbprintf("10B UID: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
+					rUIDBCC1[1],
+					rUIDBCC1[2],
+					rUIDBCC1[3],
+					rUIDBCC2[1],
+					rUIDBCC2[2],
+					rUIDBCC2[3],
+					rUIDBCC3[0],
+					rUIDBCC3[1],
+					rUIDBCC3[2],
+					rUIDBCC3[3]
+				);
+			}
+			break;
+		default: 
+			break;
 	}
-
+	// calc some crcs
+	ComputeCrc14443(CRC_14443_A, sak_4, 1, &sak_4[1], &sak_4[2]);
+	ComputeCrc14443(CRC_14443_A, sak_7, 1, &sak_7[1], &sak_7[2]);
+	ComputeCrc14443(CRC_14443_A, sak_10, 1, &sak_10[1], &sak_10[2]);
+	
 	// We need to listen to the high-frequency, peak-detected path.
 	iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
 
-
-	if (MF_DBGLEVEL >= 1)	{
-		if (!_7BUID) {
-			Dbprintf("4B UID: %02x%02x%02x%02x", 
-				rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3]);
-		} else {
-			Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",
-				rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3],
-				rUIDBCC2[0], rUIDBCC2[1] ,rUIDBCC2[2], rUIDBCC2[3]);
-		}
-	}
+	// free eventually allocated BigBuf memory but keep Emulator Memory
+	BigBuf_free_keep_EM();
+	clear_trace();
+	set_tracing(TRUE);
 
 	bool finished = FALSE;
-	while (!BUTTON_PRESS() && !finished) {
+	while (!BUTTON_PRESS() && !finished && !usb_poll_validate_length()) {
 		WDT_HIT();
 
 		// find reader field
-		// Vref = 3300mV, and an 10:1 voltage divider on the input
-		// can measure voltages up to 33000 mV
 		if (cardSTATE == MFEMUL_NOFIELD) {
-			vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
+			vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
 			if (vHf > MF_MINFIELDV) {
 				cardSTATE_TO_IDLE();
 				LED_A_ON();
 			}
 		} 
-		if(cardSTATE == MFEMUL_NOFIELD) continue;
-
-		//Now, get data
+		if (cardSTATE == MFEMUL_NOFIELD) continue;
 
+		// Now, get data
 		res = EmGetCmd(receivedCmd, &len, receivedCmd_par);
 		if (res == 2) { //Field is off!
 			cardSTATE = MFEMUL_NOFIELD;
 			LEDsoff();
 			continue;
 		} else if (res == 1) {
-			break; 	//return value 1 means button press
+			break; 	// return value 1 means button press
 		}
 			
 		// REQ or WUP request in ANY state and WUP in HALTED state
-		if (len == 1 && ((receivedCmd[0] == 0x26 && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == 0x52)) {
+		// this if-statement doesn't match the specification above. (iceman)
+		if (len == 1 && ((receivedCmd[0] == ISO14443A_CMD_REQA && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == ISO14443A_CMD_WUPA)) {
 			selTimer = GetTickCount();
-			EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == 0x52));
+			EmSendCmdEx(atqa, sizeof(atqa), (receivedCmd[0] == ISO14443A_CMD_WUPA));
 			cardSTATE = MFEMUL_SELECT1;
-
-			// init crypto block
-			LED_B_OFF();
-			LED_C_OFF();
 			crypto1_destroy(pcs);
 			cardAUTHKEY = 0xff;
+			LEDsoff();
+			nonce++; 
 			continue;
 		}
 		
@@ -2359,148 +2638,183 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 				break;
 			}
 			case MFEMUL_SELECT1:{
-				// select all
-				if (len == 2 && (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x20)) {
+				if (len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT && receivedCmd[1] == 0x20)) {
 					if (MF_DBGLEVEL >= 4)	Dbprintf("SELECT ALL received");
 					EmSendCmd(rUIDBCC1, sizeof(rUIDBCC1));
 					break;
 				}
-
-				if (MF_DBGLEVEL >= 4 && len == 9 && receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 )
-				{
-					Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
-				}
 				// select card
 				if (len == 9 && 
-						(receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) {
-					EmSendCmd(_7BUID?rSAK1:rSAK, _7BUID?sizeof(rSAK1):sizeof(rSAK));
-					cuid = bytes_to_num(rUIDBCC1, 4);
-					if (!_7BUID) {
-						cardSTATE = MFEMUL_WORK;
-						LED_B_ON();
-						if (MF_DBGLEVEL >= 4)	Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer);
-						break;
-					} else {
-						cardSTATE = MFEMUL_SELECT2;
+						( receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT &&
+						  receivedCmd[1] == 0x70 && 
+						  memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) {
+					
+					// SAK 4b 
+					EmSendCmd(sak_4, sizeof(sak_4));
+					switch(_UID_LEN){
+						case 4:
+							cardSTATE = MFEMUL_WORK;
+							LED_B_ON();
+							if (MF_DBGLEVEL >= 4)	Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer);
+							continue;
+						case 7:
+						case 10:
+							cardSTATE = MFEMUL_SELECT2;
+							continue;
+						default:break;
 					}
+				} else {
+					cardSTATE_TO_IDLE();
 				}
 				break;
 			}
-			case MFEMUL_AUTH1:{
-				if( len != 8)
-				{
-					cardSTATE_TO_IDLE();
+			case MFEMUL_SELECT2:{
+				if (!len) { 
 					LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
 					break;
 				}
-				uint32_t ar = bytes_to_num(receivedCmd, 4);
-				uint32_t nr = bytes_to_num(&receivedCmd[4], 4);
-
-				//Collect AR/NR
-				if(ar_nr_collected < 2){
-					if(ar_nr_responses[2] != ar)
-					{// Avoid duplicates... probably not necessary, ar should vary. 
-						ar_nr_responses[ar_nr_collected*4] = cuid;
-						ar_nr_responses[ar_nr_collected*4+1] = nonce;
-						ar_nr_responses[ar_nr_collected*4+2] = ar;
-						ar_nr_responses[ar_nr_collected*4+3] = nr;
-						ar_nr_collected++;
-					}
-				}
-
-				// --- crypto
-				crypto1_word(pcs, ar , 1);
-				cardRr = nr ^ crypto1_word(pcs, 0, 0);
-
-				// test if auth OK
-				if (cardRr != prng_successor(nonce, 64)){
-					if (MF_DBGLEVEL >= 2) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
-							cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
-							cardRr, prng_successor(nonce, 64));
-					// Shouldn't we respond anything here?
-					// Right now, we don't nack or anything, which causes the
-					// reader to do a WUPA after a while. /Martin
-					// -- which is the correct response. /piwi
-					cardSTATE_TO_IDLE();
-					LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
+				if (len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 && receivedCmd[1] == 0x20)) {
+					EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2));
 					break;
 				}
-
-				ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0);
-
-				num_to_bytes(ans, 4, rAUTH_AT);
-				// --- crypto
-				EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
-				LED_C_ON();
-				cardSTATE = MFEMUL_WORK;
-				if (MF_DBGLEVEL >= 4)	Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d", 
-					cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
-					GetTickCount() - authTimer);
+				if (len == 9 && 
+						(receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 &&
+						 receivedCmd[1] == 0x70 && 
+						 memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0) ) {
+							 
+					EmSendCmd(sak_7, sizeof(sak_7));
+					switch(_UID_LEN){
+						case 7:
+							cardSTATE = MFEMUL_WORK;
+							LED_B_ON();
+							if (MF_DBGLEVEL >= 4)	Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer);
+							continue;
+						case 10:
+							cardSTATE = MFEMUL_SELECT3;
+							continue;
+						default:break;
+					}
+				} 
+				cardSTATE_TO_IDLE();
 				break;
 			}
-			case MFEMUL_SELECT2:{
+			case MFEMUL_SELECT3:{
 				if (!len) { 
 					LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
 					break;
 				}
-				if (len == 2 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x20)) {
-					EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2));
+				if (len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_3 && receivedCmd[1] == 0x20)) {
+					EmSendCmd(rUIDBCC3, sizeof(rUIDBCC3));
 					break;
 				}
-
-				// select 2 card
 				if (len == 9 && 
-						(receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) {
-					EmSendCmd(rSAK, sizeof(rSAK));
-					cuid = bytes_to_num(rUIDBCC2, 4);
+						(receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_3 &&
+						 receivedCmd[1] == 0x70 && 
+						 memcmp(&receivedCmd[2], rUIDBCC3, 4) == 0) ) {
+
+					EmSendCmd(sak_10, sizeof(sak_10));
 					cardSTATE = MFEMUL_WORK;
 					LED_B_ON();
-					if (MF_DBGLEVEL >= 4)	Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer);
+					if (MF_DBGLEVEL >= 4)	Dbprintf("--> WORK. anticol3 time: %d", GetTickCount() - selTimer);
+					break;
+				}
+				cardSTATE_TO_IDLE();
+				break;
+			}
+			case MFEMUL_AUTH1:{
+				if( len != 8) {
+					cardSTATE_TO_IDLE();
+					LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
 					break;
 				}
+
+				uint32_t nr = bytes_to_num(receivedCmd, 4);
+				uint32_t ar = bytes_to_num(&receivedCmd[4], 4);
+
+				// Collect AR/NR
+				// if(ar_nr_collected < 2 && cardAUTHSC == 2){
+				if(ar_nr_collected < 2) {					
+					// if(ar_nr_responses[2] != nr) {
+						ar_nr_responses[ar_nr_collected*4]   = cuid;
+						ar_nr_responses[ar_nr_collected*4+1] = nonce;
+						ar_nr_responses[ar_nr_collected*4+2] = nr;
+						ar_nr_responses[ar_nr_collected*4+3] = ar;
+						ar_nr_collected++;
+					// }					
+		
+					// Interactive mode flag, means we need to send ACK
+					finished = ( ((flags & FLAG_INTERACTIVE) == FLAG_INTERACTIVE)&& ar_nr_collected == 2);
+				}
+				/*
+				crypto1_word(pcs, ar , 1);
+				cardRr = nr ^ crypto1_word(pcs, 0, 0);
 				
-				// i guess there is a command). go into the work state.
-				if (len != 4) {
+				test if auth OK
+				if (cardRr != prng_successor(nonce, 64)){
+					
+					if (MF_DBGLEVEL >= 4) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
+						cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
+							cardRr, prng_successor(nonce, 64));
+					Shouldn't we respond anything here?
+					Right now, we don't nack or anything, which causes the
+					reader to do a WUPA after a while. /Martin
+					-- which is the correct response. /piwi
+					cardSTATE_TO_IDLE();
 					LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
 					break;
 				}
+				*/
+				
+				ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0);
+				num_to_bytes(ans, 4, rAUTH_AT);
+				EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
+				LED_C_ON();
+				
+				if (MF_DBGLEVEL >= 4) {
+					Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d", 
+						cardAUTHSC, 
+						cardAUTHKEY == 0 ? 'A' : 'B',
+						GetTickCount() - authTimer
+					);
+				}
 				cardSTATE = MFEMUL_WORK;
-				//goto lbWORK;
-				//intentional fall-through to the next case-stmt
+				break;
 			}
-
 			case MFEMUL_WORK:{
 				if (len == 0) {
 					LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
 					break;
-				}
-				
+				}		
 				bool encrypted_data = (cardAUTHKEY != 0xFF) ;
 
-				if(encrypted_data) {
-					// decrypt seqence
+				if(encrypted_data)
 					mf_crypto1_decrypt(pcs, receivedCmd, len);
-				}
 				
-				if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) {
+				if (len == 4 && (receivedCmd[0] == MIFARE_AUTH_KEYA || 
+				                 receivedCmd[0] == MIFARE_AUTH_KEYB)  ) {
+
 					authTimer = GetTickCount();
 					cardAUTHSC = receivedCmd[1] / 4;  // received block num
-					cardAUTHKEY = receivedCmd[0] - 0x60;
-					crypto1_destroy(pcs);//Added by martin
+					cardAUTHKEY = receivedCmd[0] - 0x60; // & 1
+					crypto1_destroy(pcs);
 					crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
 
-					if (!encrypted_data) { // first authentication
+					if (!encrypted_data) { 
+						// first authentication
+						crypto1_word(pcs, cuid ^ nonce, 0);// Update crypto state
+						num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce
+						
 						if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY  );
 
-						crypto1_word(pcs, cuid ^ nonce, 0);//Update crypto state
-						num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce
-					} else { // nested authentication
-						if (MF_DBGLEVEL >= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
+					} else {
+						// nested authentication
 						ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0); 
 						num_to_bytes(ans, 4, rAUTH_AT);
+
+						if (MF_DBGLEVEL >= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
 					}
+
 					EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
-					//Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
 					cardSTATE = MFEMUL_AUTH1;
 					break;
 				}
@@ -2523,69 +2837,70 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 					break;
 				}
 
-				if(receivedCmd[0] == 0x30 // read block
-						|| receivedCmd[0] == 0xA0 // write block
-						|| receivedCmd[0] == 0xC0 // inc
-						|| receivedCmd[0] == 0xC1 // dec
-						|| receivedCmd[0] == 0xC2 // restore
-						|| receivedCmd[0] == 0xB0) { // transfer
+				if ( receivedCmd[0] == ISO14443A_CMD_READBLOCK ||
+					 receivedCmd[0] == ISO14443A_CMD_WRITEBLOCK ||
+					 receivedCmd[0] == MIFARE_CMD_INC ||
+					 receivedCmd[0] == MIFARE_CMD_DEC ||
+					 receivedCmd[0] == MIFARE_CMD_RESTORE ||
+					 receivedCmd[0] == MIFARE_CMD_TRANSFER ) {
+						
 					if (receivedCmd[1] >= 16 * 4) {
 						EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
-						if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
+						if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
 						break;
 					}
 
 					if (receivedCmd[1] / 4 != cardAUTHSC) {
 						EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
-						if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC);
+						if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC);
 						break;
 					}
 				}
 				// read block
-				if (receivedCmd[0] == 0x30) {
-					if (MF_DBGLEVEL >= 4) {
-						Dbprintf("Reader reading block %d (0x%02x)",receivedCmd[1],receivedCmd[1]);
-					}
+				if (receivedCmd[0] == ISO14443A_CMD_READBLOCK) {
+					if (MF_DBGLEVEL >= 4) Dbprintf("Reader reading block %d (0x%02x)", receivedCmd[1], receivedCmd[1]);
+
 					emlGetMem(response, receivedCmd[1], 1);
 					AppendCrc14443a(response, 16);
 					mf_crypto1_encrypt(pcs, response, 18, response_par);
 					EmSendCmdPar(response, 18, response_par);
 					numReads++;
-					if(exitAfterNReads > 0 && numReads == exitAfterNReads) {
+					if(exitAfterNReads > 0 && numReads >= exitAfterNReads) {
 						Dbprintf("%d reads done, exiting", numReads);
 						finished = true;
 					}
 					break;
 				}
 				// write block
-				if (receivedCmd[0] == 0xA0) {
-					if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd[1],receivedCmd[1]);
+				if (receivedCmd[0] == ISO14443A_CMD_WRITEBLOCK) {
+					if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)", receivedCmd[1], receivedCmd[1]);
 					EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
 					cardSTATE = MFEMUL_WRITEBL2;
 					cardWRBL = receivedCmd[1];
 					break;
 				}
 				// increment, decrement, restore
-				if (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2) {
-					if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
+				if ( receivedCmd[0] == MIFARE_CMD_INC || 
+				     receivedCmd[0] == MIFARE_CMD_DEC || 
+					 receivedCmd[0] == MIFARE_CMD_RESTORE) {
+
+					 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0], receivedCmd[1], receivedCmd[1]);
+
 					if (emlCheckValBl(receivedCmd[1])) {
-						if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
+						if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
 						EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
 						break;
 					}
 					EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
-					if (receivedCmd[0] == 0xC1)
-						cardSTATE = MFEMUL_INTREG_INC;
-					if (receivedCmd[0] == 0xC0)
-						cardSTATE = MFEMUL_INTREG_DEC;
-					if (receivedCmd[0] == 0xC2)
-						cardSTATE = MFEMUL_INTREG_REST;
+					if (receivedCmd[0] == MIFARE_CMD_INC)		cardSTATE = MFEMUL_INTREG_INC;
+					if (receivedCmd[0] == MIFARE_CMD_DEC)		cardSTATE = MFEMUL_INTREG_DEC;
+					if (receivedCmd[0] == MIFARE_CMD_RESTORE)	cardSTATE = MFEMUL_INTREG_REST;
 					cardWRBL = receivedCmd[1];
 					break;
 				}
 				// transfer
-				if (receivedCmd[0] == 0xB0) {
-					if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
+				if (receivedCmd[0] == MIFARE_CMD_TRANSFER) {
+					if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)", receivedCmd[0], receivedCmd[1], receivedCmd[1]);
 					if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1]))
 						EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
 					else
@@ -2593,7 +2908,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 					break;
 				}
 				// halt
-				if (receivedCmd[0] == 0x50 && receivedCmd[1] == 0x00) {
+				if (receivedCmd[0] == ISO14443A_CMD_HALT && receivedCmd[1] == 0x00) {
 					LED_B_OFF();
 					LED_C_OFF();
 					cardSTATE = MFEMUL_HALTED;
@@ -2602,7 +2917,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 					break;
 				}
 				// RATS
-				if (receivedCmd[0] == 0xe0) {//RATS
+				if (receivedCmd[0] == ISO14443A_CMD_RATS) {
 					EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
 					break;
 				}
@@ -2612,7 +2927,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 				break;
 			}
 			case MFEMUL_WRITEBL2:{
-				if (len == 18){
+				if (len == 18) {
 					mf_crypto1_decrypt(pcs, receivedCmd, len);
 					emlSetMem(receivedCmd, cardWRBL, 1);
 					EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
@@ -2623,7 +2938,6 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 				}
 				break;
 			}
-			
 			case MFEMUL_INTREG_INC:{
 				mf_crypto1_decrypt(pcs, receivedCmd, len);
 				memcpy(&ans, receivedCmd, 4);
@@ -2665,74 +2979,74 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 		}
 	}
 
-	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
-	LEDsoff();
-
-	if(flags & FLAG_INTERACTIVE)// Interactive mode flag, means we need to send ACK
-	{
-		//May just aswell send the collected ar_nr in the response aswell
-		cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,0,0,&ar_nr_responses,ar_nr_collected*4*4);
+	// Interactive mode flag, means we need to send ACK
+	if((flags & FLAG_INTERACTIVE) == FLAG_INTERACTIVE) {
+		// May just aswell send the collected ar_nr in the response aswell
+		uint8_t len = ar_nr_collected * 4 * 4;
+		cmd_send(CMD_ACK, CMD_SIMULATE_MIFARE_CARD, len, 0, &ar_nr_responses, len);
 	}
 
-	if(flags & FLAG_NR_AR_ATTACK)
-	{
-		if(ar_nr_collected > 1) {
+	if( ((flags & FLAG_NR_AR_ATTACK) == FLAG_NR_AR_ATTACK ) && MF_DBGLEVEL >= 1 ) {
+		if(ar_nr_collected > 1 ) {
 			Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
-			Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
-					 ar_nr_responses[0], // UID
-					ar_nr_responses[1], //NT
-					ar_nr_responses[2], //AR1
-					ar_nr_responses[3], //NR1
-					ar_nr_responses[6], //AR2
-					ar_nr_responses[7] //NR2
-					);
+			Dbprintf("../tools/mfkey/mfkey32v2.exe %08x %08x %08x %08x %08x %08x %08x",
+					ar_nr_responses[0], // CUID
+					ar_nr_responses[1], // NT1
+					ar_nr_responses[2], // NR1
+					ar_nr_responses[3], // AR1
+					// ar_nr_responses[4], // CUID2
+					ar_nr_responses[5],  // NT2
+					ar_nr_responses[6], // NR2
+					ar_nr_responses[7]  // AR2
+				);
 		} else {
 			Dbprintf("Failed to obtain two AR/NR pairs!");
-			if(ar_nr_collected >0) {
-				Dbprintf("Only got these: UID=%08x, nonce=%08x, AR1=%08x, NR1=%08x",
-						ar_nr_responses[0], // UID
-						ar_nr_responses[1], //NT
-						ar_nr_responses[2], //AR1
-						ar_nr_responses[3] //NR1
-						);
+			if(ar_nr_collected == 1 ) {
+				Dbprintf("Only got these: UID=%08x, nonce=%08x, NR1=%08x, AR1=%08x",
+						ar_nr_responses[0], // CUID
+						ar_nr_responses[1], // NT
+						ar_nr_responses[2], // NR1
+						ar_nr_responses[3]  // AR1
+					);
 			}
 		}
 	}
-	if (MF_DBGLEVEL >= 1)	Dbprintf("Emulator stopped. Tracing: %d  trace length: %d ",	tracing, traceLen);
+	if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d  trace length: %d ", tracing, BigBuf_get_traceLen());
+	
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+	LEDsoff();
+	set_tracing(FALSE);
 }
 
 
-
 //-----------------------------------------------------------------------------
 // MIFARE sniffer. 
 // 
+// if no activity for 2sec, it sends the collected data to the client.
 //-----------------------------------------------------------------------------
+// "hf mf sniff"
 void RAMFUNC SniffMifare(uint8_t param) {
-	// param:
-	// bit 0 - trigger from first card answer
-	// bit 1 - trigger from first reader 7-bit request
 
-	// C(red) A(yellow) B(green)
 	LEDsoff();
-	// init trace buffer
-	iso14a_clear_trace();
-	iso14a_set_tracing(TRUE);
+
+	// free eventually allocated BigBuf memory
+	BigBuf_free(); BigBuf_Clear_ext(false);
+	clear_trace();
+	set_tracing(TRUE);
 
 	// The command (reader -> tag) that we're receiving.
-	// The length of a received command will in most cases be no more than 18 bytes.
-	// So 32 should be enough!
-	uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
-	uint8_t *receivedCmdPar = ((uint8_t *)BigBuf) + RECV_CMD_PAR_OFFSET;
+	uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE] = {0x00};	
+	uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE] = {0x00};
+
 	// The response (tag -> reader) that we're receiving.
-	uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RESP_OFFSET);
-	uint8_t *receivedResponsePar = ((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET;
+	uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE] = {0x00};
+	uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE] = {0x00};
 
-	// As we receive stuff, we copy it from receivedCmd or receivedResponse
-	// into trace, along with its length and other annotations.
-	//uint8_t *trace = (uint8_t *)BigBuf;
-	
-	// The DMA buffer, used to stream samples from the FPGA
-	uint8_t *dmaBuf = ((uint8_t *)BigBuf) + DMA_BUFFER_OFFSET;
+	iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
+
+	// allocate the DMA buffer, used to stream samples from the FPGA
+	// [iceman] is this sniffed data unsigned?
+	uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
 	uint8_t *data = dmaBuf;
 	uint8_t previous_data = 0;
 	int maxDataLen = 0;
@@ -2740,33 +3054,34 @@ void RAMFUNC SniffMifare(uint8_t param) {
 	bool ReaderIsActive = FALSE;
 	bool TagIsActive = FALSE;
 
-	iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
-
 	// Set up the demodulator for tag -> reader responses.
 	DemodInit(receivedResponse, receivedResponsePar);
 
 	// Set up the demodulator for the reader -> tag commands
 	UartInit(receivedCmd, receivedCmdPar);
 
-	// Setup for the DMA.
-	FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
+	// Setup and start DMA.
+	// set transfer address and number of bytes. Start transfer.
+	if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, DMA_BUFFER_SIZE) ){
+		if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting"); 
+		return;
+	}
 
 	LED_D_OFF();
-	
-	// init sniffer
+
 	MfSniffInit();
 
 	// And now we loop, receiving samples.
-	for(uint32_t sniffCounter = 0; TRUE; ) {
+	for(uint32_t sniffCounter = 0;; ) {
+
+		LED_A_ON();
+		WDT_HIT();
 	
 		if(BUTTON_PRESS()) {
 			DbpString("cancelled by button");
 			break;
 		}
-
-		LED_A_ON();
-		WDT_HIT();
-		
+	
  		if ((sniffCounter & 0x0000FFFF) == 0) {	// from time to time
 			// check if a transaction is completed (timeout after 2000ms).
 			// if yes, stop the DMA transfer and send what we have so far to the client
@@ -2777,21 +3092,26 @@ void RAMFUNC SniffMifare(uint8_t param) {
 				maxDataLen = 0;
 				ReaderIsActive = FALSE;
 				TagIsActive = FALSE;
-				FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
+				// Setup and start DMA. set transfer address and number of bytes. Start transfer.
+				if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, DMA_BUFFER_SIZE) ){
+					if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting"); 
+					return;
+				}				
 			}
 		}
 		
 		int register readBufDataP = data - dmaBuf;	// number of bytes we have processed so far
 		int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; // number of bytes already transferred
-		if (readBufDataP <= dmaBufDataP){			// we are processing the same block of data which is currently being transferred
+
+		if (readBufDataP <= dmaBufDataP)			// we are processing the same block of data which is currently being transferred
 			dataLen = dmaBufDataP - readBufDataP;	// number of bytes still to be processed
-		} else {									
+		else
 			dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed
-		}
+
 		// test for length of buffer
 		if(dataLen > maxDataLen) {					// we are more behind than ever...
 			maxDataLen = dataLen;					
-			if(dataLen > 400) {
+			if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
 				Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
 				break;
 			}
@@ -2802,7 +3122,7 @@ void RAMFUNC SniffMifare(uint8_t param) {
 		if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
 			AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
 			AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
-			Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
+			Dbprintf("RxEmpty ERROR, data length:%d", dataLen); // temporary
 		}
 		// secondary buffer sets as primary, secondary buffer was stopped
 		if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
@@ -2814,30 +3134,30 @@ void RAMFUNC SniffMifare(uint8_t param) {
 		
 		if (sniffCounter & 0x01) {
 
-			if(!TagIsActive) {		// no need to try decoding tag data if the reader is sending
+			// no need to try decoding tag data if the reader is sending
+			if(!TagIsActive) {		
 				uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
 				if(MillerDecoding(readerdata, (sniffCounter-1)*4)) {
 					LED_C_INV();
+
 					if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, TRUE)) break;
 
-					/* And ready to receive another command. */
-					UartReset();
-					
-					/* And also reset the demod code */
+					UartInit(receivedCmd, receivedCmdPar);
 					DemodReset();
 				}
 				ReaderIsActive = (Uart.state != STATE_UNSYNCD);
 			}
 			
-			if(!ReaderIsActive) {		// no need to try decoding tag data if the reader is sending
+			// no need to try decoding tag data if the reader is sending
+			if(!ReaderIsActive) {		
 				uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
 				if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) {
 					LED_C_INV();
 
 					if (MfSniffLogic(receivedResponse, Demod.len, Demod.parity, Demod.bitCount, FALSE)) break;
 
-					// And ready to receive another response.
 					DemodReset();
+					UartInit(receivedCmd, receivedCmdPar);
 				}
 				TagIsActive = (Demod.state != DEMOD_UNSYNCD);
 			}
@@ -2846,17 +3166,17 @@ void RAMFUNC SniffMifare(uint8_t param) {
 		previous_data = *data;
 		sniffCounter++;
 		data++;
-		if(data == dmaBuf + DMA_BUFFER_SIZE) {
+
+		if(data == dmaBuf + DMA_BUFFER_SIZE)
 			data = dmaBuf;
-		}
 
 	} // main cycle
-
-	DbpString("COMMAND FINISHED");
-
+	
+	if (MF_DBGLEVEL >= 1) Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
+	
 	FpgaDisableSscDma();
 	MfSniffEnd();
-	
-	Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
 	LEDsoff();
+	set_tracing(FALSE);
 }