X-Git-Url: http://cvs.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/d0d1e245902fa88ef5d092e68b7e62d9d7b297b3..83602affe5ae7fd7fdc1b91722599c2450285929:/common/lfdemod.c diff --git a/common/lfdemod.c b/common/lfdemod.c index 79c99f73..ffa807fe 100644 --- a/common/lfdemod.c +++ b/common/lfdemod.c @@ -1,701 +1,1600 @@ //----------------------------------------------------------------------------- -// Copyright (C) 2014 +// Copyright (C) 2014 // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- -// Low frequency commands +// Low frequency demod/decode commands //----------------------------------------------------------------------------- #include #include #include "lfdemod.h" +uint8_t justNoise(uint8_t *BitStream, size_t size) +{ + static const uint8_t THRESHOLD = 123; + //test samples are not just noise + uint8_t justNoise1 = 1; + for(size_t idx=0; idx < size && justNoise1 ;idx++){ + justNoise1 = BitStream[idx] < THRESHOLD; + } + return justNoise1; +} + +//by marshmellow +//get high and low values of a wave with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise +int getHiLo(uint8_t *BitStream, size_t size, int *high, int *low, uint8_t fuzzHi, uint8_t fuzzLo) +{ + *high=0; + *low=255; + // get high and low thresholds + for (size_t i=0; i < size; i++){ + if (BitStream[i] > *high) *high = BitStream[i]; + if (BitStream[i] < *low) *low = BitStream[i]; + } + if (*high < 123) return -1; // just noise + *high = ((*high-128)*fuzzHi + 12800)/100; + *low = ((*low-128)*fuzzLo + 12800)/100; + return 1; +} + +// by marshmellow +// pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType +// returns 1 if passed +uint8_t parityTest(uint32_t bits, uint8_t bitLen, uint8_t pType) +{ + uint8_t ans = 0; + for (uint8_t i = 0; i < bitLen; i++){ + ans ^= ((bits >> i) & 1); + } + //PrintAndLog("DEBUG: ans: %d, ptype: %d",ans,pType); + return (ans == pType); +} + +//by marshmellow +//search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length +uint8_t preambleSearch(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t *size, size_t *startIdx) +{ + uint8_t foundCnt=0; + for (int idx=0; idx < *size - pLen; idx++){ + if (memcmp(BitStream+idx, preamble, pLen) == 0){ + //first index found + foundCnt++; + if (foundCnt == 1){ + *startIdx = idx; + } + if (foundCnt == 2){ + *size = idx - *startIdx; + return 1; + } + } + } + return 0; +} //by marshmellow //takes 1s and 0s and searches for EM410x format - output EM ID -uint64_t Em410xDecode(uint8_t *BitStream,uint32_t BitLen) -{ - //no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future - // otherwise could be a void with no arguments - //set defaults - int high=0, low=128; - uint64_t lo=0; //hi=0, - - uint32_t i = 0; - uint32_t initLoopMax = 65; - if (initLoopMax>BitLen) initLoopMax=BitLen; - - for (;i < initLoopMax; ++i) //65 samples should be plenty to find high and low values - { - if (BitStream[i] > high) - high = BitStream[i]; - else if (BitStream[i] < low) - low = BitStream[i]; - } - if (((high !=1)||(low !=0))){ //allow only 1s and 0s - // PrintAndLog("no data found"); - return 0; - } - uint8_t parityTest=0; - // 111111111 bit pattern represent start of frame - uint8_t frame_marker_mask[] = {1,1,1,1,1,1,1,1,1}; - uint32_t idx = 0; - uint32_t ii=0; - uint8_t resetCnt = 0; - while( (idx + 64) < BitLen) { -restart: - // search for a start of frame marker - if ( memcmp(BitStream+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0) - { // frame marker found - idx+=9;//sizeof(frame_marker_mask); - for (i=0; i<10;i++){ - for(ii=0; ii<5; ++ii){ - parityTest += BitStream[(i*5)+ii+idx]; - } - if (parityTest== ((parityTest>>1)<<1)){ - parityTest=0; - for (ii=0; ii<4;++ii){ - //hi = (hi<<1)|(lo>>31); - lo=(lo<<1LL)|(BitStream[(i*5)+ii+idx]); - } - //PrintAndLog("DEBUG: EM parity passed parity val: %d, i:%d, ii:%d,idx:%d, Buffer: %d%d%d%d%d,lo: %d",parityTest,i,ii,idx,BitStream[idx+ii+(i*5)-5],BitStream[idx+ii+(i*5)-4],BitStream[idx+ii+(i*5)-3],BitStream[idx+ii+(i*5)-2],BitStream[idx+ii+(i*5)-1],lo); - }else {//parity failed - //PrintAndLog("DEBUG: EM parity failed parity val: %d, i:%d, ii:%d,idx:%d, Buffer: %d%d%d%d%d",parityTest,i,ii,idx,BitStream[idx+ii+(i*5)-5],BitStream[idx+ii+(i*5)-4],BitStream[idx+ii+(i*5)-3],BitStream[idx+ii+(i*5)-2],BitStream[idx+ii+(i*5)-1]); - parityTest=0; - idx-=8; - if (resetCnt>5)return 0; - resetCnt++; - goto restart;//continue; - } - } - //skip last 5 bit parity test for simplicity. - return lo; - }else{ - idx++; - } - } - return 0; +uint8_t Em410xDecode(uint8_t *BitStream, size_t *size, size_t *startIdx, uint32_t *hi, uint64_t *lo) +{ + //no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future + // otherwise could be a void with no arguments + //set defaults + uint32_t i = 0; + if (BitStream[1]>1){ //allow only 1s and 0s + // PrintAndLog("no data found"); + return 0; + } + // 111111111 bit pattern represent start of frame + // include 0 in front to help get start pos + uint8_t preamble[] = {0,1,1,1,1,1,1,1,1,1}; + uint32_t idx = 0; + uint32_t parityBits = 0; + uint8_t errChk = 0; + uint8_t FmtLen = 10; + *startIdx = 0; + errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, startIdx); + if (errChk == 0 || *size < 64) return 0; + if (*size > 64) FmtLen = 22; + *startIdx += 1; //get rid of 0 from preamble + idx = *startIdx + 9; + for (i=0; i> 63); + *lo = (*lo << 1) | (BitStream[(i*5)+ii+idx]); + } + } + if (errChk != 0) return 1; + //skip last 5 bit parity test for simplicity. + // *size = 64 | 128; + return 0; } //by marshmellow -//takes 2 arguments - clock and invert both as integers -//attempts to demodulate ask while decoding manchester +//takes 3 arguments - clock, invert, maxErr as integers +//attempts to demodulate ask while decoding manchester //prints binary found and saves in graphbuffer for further commands -int askmandemod(uint8_t * BinStream,uint32_t *BitLen,int *clk, int *invert) -{ - int i; - int high = 0, low = 128; - *clk=DetectASKClock(BinStream,(size_t)*BitLen,*clk); //clock default - - if (*clk<8) *clk =64; - if (*clk<32) *clk=32; - if (*invert != 0 && *invert != 1) *invert=0; - uint32_t initLoopMax = 200; - if (initLoopMax>*BitLen) initLoopMax=*BitLen; - // Detect high and lows - for (i = 0; i < initLoopMax; ++i) //200 samples should be enough to find high and low values - { - if (BinStream[i] > high) - high = BinStream[i]; - else if (BinStream[i] < low) - low = BinStream[i]; - } - if ((high < 158) ){ //throw away static - //PrintAndLog("no data found"); - return -2; - } - //25% fuzz in case highs and lows aren't clipped [marshmellow] - high=(int)((high-128)*.75)+128; - low= (int)((low-128)*.75)+128; - - //PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low); - int lastBit = 0; //set first clock check - uint32_t bitnum = 0; //output counter - int tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave - if (*clk==32)tol=1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely - int iii = 0; - uint32_t gLen = *BitLen; - if (gLen > 3000) gLen=3000; - uint8_t errCnt =0; - uint32_t bestStart = *BitLen; - uint32_t bestErrCnt = (*BitLen/1000); - uint32_t maxErr = (*BitLen/1000); - //PrintAndLog("DEBUG - lastbit - %d",lastBit); - //loop to find first wave that works - for (iii=0; iii < gLen; ++iii){ - if ((BinStream[iii]>=high)||(BinStream[iii]<=low)){ - lastBit=iii-*clk; - errCnt=0; - //loop through to see if this start location works - for (i = iii; i < *BitLen; ++i) { - if ((BinStream[i] >= high) && ((i-lastBit)>(*clk-tol))){ - lastBit+=*clk; - } else if ((BinStream[i] <= low) && ((i-lastBit)>(*clk-tol))){ - //low found and we are expecting a bar - lastBit+=*clk; - } else { - //mid value found or no bar supposed to be here - if ((i-lastBit)>(*clk+tol)){ - //should have hit a high or low based on clock!! - - //debug - //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit); - - errCnt++; - lastBit+=*clk;//skip over until hit too many errors - if (errCnt>(maxErr)) break; //allow 1 error for every 1000 samples else start over - } - } - if ((i-iii) >(400 * *clk)) break; //got plenty of bits - } - //we got more than 64 good bits and not all errors - if ((((i-iii)/ *clk) > (64+errCnt)) && (errCnt= high) && ((i-lastBit)>(*clk-tol))){ - lastBit+=*clk; - BinStream[bitnum] = *invert; - bitnum++; - } else if ((BinStream[i] <= low) && ((i-lastBit)>(*clk-tol))){ - //low found and we are expecting a bar - lastBit+=*clk; - BinStream[bitnum] = 1-*invert; - bitnum++; - } else { - //mid value found or no bar supposed to be here - if ((i-lastBit)>(*clk+tol)){ - //should have hit a high or low based on clock!! - - //debug - //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit); - if (bitnum > 0){ - BinStream[bitnum]=77; - bitnum++; - } - - lastBit+=*clk;//skip over error - } - } - if (bitnum >=400) break; - } - *BitLen=bitnum; - } else{ - *invert=bestStart; - *clk=iii; - return -1; - } - return bestErrCnt; +int askmandemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr) +{ + size_t i; + int start = DetectASKClock(BinStream, *size, clk, 20); //clock default + if (*clk==0 || start < 0) return -3; + if (*invert != 1) *invert=0; + uint8_t initLoopMax = 255; + if (initLoopMax > *size) initLoopMax = *size; + // Detect high and lows + // 25% fuzz in case highs and lows aren't clipped [marshmellow] + int high, low; + if (getHiLo(BinStream, initLoopMax, &high, &low, 75, 75) < 1) return -2; //just noise + + // PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low); + int lastBit = 0; //set first clock check + uint16_t bitnum = 0; //output counter + uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave + if (*clk <= 32) tol=1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely + size_t iii = 0; + //if 0 errors allowed then only try first 2 clock cycles as we want a low tolerance + if (!maxErr) initLoopMax = *clk * 2; + uint16_t errCnt = 0, MaxBits = 512; + uint16_t bestStart = start; + uint16_t bestErrCnt = 0; + // PrintAndLog("DEBUG - lastbit - %d",lastBit); + // if best start position not already found by detect clock then + if (start <= 0 || start > initLoopMax){ + bestErrCnt = maxErr+1; + // loop to find first wave that works + for (iii=0; iii < initLoopMax; ++iii){ + // if no peak skip + if (BinStream[iii] < high && BinStream[iii] > low) continue; + + lastBit = iii - *clk; + // loop through to see if this start location works + for (i = iii; i < *size; ++i) { + if ((i-lastBit) > (*clk-tol) && (BinStream[i] >= high || BinStream[i] <= low)) { + lastBit += *clk; + } else if ((i-lastBit) > (*clk+tol)) { + errCnt++; + lastBit += *clk; + } + if ((i-iii) > (MaxBits * *clk) || errCnt > maxErr) break; //got plenty of bits or too many errors + } + //we got more than 64 good bits and not all errors + if ((((i-iii)/ *clk) > (64)) && (errCnt<=maxErr)) { + //possible good read + if (!errCnt || errCnt < bestErrCnt){ + bestStart = iii; //set this as new best run + bestErrCnt = errCnt; + if (!errCnt) break; //great read - finish + } + } + errCnt = 0; + } + } + if (bestErrCnt > maxErr){ + *invert = bestStart; + *clk = iii; + return -1; + } + //best run is good enough set to best run and set overwrite BinStream + lastBit = bestStart - *clk; + errCnt = 0; + for (i = bestStart; i < *size; ++i) { + if ((BinStream[i] >= high) && ((i-lastBit) > (*clk-tol))){ + //high found and we are expecting a bar + lastBit += *clk; + BinStream[bitnum++] = *invert; + } else if ((BinStream[i] <= low) && ((i-lastBit) > (*clk-tol))){ + //low found and we are expecting a bar + lastBit += *clk; + BinStream[bitnum++] = *invert ^ 1; + } else if ((i-lastBit)>(*clk+tol)){ + //should have hit a high or low based on clock!! + //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit); + if (bitnum > 0) { + BinStream[bitnum++] = 77; + errCnt++; + } + lastBit += *clk;//skip over error + } + if (bitnum >= MaxBits) break; + } + *size = bitnum; + return bestErrCnt; +} + +//by marshmellow +//encode binary data into binary manchester +int ManchesterEncode(uint8_t *BitStream, size_t size) +{ + size_t modIdx=20000, i=0; + if (size>modIdx) return -1; + for (size_t idx=0; idx < size; idx++){ + BitStream[idx+modIdx++] = BitStream[idx]; + BitStream[idx+modIdx++] = BitStream[idx]^1; + } + for (; i<(size*2); i++){ + BitStream[i] = BitStream[i+20000]; + } + return i; } //by marshmellow //take 10 and 01 and manchester decode //run through 2 times and take least errCnt -int manrawdecode(uint8_t * BitStream, int *bitLen) -{ - int bitnum=0; - int errCnt =0; - int i=1; - int bestErr = 1000; - int bestRun = 0; - int ii=1; - for (ii=1;ii<3;++ii){ - i=1; - for (i=i+ii;i<*bitLen-2;i+=2){ - if(BitStream[i]==1 && (BitStream[i+1]==0)){ - } else if((BitStream[i]==0)&& BitStream[i+1]==1){ - } else { - errCnt++; - } - if(bitnum>300) break; - } - if (bestErr>errCnt){ - bestErr=errCnt; - bestRun=ii; - } - errCnt=0; - } - errCnt=bestErr; - if (errCnt<20){ - ii=bestRun; - i=1; - for (i=i+ii;i<*bitLen-2;i+=2){ - if(BitStream[i]==1 && (BitStream[i+1]==0)){ - BitStream[bitnum++]=0; - } else if((BitStream[i]==0)&& BitStream[i+1]==1){ - BitStream[bitnum++]=1; - } else { - BitStream[bitnum++]=77; - //errCnt++; - } - if(bitnum>300) break; - } - *bitLen=bitnum; - } - return errCnt; +int manrawdecode(uint8_t * BitStream, size_t *size) +{ + uint16_t bitnum=0, MaxBits = 512, errCnt = 0; + size_t i, ii; + uint16_t bestErr = 1000, bestRun = 0; + if (size == 0) return -1; + for (ii=0;ii<2;++ii){ + for (i=ii; i<*size-2; i+=2) + if (BitStream[i]==BitStream[i+1]) + errCnt++; + + if (bestErr>errCnt){ + bestErr=errCnt; + bestRun=ii; + } + errCnt=0; + } + if (bestErr<20){ + for (i=bestRun; i < *size-2; i+=2){ + if(BitStream[i] == 1 && (BitStream[i+1] == 0)){ + BitStream[bitnum++]=0; + } else if((BitStream[i] == 0) && BitStream[i+1] == 1){ + BitStream[bitnum++]=1; + } else { + BitStream[bitnum++]=77; + } + if(bitnum>MaxBits) break; + } + *size=bitnum; + } + return bestErr; } +//by marshmellow +//take 01 or 10 = 1 and 11 or 00 = 0 +//check for phase errors - should never have 111 or 000 should be 01001011 or 10110100 for 1010 +//decodes biphase or if inverted it is AKA conditional dephase encoding AKA differential manchester encoding +int BiphaseRawDecode(uint8_t *BitStream, size_t *size, int offset, int invert) +{ + uint16_t bitnum = 0; + uint16_t errCnt = 0; + size_t i = offset; + uint16_t MaxBits=512; + //if not enough samples - error + if (*size < 51) return -1; + //check for phase change faults - skip one sample if faulty + uint8_t offsetA = 1, offsetB = 1; + for (; i<48; i+=2){ + if (BitStream[i+1]==BitStream[i+2]) offsetA=0; + if (BitStream[i+2]==BitStream[i+3]) offsetB=0; + } + if (!offsetA && offsetB) offset++; + for (i=offset; i<*size-3; i+=2){ + //check for phase error + if (BitStream[i+1]==BitStream[i+2]) { + BitStream[bitnum++]=77; + errCnt++; + } + if((BitStream[i]==1 && BitStream[i+1]==0) || (BitStream[i]==0 && BitStream[i+1]==1)){ + BitStream[bitnum++]=1^invert; + } else if((BitStream[i]==0 && BitStream[i+1]==0) || (BitStream[i]==1 && BitStream[i+1]==1)){ + BitStream[bitnum++]=invert; + } else { + BitStream[bitnum++]=77; + errCnt++; + } + if(bitnum>MaxBits) break; + } + *size=bitnum; + return errCnt; +} //by marshmellow -//take 01 or 10 = 0 and 11 or 00 = 1 -int BiphaseRawDecode(uint8_t * BitStream, int *bitLen, int offset) -{ - uint8_t bitnum=0; - uint32_t errCnt =0; - uint32_t i=1; - i=offset; - for (;i<*bitLen-2;i+=2){ - if((BitStream[i]==1 && BitStream[i+1]==0)||(BitStream[i]==0 && BitStream[i+1]==1)){ - BitStream[bitnum++]=1; - } else if((BitStream[i]==0 && BitStream[i+1]==0)||(BitStream[i]==1 && BitStream[i+1]==1)){ - BitStream[bitnum++]=0; - } else { - BitStream[bitnum++]=77; - errCnt++; - } - if(bitnum>250) break; - } - *bitLen=bitnum; - return errCnt; +void askAmp(uint8_t *BitStream, size_t size) +{ + int shift = 127; + int shiftedVal=0; + for(size_t i = 1; i=30) //large jump up + shift=127; + else if(BitStream[i]-BitStream[i-1]<=-20) //large jump down + shift=-127; + + shiftedVal=BitStream[i]+shift; + + if (shiftedVal>255) + shiftedVal=255; + else if (shiftedVal<0) + shiftedVal=0; + BitStream[i-1] = shiftedVal; + } + return; +} + +// demodulates strong heavily clipped samples +int cleanAskRawDemod(uint8_t *BinStream, size_t *size, int clk, int invert, int high, int low) +{ + size_t bitCnt=0, smplCnt=0, errCnt=0; + uint8_t waveHigh = 0; + //PrintAndLog("clk: %d", clk); + for (size_t i=0; i < *size; i++){ + if (BinStream[i] >= high && waveHigh){ + smplCnt++; + } else if (BinStream[i] <= low && !waveHigh){ + smplCnt++; + } else { //transition + if ((BinStream[i] >= high && !waveHigh) || (BinStream[i] <= low && waveHigh)){ + if (smplCnt > clk-(clk/4)-1) { //full clock + if (smplCnt > clk + (clk/4)+1) { //too many samples + errCnt++; + BinStream[bitCnt++]=77; + } else if (waveHigh) { + BinStream[bitCnt++] = invert; + BinStream[bitCnt++] = invert; + } else if (!waveHigh) { + BinStream[bitCnt++] = invert ^ 1; + BinStream[bitCnt++] = invert ^ 1; + } + waveHigh ^= 1; + smplCnt = 0; + } else if (smplCnt > (clk/2) - (clk/4)-1) { + if (waveHigh) { + BinStream[bitCnt++] = invert; + } else if (!waveHigh) { + BinStream[bitCnt++] = invert ^ 1; + } + waveHigh ^= 1; + smplCnt = 0; + } else if (!bitCnt) { + //first bit + waveHigh = (BinStream[i] >= high); + smplCnt = 1; + } else { + smplCnt++; + //transition bit oops + } + } else { //haven't hit new high or new low yet + smplCnt++; + } + } + } + *size = bitCnt; + return errCnt; } //by marshmellow -//takes 2 arguments - clock and invert both as integers +//takes 3 arguments - clock, invert and maxErr as integers //attempts to demodulate ask only -//prints binary found and saves in graphbuffer for further commands -int askrawdemod(uint8_t *BinStream, int *bitLen,int *clk, int *invert) -{ - uint32_t i; - // int invert=0; //invert default - int high = 0, low = 128; - *clk=DetectASKClock(BinStream,*bitLen,*clk); //clock default - uint8_t BitStream[502] = {0}; - - if (*clk<8) *clk =64; - if (*clk<32) *clk=32; - if (*invert != 0 && *invert != 1) *invert =0; - uint32_t initLoopMax = 200; - if (initLoopMax>*bitLen) initLoopMax=*bitLen; - // Detect high and lows - for (i = 0; i < initLoopMax; ++i) //200 samples should be plenty to find high and low values - { - if (BinStream[i] > high) - high = BinStream[i]; - else if (BinStream[i] < low) - low = BinStream[i]; - } - if ((high < 158)){ //throw away static - // PrintAndLog("no data found"); - return -2; - } - //25% fuzz in case highs and lows aren't clipped [marshmellow] - high=(int)((high-128)*.75)+128; - low= (int)((low-128)*.75)+128; - - //PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low); - int lastBit = 0; //set first clock check - uint32_t bitnum = 0; //output counter - uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave - if (*clk==32)tol=1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely - uint32_t iii = 0; - uint32_t gLen = *bitLen; - if (gLen > 500) gLen=500; - uint8_t errCnt =0; - uint32_t bestStart = *bitLen; - uint32_t bestErrCnt = (*bitLen/1000); - uint8_t midBit=0; - //PrintAndLog("DEBUG - lastbit - %d",lastBit); - //loop to find first wave that works - for (iii=0; iii < gLen; ++iii){ - if ((BinStream[iii]>=high)||(BinStream[iii]<=low)){ - lastBit=iii-*clk; - //loop through to see if this start location works - for (i = iii; i < *bitLen; ++i) { - if ((BinStream[i] >= high) && ((i-lastBit)>(*clk-tol))){ - lastBit+=*clk; - BitStream[bitnum] = *invert; - bitnum++; - midBit=0; - } else if ((BinStream[i] <= low) && ((i-lastBit)>(*clk-tol))){ - //low found and we are expecting a bar - lastBit+=*clk; - BitStream[bitnum] = 1-*invert; - bitnum++; - midBit=0; - } else if ((BinStream[i]<=low) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){ - //mid bar? - midBit=1; - BitStream[bitnum]= 1-*invert; - bitnum++; - } else if ((BinStream[i]>=high)&&(midBit==0) && ((i-lastBit)>((*clk/2)-tol))){ - //mid bar? - midBit=1; - BitStream[bitnum]= *invert; - bitnum++; - } else if ((i-lastBit)>((*clk/2)+tol)&&(midBit==0)){ - //no mid bar found - midBit=1; - BitStream[bitnum]= BitStream[bitnum-1]; - bitnum++; - } else { - //mid value found or no bar supposed to be here - - if ((i-lastBit)>(*clk+tol)){ - //should have hit a high or low based on clock!! - //debug - //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit); - if (bitnum > 0){ - BitStream[bitnum]=77; - bitnum++; - } - - - errCnt++; - lastBit+=*clk;//skip over until hit too many errors - if (errCnt>((*bitLen/1000))){ //allow 1 error for every 1000 samples else start over - errCnt=0; - bitnum=0;//start over - break; - } - } - } - if (bitnum>500) break; - } - //we got more than 64 good bits and not all errors - if ((bitnum > (64+errCnt)) && (errCnt<(*bitLen/1000))) { - //possible good read - if (errCnt==0) break; //great read - finish - if (bestStart == iii) break; //if current run == bestErrCnt run (after exhausted testing) then finish - if (errCnt=gLen){ //exhausted test - //if there was a ok test go back to that one and re-run the best run (then dump after that run) - if (bestErrCnt < (*bitLen/1000)) iii=bestStart; - } - } - if (bitnum>16){ - - // PrintAndLog("Data start pos:%d, lastBit:%d, stop pos:%d, numBits:%d",iii,lastBit,i,bitnum); - //move BitStream back to BinStream - // ClearGraph(0); - for (i=0; i < bitnum; ++i){ - BinStream[i]=BitStream[i]; - } - *bitLen=bitnum; - // RepaintGraphWindow(); - //output - // if (errCnt>0){ - // PrintAndLog("# Errors during Demoding (shown as 77 in bit stream): %d",errCnt); - // } - // PrintAndLog("ASK decoded bitstream:"); - // Now output the bitstream to the scrollback by line of 16 bits - // printBitStream2(BitStream,bitnum); - //int errCnt=0; - //errCnt=manrawdemod(BitStream,bitnum); - - // Em410xDecode(Cmd); - } else return -1; - return errCnt; -} -//translate wave to 11111100000 (1 for each short wave 0 for each long wave) +int askrawdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr, uint8_t amp) +{ + if (*size==0) return -1; + int start = DetectASKClock(BinStream, *size, clk, 20); //clock default + if (*clk==0 || start < 0) return -1; + if (*invert != 1) *invert = 0; + if (amp==1) askAmp(BinStream, *size); + + uint8_t initLoopMax = 255; + if (initLoopMax > *size) initLoopMax=*size; + // Detect high and lows + //25% clip in case highs and lows aren't clipped [marshmellow] + int high, low; + if (getHiLo(BinStream, initLoopMax, &high, &low, 75, 75) < 1) + return -1; //just noise + + // if clean clipped waves detected run alternate demod + if (DetectCleanAskWave(BinStream, *size, high, low)) + return cleanAskRawDemod(BinStream, size, *clk, *invert, high, low); + + int lastBit = 0; //set first clock check - can go negative + size_t i, iii = 0; + size_t errCnt = 0, bitnum = 0; //output counter + uint8_t midBit = 0; + size_t bestStart = start, bestErrCnt = 0; //(*size/1000); + size_t MaxBits = 1024; + + //if 0 errors allowed then only try first 2 clock cycles as we want a low tolerance + if (!maxErr) initLoopMax = *clk * 2; + //if best start not already found by detectclock + if (start <= 0 || start > initLoopMax){ + bestErrCnt = maxErr+1; + //PrintAndLog("DEBUG - lastbit - %d",lastBit); + //loop to find first wave that works + for (iii=0; iii < initLoopMax; ++iii){ + if ((BinStream[iii] >= high) || (BinStream[iii] <= low)){ + lastBit = iii - *clk; + //loop through to see if this start location works + for (i = iii; i < *size; ++i) { + if (i-lastBit > *clk && (BinStream[i] >= high || BinStream[i] <= low)){ + lastBit += *clk; + midBit = 0; + } else if (i-lastBit > (*clk/2) && midBit == 0) { + midBit = 1; + } else if ((i-lastBit) > *clk) { + //should have hit a high or low based on clock!! + //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit); + errCnt++; + lastBit += *clk;//skip over until hit too many errors + if (errCnt > maxErr) + break; + } + if ((i-iii)>(MaxBits * *clk)) break; //got enough bits + } + //we got more than 64 good bits and not all errors + if ((((i-iii)/ *clk) > 64) && (errCnt<=maxErr)) { + //possible good read + if (errCnt==0){ + bestStart=iii; + bestErrCnt=errCnt; + break; //great read - finish + } + if (errCnt maxErr){ + *invert = bestStart; + *clk = iii; + return -1; + } + //best run is good enough - set to best run and overwrite BinStream + lastBit = bestStart - *clk - 1; + errCnt = 0; + + for (i = bestStart; i < *size; ++i) { + if (i - lastBit > *clk){ + if (BinStream[i] >= high) { + BinStream[bitnum++] = *invert; + } else if (BinStream[i] <= low) { + BinStream[bitnum++] = *invert ^ 1; + } else { + if (bitnum > 0) { + BinStream[bitnum++]=77; + errCnt++; + } + } + midBit = 0; + lastBit += *clk; + } else if (i-lastBit > (*clk/2) && midBit == 0){ + if (BinStream[i] >= high) { + BinStream[bitnum++] = *invert; + } else if (BinStream[i] <= low) { + BinStream[bitnum++] = *invert ^ 1; + } else { + + BinStream[bitnum] = BinStream[bitnum-1]; + bitnum++; + } + midBit = 1; + } + if (bitnum >= MaxBits) break; + } + *size = bitnum; + return errCnt; +} + +// demod gProxIIDemod +// error returns as -x +// success returns start position in BitStream +// BitStream must contain previously askrawdemod and biphasedemoded data +int gProxII_Demod(uint8_t BitStream[], size_t *size) +{ + size_t startIdx=0; + uint8_t preamble[] = {1,1,1,1,1,0}; + + uint8_t errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, &startIdx); + if (errChk == 0) return -3; //preamble not found + if (*size != 96) return -2; //should have found 96 bits + //check first 6 spacer bits to verify format + if (!BitStream[startIdx+5] && !BitStream[startIdx+10] && !BitStream[startIdx+15] && !BitStream[startIdx+20] && !BitStream[startIdx+25] && !BitStream[startIdx+30]){ + //confirmed proper separator bits found + //return start position + return (int) startIdx; + } + return -5; +} + +//translate wave to 11111100000 (1 for each short wave 0 for each long wave) size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow) { - uint32_t last_transition = 0; - uint32_t idx = 1; - uint32_t maxVal=0; - if (fchigh==0) fchigh=10; - if (fclow==0) fclow=8; - // we do care about the actual theshold value as sometimes near the center of the - // wave we may get static that changes direction of wave for one value - // if our value is too low it might affect the read. and if our tag or - // antenna is weak a setting too high might not see anything. [marshmellow] - if (size<100) return 0; - for(idx=1; idx<100; idx++){ - if(maxVal1 transition - if (dest[idx-1] < dest[idx]) { // 0 -> 1 transition - if ((idx-last_transition)<(fclow-2)){ //0-5 = garbage noise - //do nothing with extra garbage - } else if ((idx-last_transition) < (fchigh-1)) { //6-8 = 8 waves - dest[numBits]=1; - } else { //9+ = 10 waves - dest[numBits]=0; - } - last_transition = idx; - numBits++; - } - } - return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0 -} - -uint32_t myround2(float f) -{ - if (f >= 2000) return 2000;//something bad happened - return (uint32_t) (f + (float)0.5); -} - -//translate 11111100000 to 10 -size_t aggregate_bits(uint8_t *dest,size_t size, uint8_t rfLen, uint8_t maxConsequtiveBits, uint8_t invert,uint8_t fchigh,uint8_t fclow )// uint8_t h2l_crossing_value,uint8_t l2h_crossing_value, -{ - uint8_t lastval=dest[0]; - uint32_t idx=0; - size_t numBits=0; - uint32_t n=1; - - for( idx=1; idx < size; idx++) { - - if (dest[idx]==lastval) { - n++; - continue; - } - //if lastval was 1, we have a 1->0 crossing - if ( dest[idx-1]==1 ) { - n=myround2((float)(n+1)/((float)(rfLen)/(float)fclow)); - //n=(n+1) / h2l_crossing_value; - } else {// 0->1 crossing - n=myround2((float)(n+1)/((float)(rfLen-2)/(float)fchigh)); //-2 for fudge factor - //n=(n+1) / l2h_crossing_value; - } - if (n == 0) n = 1; - - if(n < maxConsequtiveBits) //Consecutive - { - if(invert==0){ //invert bits - memset(dest+numBits, dest[idx-1] , n); - }else{ - memset(dest+numBits, dest[idx-1]^1 , n); - } - numBits += n; - } - n=0; - lastval=dest[idx]; - }//end for - return numBits; + size_t last_transition = 0; + size_t idx = 1; + //uint32_t maxVal=0; + if (fchigh==0) fchigh=10; + if (fclow==0) fclow=8; + //set the threshold close to 0 (graph) or 128 std to avoid static + uint8_t threshold_value = 123; + + // sync to first lo-hi transition, and threshold + + // Need to threshold first sample + + if(dest[0] < threshold_value) dest[0] = 0; + else dest[0] = 1; + + size_t numBits = 0; + // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8) + // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere + // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10 + for(idx = 1; idx < size; idx++) { + // threshold current value + + if (dest[idx] < threshold_value) dest[idx] = 0; + else dest[idx] = 1; + + // Check for 0->1 transition + if (dest[idx-1] < dest[idx]) { // 0 -> 1 transition + if ((idx-last_transition)<(fclow-2)){ //0-5 = garbage noise + //do nothing with extra garbage + } else if ((idx-last_transition) < (fchigh-1)) { //6-8 = 8 waves + dest[numBits++]=1; + } else if ((idx-last_transition) > (fchigh+1) && !numBits) { //12 + and first bit = garbage + //do nothing with beginning garbage + } else { //9+ = 10 waves + dest[numBits++]=0; + } + last_transition = idx; + } + } + return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0 +} + +//translate 11111100000 to 10 +size_t aggregate_bits(uint8_t *dest, size_t size, uint8_t rfLen, + uint8_t invert, uint8_t fchigh, uint8_t fclow) +{ + uint8_t lastval=dest[0]; + size_t idx=0; + size_t numBits=0; + uint32_t n=1; + for( idx=1; idx < size; idx++) { + n++; + if (dest[idx]==lastval) continue; + + //if lastval was 1, we have a 1->0 crossing + if (dest[idx-1]==1) { + if (!numBits && n < rfLen/fclow) { + n=0; + lastval = dest[idx]; + continue; + } + n = (n * fclow + rfLen/2) / rfLen; + } else {// 0->1 crossing + //test first bitsample too small + if (!numBits && n < rfLen/fchigh) { + n=0; + lastval = dest[idx]; + continue; + } + n = (n * fchigh + rfLen/2) / rfLen; + } + if (n == 0) n = 1; + + memset(dest+numBits, dest[idx-1]^invert , n); + numBits += n; + n=0; + lastval=dest[idx]; + }//end for + // if valid extra bits at the end were all the same frequency - add them in + if (n > rfLen/fchigh) { + if (dest[idx-2]==1) { + n = (n * fclow + rfLen/2) / rfLen; + } else { + n = (n * fchigh + rfLen/2) / rfLen; + } + memset(dest+numBits, dest[idx-1]^invert , n); + numBits += n; + } + return numBits; } //by marshmellow (from holiman's base) // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod) int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow) { - // FSK demodulator - size = fsk_wave_demod(dest, size, fchigh, fclow); - size = aggregate_bits(dest, size,rfLen,192,invert,fchigh,fclow); - return size; + // FSK demodulator + size = fsk_wave_demod(dest, size, fchigh, fclow); + size = aggregate_bits(dest, size, rfLen, invert, fchigh, fclow); + return size; } + // loop to get raw HID waveform then FSK demodulate the TAG ID from it -int HIDdemodFSK(uint8_t *dest, size_t size, uint32_t *hi2, uint32_t *hi, uint32_t *lo) -{ - - size_t idx=0; //, found=0; //size=0, - // FSK demodulator - size = fskdemod(dest, size,50,0,10,8); - - // final loop, go over previously decoded manchester data and decode into usable tag ID - // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0 - uint8_t frame_marker_mask[] = {1,1,1,0,0,0}; - int numshifts = 0; - idx = 0; - //one scan - while( idx + sizeof(frame_marker_mask) < size) { - // search for a start of frame marker - if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0) - { // frame marker found - idx+=sizeof(frame_marker_mask); - while(dest[idx] != dest[idx+1] && idx < size-2) - { - // Keep going until next frame marker (or error) - // Shift in a bit. Start by shifting high registers - *hi2 = (*hi2<<1)|(*hi>>31); - *hi = (*hi<<1)|(*lo>>31); - //Then, shift in a 0 or one into low - if (dest[idx] && !dest[idx+1]) // 1 0 - *lo=(*lo<<1)|0; - else // 0 1 - *lo=(*lo<<1)|1; - numshifts++; - idx += 2; - } - // Hopefully, we read a tag and hit upon the next frame marker - if(idx + sizeof(frame_marker_mask) < size) - { - if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0) - { - //good return - return idx; - } - } - // reset - *hi2 = *hi = *lo = 0; - numshifts = 0; - }else { - idx++; - } - } - return -1; -} - -uint32_t bytebits_to_byte(uint8_t* src, int numbits) -{ - uint32_t num = 0; - for(int i = 0 ; i < numbits ; i++) - { - num = (num << 1) | (*src); - src++; - } - return num; +int HIDdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo) +{ + if (justNoise(dest, *size)) return -1; + + size_t numStart=0, size2=*size, startIdx=0; + // FSK demodulator + *size = fskdemod(dest, size2,50,1,10,8); //fsk2a + if (*size < 96*2) return -2; + // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1 + uint8_t preamble[] = {0,0,0,1,1,1,0,1}; + // find bitstring in array + uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); + if (errChk == 0) return -3; //preamble not found + + numStart = startIdx + sizeof(preamble); + // final loop, go over previously decoded FSK data and manchester decode into usable tag ID + for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){ + if (dest[idx] == dest[idx+1]){ + return -4; //not manchester data + } + *hi2 = (*hi2<<1)|(*hi>>31); + *hi = (*hi<<1)|(*lo>>31); + //Then, shift in a 0 or one into low + if (dest[idx] && !dest[idx+1]) // 1 0 + *lo=(*lo<<1)|1; + else // 0 1 + *lo=(*lo<<1)|0; + } + return (int)startIdx; +} + +// loop to get raw paradox waveform then FSK demodulate the TAG ID from it +int ParadoxdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo) +{ + if (justNoise(dest, *size)) return -1; + + size_t numStart=0, size2=*size, startIdx=0; + // FSK demodulator + *size = fskdemod(dest, size2,50,1,10,8); //fsk2a + if (*size < 96) return -2; + + // 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1 + uint8_t preamble[] = {0,0,0,0,1,1,1,1}; + + uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); + if (errChk == 0) return -3; //preamble not found + + numStart = startIdx + sizeof(preamble); + // final loop, go over previously decoded FSK data and manchester decode into usable tag ID + for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){ + if (dest[idx] == dest[idx+1]) + return -4; //not manchester data + *hi2 = (*hi2<<1)|(*hi>>31); + *hi = (*hi<<1)|(*lo>>31); + //Then, shift in a 0 or one into low + if (dest[idx] && !dest[idx+1]) // 1 0 + *lo=(*lo<<1)|1; + else // 0 1 + *lo=(*lo<<1)|0; + } + return (int)startIdx; +} + +uint32_t bytebits_to_byte(uint8_t* src, size_t numbits) +{ + uint32_t num = 0; + for(int i = 0 ; i < numbits ; i++) + { + num = (num << 1) | (*src); + src++; + } + return num; } int IOdemodFSK(uint8_t *dest, size_t size) { - uint32_t idx=0; - //make sure buffer has data - if (size < 66) return -1; - //test samples are not just noise - uint8_t testMax=0; - for(idx=0;idx<65;idx++){ - if (testMax20){ - // FSK demodulator - size = fskdemod(dest, size,64,1,10,8); // RF/64 and invert - if (size < 65) return -1; //did we get a good demod? - //Index map - //0 10 20 30 40 50 60 - //| | | | | | | - //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 - //----------------------------------------------------------------------------- - //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11 - // - //XSF(version)facility:codeone+codetwo - //Handle the data - uint8_t mask[] = {0,0,0,0,0,0,0,0,0,1}; - for( idx=0; idx < (size - 65); idx++) { - if ( memcmp(dest + idx, mask, sizeof(mask))==0) { - //frame marker found - if (!dest[idx+8] && dest[idx+17]==1 && dest[idx+26]==1 && dest[idx+35]==1 && dest[idx+44]==1 && dest[idx+53]==1){ - //confirmed proper separator bits found - //return start position - return (int) idx; - } - } - } - } - return 0; + if (justNoise(dest, size)) return -1; + //make sure buffer has data + if (size < 66*64) return -2; + // FSK demodulator + size = fskdemod(dest, size, 64, 1, 10, 8); // FSK2a RF/64 + if (size < 65) return -3; //did we get a good demod? + //Index map + //0 10 20 30 40 50 60 + //| | | | | | | + //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 + //----------------------------------------------------------------------------- + //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11 + // + //XSF(version)facility:codeone+codetwo + //Handle the data + size_t startIdx = 0; + uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,1}; + uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), &size, &startIdx); + if (errChk == 0) return -4; //preamble not found + + if (!dest[startIdx+8] && dest[startIdx+17]==1 && dest[startIdx+26]==1 && dest[startIdx+35]==1 && dest[startIdx+44]==1 && dest[startIdx+53]==1){ + //confirmed proper separator bits found + //return start position + return (int) startIdx; + } + return -5; +} + +// by marshmellow +// takes a array of binary values, start position, length of bits per parity (includes parity bit), +// Parity Type (1 for odd 0 for even), and binary Length (length to run) +size_t removeParity(uint8_t *BitStream, size_t startIdx, uint8_t pLen, uint8_t pType, size_t bLen) +{ + uint32_t parityWd = 0; + size_t j = 0, bitCnt = 0; + for (int word = 0; word < (bLen); word+=pLen){ + for (int bit=0; bit < pLen; bit++){ + parityWd = (parityWd << 1) | BitStream[startIdx+word+bit]; + BitStream[j++] = (BitStream[startIdx+word+bit]); + } + j--; + // if parity fails then return 0 + if (parityTest(parityWd, pLen, pType) == 0) return -1; + bitCnt+=(pLen-1); + parityWd = 0; + } + // if we got here then all the parities passed + //return ID start index and size + return bitCnt; +} + +// by marshmellow +// FSK Demod then try to locate an AWID ID +int AWIDdemodFSK(uint8_t *dest, size_t *size) +{ + //make sure buffer has enough data + if (*size < 96*50) return -1; + + if (justNoise(dest, *size)) return -2; + + // FSK demodulator + *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50 + if (*size < 96) return -3; //did we get a good demod? + + uint8_t preamble[] = {0,0,0,0,0,0,0,1}; + size_t startIdx = 0; + uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); + if (errChk == 0) return -4; //preamble not found + if (*size != 96) return -5; + return (int)startIdx; +} + +// by marshmellow +// FSK Demod then try to locate an Farpointe Data (pyramid) ID +int PyramiddemodFSK(uint8_t *dest, size_t *size) +{ + //make sure buffer has data + if (*size < 128*50) return -5; + + //test samples are not just noise + if (justNoise(dest, *size)) return -1; + + // FSK demodulator + *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50 + if (*size < 128) return -2; //did we get a good demod? + + uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}; + size_t startIdx = 0; + uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); + if (errChk == 0) return -4; //preamble not found + if (*size != 128) return -3; + return (int)startIdx; +} + + +uint8_t DetectCleanAskWave(uint8_t dest[], size_t size, int high, int low) +{ + uint16_t allPeaks=1; + uint16_t cntPeaks=0; + size_t loopEnd = 572; + if (loopEnd > size) loopEnd = size; + for (size_t i=60; ilow && dest[i] 300) return 1; + } + return allPeaks; +} + +// by marshmellow +// to help detect clocks on heavily clipped samples +// based on counts between zero crossings +int DetectStrongAskClock(uint8_t dest[], size_t size) +{ + int clk[]={0,8,16,32,40,50,64,100,128}; + size_t idx = 40; + uint8_t high=0; + size_t cnt = 0; + size_t highCnt = 0; + size_t highCnt2 = 0; + for (;idx < size; idx++){ + if (dest[idx]>128) { + if (!high){ + high=1; + if (cnt > highCnt){ + if (highCnt != 0) highCnt2 = highCnt; + highCnt = cnt; + } else if (cnt > highCnt2) { + highCnt2 = cnt; + } + cnt=1; + } else { + cnt++; + } + } else if (dest[idx] <= 128){ + if (high) { + high=0; + if (cnt > highCnt) { + if (highCnt != 0) highCnt2 = highCnt; + highCnt = cnt; + } else if (cnt > highCnt2) { + highCnt2 = cnt; + } + cnt=1; + } else { + cnt++; + } + } + } + uint8_t tol; + for (idx=8; idx>0; idx--){ + tol = clk[idx]/8; + if (clk[idx] >= highCnt - tol && clk[idx] <= highCnt + tol) + return clk[idx]; + if (clk[idx] >= highCnt2 - tol && clk[idx] <= highCnt2 + tol) + return clk[idx]; + } + return -1; } // by marshmellow // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping) // maybe somehow adjust peak trimming value based on samples to fix? -int DetectASKClock(uint8_t dest[], size_t size, int clock) -{ - int i=0; - int peak=0; - int low=128; - int clk[]={16,32,40,50,64,100,128,256}; - int loopCnt = 256; //don't need to loop through entire array... - if (sizepeak){ - peak = dest[i]; - } - if(dest[i]=peak) || (dest[ii]<=low)){ - errCnt[clkCnt]=0; - // now that we have the first one lined up test rest of wave array - for (i=0; i<((int)(size/clk[clkCnt])-1); ++i){ - if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){ - }else if(dest[ii+(i*clk[clkCnt])-tol]>=peak || dest[ii+(i*clk[clkCnt])-tol]<=low){ - }else if(dest[ii+(i*clk[clkCnt])+tol]>=peak || dest[ii+(i*clk[clkCnt])+tol]<=low){ - }else{ //error no peak detected - errCnt[clkCnt]++; - } - } - //if we found no errors this is correct one - return this clock - if(errCnt[clkCnt]==0) return clk[clkCnt]; - //if we found errors see if it is lowest so far and save it as best run - if(errCnt[clkCnt]0; i--){ + if (clk[i] == ans) { + *clock = ans; + return 0; + } + } + } + uint8_t ii; + uint8_t clkCnt, tol = 0; + uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000}; + uint8_t bestStart[]={0,0,0,0,0,0,0,0,0}; + size_t errCnt = 0; + size_t arrLoc, loopEnd; + //test each valid clock from smallest to greatest to see which lines up + for(clkCnt=0; clkCnt < 8; clkCnt++){ + if (clk[clkCnt] == 32){ + tol=1; + }else{ + tol=0; + } + if (!maxErr) loopCnt=clk[clkCnt]*2; + bestErr[clkCnt]=1000; + //try lining up the peaks by moving starting point (try first 256) + for (ii=0; ii < loopCnt; ii++){ + if (dest[ii] < peak && dest[ii] > low) continue; + + errCnt=0; + // now that we have the first one lined up test rest of wave array + loopEnd = ((size-ii-tol) / clk[clkCnt]) - 1; + for (i=0; i < loopEnd; ++i){ + arrLoc = ii + (i * clk[clkCnt]); + if (dest[arrLoc] >= peak || dest[arrLoc] <= low){ + }else if (dest[arrLoc-tol] >= peak || dest[arrLoc-tol] <= low){ + }else if (dest[arrLoc+tol] >= peak || dest[arrLoc+tol] <= low){ + }else{ //error no peak detected + errCnt++; + } + } + //if we found no errors then we can stop here + // this is correct one - return this clock + //PrintAndLog("DEBUG: clk %d, err %d, ii %d, i %d",clk[clkCnt],errCnt,ii,i); + if(errCnt==0 && clkCnt<6) { + *clock = clk[clkCnt]; + return ii; + } + //if we found errors see if it is lowest so far and save it as best run + if(errCnt maxErr) return -1; + *clock = clk[best]; + return bestStart[best]; +} + +//by marshmellow +//detect psk clock by reading each phase shift +// a phase shift is determined by measuring the sample length of each wave +int DetectPSKClock(uint8_t dest[], size_t size, int clock) +{ + uint8_t clk[]={255,16,32,40,50,64,100,128,255}; //255 is not a valid clock + uint16_t loopCnt = 4096; //don't need to loop through entire array... + if (size == 0) return 0; + if (size= dest[i+2]){ + if (waveStart == 0) { + waveStart = i+1; + //PrintAndLog("DEBUG: waveStart: %d",waveStart); + } else { + waveEnd = i+1; + //PrintAndLog("DEBUG: waveEnd: %d",waveEnd); + waveLenCnt = waveEnd-waveStart; + if (waveLenCnt > fc){ + firstFullWave = waveStart; + fullWaveLen=waveLenCnt; + break; + } + waveStart=0; + } + } + } + //PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen); + + //test each valid clock from greatest to smallest to see which lines up + for(clkCnt=7; clkCnt >= 1 ; clkCnt--){ + lastClkBit = firstFullWave; //set end of wave as clock align + waveStart = 0; + errCnt=0; + peakcnt=0; + //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d",clk[clkCnt],lastClkBit); + + for (i = firstFullWave+fullWaveLen-1; i < loopCnt-2; i++){ + //top edge of wave = start of new wave + if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){ + if (waveStart == 0) { + waveStart = i+1; + waveLenCnt=0; + } else { //waveEnd + waveEnd = i+1; + waveLenCnt = waveEnd-waveStart; + if (waveLenCnt > fc){ + //if this wave is a phase shift + //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, ii: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,ii+1,fc); + if (i+1 >= lastClkBit + clk[clkCnt] - tol){ //should be a clock bit + peakcnt++; + lastClkBit+=clk[clkCnt]; + } else if (i lastClkBit + clk[clkCnt] + tol + fc){ + lastClkBit+=clk[clkCnt]; //no phase shift but clock bit + } + waveStart=i+1; + } + } + } + if (errCnt == 0){ + return clk[clkCnt]; + } + if (errCnt <= bestErr[clkCnt]) bestErr[clkCnt]=errCnt; + if (peakcnt > peaksdet[clkCnt]) peaksdet[clkCnt]=peakcnt; + } + //all tested with errors + //return the highest clk with the most peaks found + uint8_t best=7; + for (i=7; i>=1; i--){ + if (peaksdet[i] > peaksdet[best]) { + best = i; + } + //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best]); + } + return clk[best]; +} + +//by marshmellow +//detect nrz clock by reading #peaks vs no peaks(or errors) +int DetectNRZClock(uint8_t dest[], size_t size, int clock) +{ + size_t i=0; + uint8_t clk[]={8,16,32,40,50,64,100,128,255}; + size_t loopCnt = 4096; //don't need to loop through entire array... + if (size == 0) return 0; + if (size= peak || dest[i] <= low){ + peakcnt++; + } else { + if (peakcnt>0 && maxPeak < peakcnt){ + maxPeak = peakcnt; + } + peakcnt=0; + } + } + peakcnt=0; + //test each valid clock from smallest to greatest to see which lines up + for(clkCnt=0; clkCnt < 8; ++clkCnt){ + //ignore clocks smaller than largest peak + if (clk[clkCnt]= peak) || (dest[ii] <= low)){ + peakcnt=0; + // now that we have the first one lined up test rest of wave array + for (i=0; i < ((int)((size-ii-tol)/clk[clkCnt])-1); ++i){ + if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){ + peakcnt++; + } + } + if(peakcnt>peaksdet[clkCnt]) { + peaksdet[clkCnt]=peakcnt; + } + } + } + } + int iii=7; + uint8_t best=0; + for (iii=7; iii > 0; iii--){ + if (peaksdet[iii] > peaksdet[best]){ + best = iii; + } + //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best]); + } + return clk[best]; +} + +// by marshmellow +// convert psk1 demod to psk2 demod +// only transition waves are 1s +void psk1TOpsk2(uint8_t *BitStream, size_t size) +{ + size_t i=1; + uint8_t lastBit=BitStream[0]; + for (; i*size) gLen = *size; + int high, low; + if (getHiLo(dest, gLen, &high, &low, 75, 75) < 1) return -3; //25% fuzz on high 25% fuzz on low + int lastBit = 0; //set first clock check + size_t iii = 0, bitnum = 0; //bitnum counter + uint16_t errCnt = 0, MaxBits = 1000; + size_t bestErrCnt = maxErr+1; + size_t bestPeakCnt = 0, bestPeakStart = 0; + uint8_t bestFirstPeakHigh=0, firstPeakHigh=0, curBit=0, bitHigh=0, errBitHigh=0; + uint8_t tol = 1; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave + uint16_t peakCnt=0; + uint8_t ignoreWindow=4; + uint8_t ignoreCnt=ignoreWindow; //in case of noise near peak + //loop to find first wave that works - align to clock + for (iii=0; iii < gLen; ++iii){ + if ((dest[iii]>=high) || (dest[iii]<=low)){ + if (dest[iii]>=high) firstPeakHigh=1; + else firstPeakHigh=0; + lastBit=iii-*clk; + peakCnt=0; + errCnt=0; + //loop through to see if this start location works + for (i = iii; i < *size; ++i) { + // if we are at a clock bit + if ((i >= lastBit + *clk - tol) && (i <= lastBit + *clk + tol)) { + //test high/low + if (dest[i] >= high || dest[i] <= low) { + bitHigh = 1; + peakCnt++; + errBitHigh = 0; + ignoreCnt = ignoreWindow; + lastBit += *clk; + } else if (i == lastBit + *clk + tol) { + lastBit += *clk; + } + //else if no bars found + } else if (dest[i] < high && dest[i] > low){ + if (ignoreCnt==0){ + bitHigh=0; + if (errBitHigh==1) errCnt++; + errBitHigh=0; + } else { + ignoreCnt--; + } + } else if ((dest[i]>=high || dest[i]<=low) && (bitHigh==0)) { + //error bar found no clock... + errBitHigh=1; + } + if (((i-iii) / *clk)>=MaxBits) break; + } + //we got more than 64 good bits and not all errors + if (((i-iii) / *clk) > 64 && (errCnt <= (maxErr))) { + //possible good read + if (!errCnt || peakCnt > bestPeakCnt){ + bestFirstPeakHigh=firstPeakHigh; + bestErrCnt = errCnt; + bestPeakCnt = peakCnt; + bestPeakStart = iii; + if (!errCnt) break; //great read - finish + } + } + } + } + //PrintAndLog("DEBUG: bestErrCnt: %d, maxErr: %d, bestStart: %d, bestPeakCnt: %d, bestPeakStart: %d",bestErrCnt,maxErr,bestStart,bestPeakCnt,bestPeakStart); + if (bestErrCnt > maxErr) return bestErrCnt; + + //best run is good enough set to best run and set overwrite BinStream + lastBit = bestPeakStart - *clk; + memset(dest, bestFirstPeakHigh^1, bestPeakStart / *clk); + bitnum += (bestPeakStart / *clk); + for (i = bestPeakStart; i < *size; ++i) { + // if expecting a clock bit + if ((i >= lastBit + *clk - tol) && (i <= lastBit + *clk + tol)) { + // test high/low + if (dest[i] >= high || dest[i] <= low) { + peakCnt++; + bitHigh = 1; + errBitHigh = 0; + ignoreCnt = ignoreWindow; + curBit = *invert; + if (dest[i] >= high) curBit ^= 1; + dest[bitnum++] = curBit; + lastBit += *clk; + //else no bars found in clock area + } else if (i == lastBit + *clk + tol) { + dest[bitnum++] = curBit; + lastBit += *clk; + } + //else if no bars found + } else if (dest[i] < high && dest[i] > low){ + if (ignoreCnt == 0){ + bitHigh = 0; + if (errBitHigh == 1){ + dest[bitnum++] = 77; + errCnt++; + } + errBitHigh=0; + } else { + ignoreCnt--; + } + } else if ((dest[i] >= high || dest[i] <= low) && (bitHigh == 0)) { + //error bar found no clock... + errBitHigh=1; + } + if (bitnum >= MaxBits) break; + } + *size = bitnum; + return bestErrCnt; +} + +//by marshmellow +//detects the bit clock for FSK given the high and low Field Clocks +uint8_t detectFSKClk(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fcLow) +{ + uint8_t clk[] = {8,16,32,40,50,64,100,128,0}; + uint16_t rfLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; + uint8_t rfCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; + uint8_t rfLensFnd = 0; + uint8_t lastFCcnt = 0; + uint16_t fcCounter = 0; + uint16_t rfCounter = 0; + uint8_t firstBitFnd = 0; + size_t i; + if (size == 0) return 0; + + uint8_t fcTol = (uint8_t)(0.5+(float)(fcHigh-fcLow)/2); + rfLensFnd=0; + fcCounter=0; + rfCounter=0; + firstBitFnd=0; + //PrintAndLog("DEBUG: fcTol: %d",fcTol); + // prime i to first up transition + for (i = 1; i < size-1; i++) + if (BitStream[i] > BitStream[i-1] && BitStream[i]>=BitStream[i+1]) + break; + + for (; i < size-1; i++){ + fcCounter++; + rfCounter++; + + if (BitStream[i] <= BitStream[i-1] || BitStream[i] < BitStream[i+1]) + continue; + // else new peak + // if we got less than the small fc + tolerance then set it to the small fc + if (fcCounter < fcLow+fcTol) + fcCounter = fcLow; + else //set it to the large fc + fcCounter = fcHigh; + + //look for bit clock (rf/xx) + if ((fcCounter < lastFCcnt || fcCounter > lastFCcnt)){ + //not the same size as the last wave - start of new bit sequence + if (firstBitFnd > 1){ //skip first wave change - probably not a complete bit + for (int ii=0; ii<15; ii++){ + if (rfLens[ii] == rfCounter){ + rfCnts[ii]++; + rfCounter = 0; + break; + } + } + if (rfCounter > 0 && rfLensFnd < 15){ + //PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter); + rfCnts[rfLensFnd]++; + rfLens[rfLensFnd++] = rfCounter; + } + } else { + firstBitFnd++; + } + rfCounter=0; + lastFCcnt=fcCounter; + } + fcCounter=0; + } + uint8_t rfHighest=15, rfHighest2=15, rfHighest3=15; + + for (i=0; i<15; i++){ + //PrintAndLog("DEBUG: RF %d, cnts %d",rfLens[i], rfCnts[i]); + //get highest 2 RF values (might need to get more values to compare or compare all?) + if (rfCnts[i]>rfCnts[rfHighest]){ + rfHighest3=rfHighest2; + rfHighest2=rfHighest; + rfHighest=i; + } else if(rfCnts[i]>rfCnts[rfHighest2]){ + rfHighest3=rfHighest2; + rfHighest2=i; + } else if(rfCnts[i]>rfCnts[rfHighest3]){ + rfHighest3=i; + } + } + // set allowed clock remainder tolerance to be 1 large field clock length+1 + // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off + uint8_t tol1 = fcHigh+1; + + //PrintAndLog("DEBUG: hightest: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]); + + // loop to find the highest clock that has a remainder less than the tolerance + // compare samples counted divided by + int ii=7; + for (; ii>=0; ii--){ + if (rfLens[rfHighest] % clk[ii] < tol1 || rfLens[rfHighest] % clk[ii] > clk[ii]-tol1){ + if (rfLens[rfHighest2] % clk[ii] < tol1 || rfLens[rfHighest2] % clk[ii] > clk[ii]-tol1){ + if (rfLens[rfHighest3] % clk[ii] < tol1 || rfLens[rfHighest3] % clk[ii] > clk[ii]-tol1){ + break; + } + } + } + } + + if (ii<0) return 0; // oops we went too far + + return clk[ii]; +} + +//by marshmellow +//countFC is to detect the field clock lengths. +//counts and returns the 2 most common wave lengths +//mainly used for FSK field clock detection +uint16_t countFC(uint8_t *BitStream, size_t size, uint8_t fskAdj) +{ + uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0}; + uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0}; + uint8_t fcLensFnd = 0; + uint8_t lastFCcnt=0; + uint8_t fcCounter = 0; + size_t i; + if (size == 0) return 0; + + // prime i to first up transition + for (i = 1; i < size-1; i++) + if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]) + break; + + for (; i < size-1; i++){ + if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]){ + // new up transition + fcCounter++; + if (fskAdj){ + //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8) + if (lastFCcnt==5 && fcCounter==9) fcCounter--; + //if fc=9 or 4 add one (for when we get a fc 9 instead of 10 or a 4 instead of a 5) + if ((fcCounter==9) || fcCounter==4) fcCounter++; + // save last field clock count (fc/xx) + lastFCcnt = fcCounter; + } + // find which fcLens to save it to: + for (int ii=0; ii<10; ii++){ + if (fcLens[ii]==fcCounter){ + fcCnts[ii]++; + fcCounter=0; + break; + } + } + if (fcCounter>0 && fcLensFnd<10){ + //add new fc length + fcCnts[fcLensFnd]++; + fcLens[fcLensFnd++]=fcCounter; + } + fcCounter=0; + } else { + // count sample + fcCounter++; + } + } + + uint8_t best1=9, best2=9, best3=9; + uint16_t maxCnt1=0; + // go through fclens and find which ones are bigest 2 + for (i=0; i<10; i++){ + // PrintAndLog("DEBUG: FC %d, Cnt %d, Errs %d",fcLens[i],fcCnts[i],errCnt); + // get the 3 best FC values + if (fcCnts[i]>maxCnt1) { + best3=best2; + best2=best1; + maxCnt1=fcCnts[i]; + best1=i; + } else if(fcCnts[i]>fcCnts[best2]){ + best3=best2; + best2=i; + } else if(fcCnts[i]>fcCnts[best3]){ + best3=i; + } + } + uint8_t fcH=0, fcL=0; + if (fcLens[best1]>fcLens[best2]){ + fcH=fcLens[best1]; + fcL=fcLens[best2]; + } else{ + fcH=fcLens[best2]; + fcL=fcLens[best1]; + } + + // TODO: take top 3 answers and compare to known Field clocks to get top 2 + + uint16_t fcs = (((uint16_t)fcH)<<8) | fcL; + // PrintAndLog("DEBUG: Best %d best2 %d best3 %d",fcLens[best1],fcLens[best2],fcLens[best3]); + if (fskAdj) return fcs; + return fcLens[best1]; +} + +//by marshmellow - demodulate PSK1 wave +//uses wave lengths (# Samples) +int pskRawDemod(uint8_t dest[], size_t *size, int *clock, int *invert) +{ + if (size == 0) return -1; + uint16_t loopCnt = 4096; //don't need to loop through entire array... + if (*size= dest[i+2]){ + waveEnd = i+1; + //PrintAndLog("DEBUG: waveEnd: %d",waveEnd); + waveLenCnt = waveEnd-waveStart; + if (waveLenCnt > fc && waveStart > fc){ //not first peak and is a large wave + lastAvgWaveVal = avgWaveVal/(waveLenCnt); + firstFullWave = waveStart; + fullWaveLen=waveLenCnt; + //if average wave value is > graph 0 then it is an up wave or a 1 + if (lastAvgWaveVal > 123) curPhase ^= 1; //fudge graph 0 a little 123 vs 128 + break; + } + waveStart = i+1; + avgWaveVal = 0; + } + avgWaveVal += dest[i+2]; + } + //PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen); + lastClkBit = firstFullWave; //set start of wave as clock align + //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d", *clock, lastClkBit); + waveStart = 0; + size_t numBits=0; + //set skipped bits + memset(dest, curPhase^1, firstFullWave / *clock); + numBits += (firstFullWave / *clock); + dest[numBits++] = curPhase; //set first read bit + for (i = firstFullWave + fullWaveLen - 1; i < *size-3; i++){ + //top edge of wave = start of new wave + if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){ + if (waveStart == 0) { + waveStart = i+1; + waveLenCnt = 0; + avgWaveVal = dest[i+1]; + } else { //waveEnd + waveEnd = i+1; + waveLenCnt = waveEnd-waveStart; + lastAvgWaveVal = avgWaveVal/waveLenCnt; + if (waveLenCnt > fc){ + //PrintAndLog("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal); + //this wave is a phase shift + //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc); + if (i+1 >= lastClkBit + *clock - tol){ //should be a clock bit + curPhase ^= 1; + dest[numBits++] = curPhase; + lastClkBit += *clock; + } else if (i < lastClkBit+10+fc){ + //noise after a phase shift - ignore + } else { //phase shift before supposed to based on clock + errCnt++; + dest[numBits++] = 77; + } + } else if (i+1 > lastClkBit + *clock + tol + fc){ + lastClkBit += *clock; //no phase shift but clock bit + dest[numBits++] = curPhase; + } + avgWaveVal = 0; + waveStart = i+1; + } + } + avgWaveVal += dest[i+1]; + } + *size = numBits; + return errCnt; }