X-Git-Url: http://cvs.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/d19929cbe8d681b60496ca6d9d9cbd806822e163..06732632308cb40fba0cde7ad87bf455a2d42e50:/armsrc/lfops.c diff --git a/armsrc/lfops.c b/armsrc/lfops.c index 1b5f220e..c80caf77 100644 --- a/armsrc/lfops.c +++ b/armsrc/lfops.c @@ -8,44 +8,60 @@ // Also routines for raw mode reading/simulating of LF waveform //----------------------------------------------------------------------------- -#include "proxmark3.h" +#include "../include/proxmark3.h" #include "apps.h" #include "util.h" -#include "hitag2.h" -#include "crc16.h" +#include "../include/hitag2.h" +#include "../common/crc16.h" #include "string.h" +#include "crapto1.h" +#include "mifareutil.h" -void AcquireRawAdcSamples125k(int at134khz) +#define SHORT_COIL() LOW(GPIO_SSC_DOUT) +#define OPEN_COIL() HIGH(GPIO_SSC_DOUT) + +void LFSetupFPGAForADC(int divisor, bool lf_field) { - if (at134khz) + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); + if ( (divisor == 1) || (divisor < 0) || (divisor > 255) ) FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz - else + else if (divisor == 0) FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz + else + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor); - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | (lf_field ? FPGA_LF_ADC_READER_FIELD : 0)); // Connect the A/D to the peak-detected low-frequency path. SetAdcMuxFor(GPIO_MUXSEL_LOPKD); - + // Give it a bit of time for the resonant antenna to settle. - SpinDelay(50); - + SpinDelay(150); + // Now set up the SSC to get the ADC samples that are now streaming at us. FpgaSetupSsc(); +} - // Now call the acquisition routine +void AcquireRawAdcSamples125k(int divisor) +{ + LFSetupFPGAForADC(divisor, true); DoAcquisition125k(); } +void SnoopLFRawAdcSamples(int divisor, int trigger_threshold) +{ + LFSetupFPGAForADC(divisor, false); + DoAcquisition125k_threshold(trigger_threshold); +} + // split into two routines so we can avoid timing issues after sending commands // -void DoAcquisition125k(void) +void DoAcquisition125k_internal(int trigger_threshold, bool silent) { - uint8_t *dest = (uint8_t *)BigBuf; - int n = sizeof(BigBuf); - int i; + uint8_t *dest = mifare_get_bigbufptr(); + int n = 24000; + int i = 0; + memset(dest, 0x00, n); - memset(dest, 0, n); - i = 0; for(;;) { if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { AT91C_BASE_SSC->SSC_THR = 0x43; @@ -53,38 +69,46 @@ void DoAcquisition125k(void) } if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; - i++; LED_D_OFF(); - if (i >= n) break; + if (trigger_threshold != -1 && dest[i] < trigger_threshold) + continue; + else + trigger_threshold = -1; + if (++i >= n) break; } } - Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...", + if (!silent){ + Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...", dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]); + } } - +void DoAcquisition125k_threshold(int trigger_threshold) { + DoAcquisition125k_internal(trigger_threshold, true); +} +void DoAcquisition125k() { + DoAcquisition125k_internal(-1, true); +} + void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command) { - int at134khz; /* Make sure the tag is reset */ + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); SpinDelay(2500); + int divisor_used = 95; // 125 KHz // see if 'h' was specified - if (command[strlen((char *) command) - 1] == 'h') - at134khz = TRUE; - else - at134khz = FALSE; - - if (at134khz) - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz - else - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); + if (command[strlen((char *) command) - 1] == 'h') + divisor_used = 88; // 134.8 KHz + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used); + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); // Give it a bit of time for the resonant antenna to settle. SpinDelay(50); + + // And a little more time for the tag to fully power up SpinDelay(2000); @@ -96,12 +120,9 @@ void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LED_D_OFF(); SpinDelayUs(delay_off); - if (at134khz) - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz - else - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used); - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); LED_D_ON(); if(*(command++) == '0') SpinDelayUs(period_0); @@ -111,15 +132,12 @@ void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LED_D_OFF(); SpinDelayUs(delay_off); - if (at134khz) - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz - else - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used); - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); // now do the read - DoAcquisition125k(); + DoAcquisition125k(-1); } /* blank r/w tag data stream @@ -156,6 +174,7 @@ void ReadTItag(void) uint32_t threshold = (sampleslo - sampleshi + 1)>>1; // TI tags charge at 134.2Khz + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz // Place FPGA in passthrough mode, in this mode the CROSS_LO line @@ -272,17 +291,17 @@ void WriteTIbyte(uint8_t b) { if (b&(1<>8)&0xff); @@ -431,55 +451,57 @@ void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc) void SimulateTagLowFrequency(int period, int gap, int ledcontrol) { - int i; - uint8_t *tab = (uint8_t *)BigBuf; - + int i = 0; + uint8_t *buff = (uint8_t *)BigBuf; + + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT); - - AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK; - + SetAdcMuxFor(GPIO_MUXSEL_LOPKD); + + // Configure output and enable pin that is connected to the FPGA (for modulating) + AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK; AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; + AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK; - -#define SHORT_COIL() LOW(GPIO_SSC_DOUT) -#define OPEN_COIL() HIGH(GPIO_SSC_DOUT) - - i = 0; - for(;;) { + + // Give it a bit of time for the resonant antenna to settle. + SpinDelay(30); + + for(;;) { + while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) { - if(BUTTON_PRESS()) { - DbpString("Stopped"); - return; - } - WDT_HIT(); + if(BUTTON_PRESS()) { + DbpString("Stopped at 0"); + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off + return; + } + WDT_HIT(); } - if (ledcontrol) - LED_D_ON(); - - if(tab[i]) + if ( buff[i] ) OPEN_COIL(); else SHORT_COIL(); - - if (ledcontrol) - LED_D_OFF(); - - while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) { - if(BUTTON_PRESS()) { - DbpString("Stopped"); + + while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) { + if(BUTTON_PRESS()) { + DbpString("Stopped at 1"); + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off return; } WDT_HIT(); - } + } - i++; + ++i; if(i == period) { i = 0; if (gap) { + // turn of modulation SHORT_COIL(); - SpinDelayUs(gap); - } + // wait + SpinDelay(gap); + } } } } @@ -586,206 +608,242 @@ void CmdHIDsimTAG(int hi, int lo, int ledcontrol) if (ledcontrol) LED_A_ON(); + SimulateTagLowFrequency(n, 0, ledcontrol); if (ledcontrol) LED_A_OFF(); } - -// loop to capture raw HID waveform then FSK demodulate the TAG ID from it -void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol) +size_t fsk_demod(uint8_t * dest, size_t size) { - uint8_t *dest = (uint8_t *)BigBuf; - int m=0, n=0, i=0, idx=0, found=0, lastval=0; - uint32_t hi=0, lo=0; + uint32_t last_transition = 0; + uint32_t idx = 1; - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); + // we don't care about actual value, only if it's more or less than a + // threshold essentially we capture zero crossings for later analysis + uint8_t threshold_value = 127; - // Connect the A/D to the peak-detected low-frequency path. - SetAdcMuxFor(GPIO_MUXSEL_LOPKD); + // sync to first lo-hi transition, and threshold - // Give it a bit of time for the resonant antenna to settle. - SpinDelay(50); + //Need to threshold first sample + dest[0] = (dest[0] < threshold_value) ? 0 : 1; - // Now set up the SSC to get the ADC samples that are now streaming at us. - FpgaSetupSsc(); + size_t numBits = 0; + // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8) + // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere + // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10 + for(idx = 1; idx < size; idx++) { + // threshold current value + dest[idx] = (dest[idx] < threshold_value) ? 0 : 1; - for(;;) { - WDT_HIT(); - if (ledcontrol) - LED_A_ON(); - if(BUTTON_PRESS()) { - DbpString("Stopped"); - if (ledcontrol) - LED_A_OFF(); - return; - } + // Check for 0->1 transition + if (dest[idx-1] < dest[idx]) { // 0 -> 1 transition - i = 0; - m = sizeof(BigBuf); - memset(dest,128,m); - for(;;) { - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { - AT91C_BASE_SSC->SSC_THR = 0x43; - if (ledcontrol) - LED_D_ON(); - } - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { - dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; - // we don't care about actual value, only if it's more or less than a - // threshold essentially we capture zero crossings for later analysis - if(dest[i] < 127) dest[i] = 0; else dest[i] = 1; - i++; - if (ledcontrol) - LED_D_OFF(); - if(i >= m) { - break; - } - } + dest[numBits] = (idx-last_transition < 9) ? 1 : 0; + last_transition = idx; + numBits++; } + } + return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0 +} - // FSK demodulator - // sync to first lo-hi transition - for( idx=1; idx0 crossing + if ( dest[idx-1] ) { + n=(n+1) / h2l_crossing_value; + } else {// 0->1 crossing + n=(n+1) / l2h_crossing_value; + } + if (n == 0) n = 1; + + if(n < maxConsequtiveBits) + { + memset(dest+numBits, dest[idx-1] , n); + numBits += n; + } + n=0; + lastval=dest[idx]; + }//end for + + return numBits; + +} +// loop to capture raw HID waveform then FSK demodulate the TAG ID from it +void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol) +{ + uint8_t *dest = (uint8_t *)BigBuf; + + size_t size=0,idx=0; //, found=0; + uint32_t hi2=0, hi=0, lo=0; + + // Configure to go in 125Khz listen mode + LFSetupFPGAForADC(0, true); + + while(!BUTTON_PRESS()) { + WDT_HIT(); + if (ledcontrol) LED_A_ON(); + + DoAcquisition125k_internal(-1,true); + size = sizeof(BigBuf); + + // FSK demodulator + size = fsk_demod(dest, size); // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns - lastval=dest[0]; - idx=0; - i=0; - n=0; - for( idx=0; idx0 : fc/8 in sets of 6 + // 0->1 : fc/10 in sets of 5 + size = aggregate_bits(dest,size, 6,5,5); + WDT_HIT(); // final loop, go over previously decoded manchester data and decode into usable tag ID // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0 - for( idx=0; idx>1) & 0xFFFF); - /* if we're only looking for one tag */ - if (findone) - { - *high = hi; - *low = lo; - return; - } - hi=0; - lo=0; - found=0; - } - } - if (found) { - if (dest[idx] && (!dest[idx+1]) ) { + if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0) + { // frame marker found + idx+=sizeof(frame_marker_mask); + + while(dest[idx] != dest[idx+1] && idx < size-2) + { + // Keep going until next frame marker (or error) + // Shift in a bit. Start by shifting high registers + hi2=(hi2<<1)|(hi>>31); hi=(hi<<1)|(lo>>31); + //Then, shift in a 0 or one into low + if (dest[idx] && !dest[idx+1]) // 1 0 lo=(lo<<1)|0; - } else if ( (!dest[idx]) && dest[idx+1]) { - hi=(hi<<1)|(lo>>31); - lo=(lo<<1)|1; - } else { - found=0; - hi=0; - lo=0; + else // 0 1 + lo=(lo<<1)| + 1; + numshifts ++; + idx += 2; } - idx++; - } - if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) ) - { - found=1; - idx+=6; - if (found && (hi|lo)) { - Dbprintf("TAG ID: %x%08x (%d)", - (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); - /* if we're only looking for one tag */ - if (findone) - { - *high = hi; - *low = lo; - return; + //Dbprintf("Num shifts: %d ", numshifts); + // Hopefully, we read a tag and hit upon the next frame marker + if(idx + sizeof(frame_marker_mask) < size) + { + if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0) + { + if (hi2 != 0){ + Dbprintf("TAG ID: %x%08x%08x (%d)", + (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); + } + else { + Dbprintf("TAG ID: %x%08x (%d)", + (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); } - hi=0; - lo=0; - found=0; } + + } + + // reset + hi2 = hi = lo = 0; + numshifts = 0; + }else + { + idx++; } } WDT_HIT(); + } + DbpString("Stopped"); + if (ledcontrol) LED_A_OFF(); +} + +uint32_t bytebits_to_byte(uint8_t* src, int numbits) +{ + uint32_t num = 0; + for(int i = 0 ; i < numbits ; i++) + { + num = (num << 1) | (*src); + src++; + } + return num; +} + + +void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol) +{ + uint8_t *dest = (uint8_t *)BigBuf; + + size_t size=0, idx=0; + uint32_t code=0, code2=0; + + // Configure to go in 125Khz listen mode + LFSetupFPGAForADC(0, true); + + while(!BUTTON_PRESS()) { + WDT_HIT(); + if (ledcontrol) LED_A_ON(); + + DoAcquisition125k_internal(-1,true); + size = sizeof(BigBuf); + + // FSK demodulator + size = fsk_demod(dest, size); + + // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns + // 1->0 : fc/8 in sets of 7 + // 0->1 : fc/10 in sets of 6 + size = aggregate_bits(dest, size, 7,6,13); + + WDT_HIT(); + + //Handle the data + uint8_t mask[] = {0,0,0,0,0,0,0,0,0,1}; + for( idx=0; idx < size - 64; idx++) { + + if ( memcmp(dest + idx, mask, sizeof(mask)) ) continue; + + Dbprintf("%d%d%d%d%d%d%d%d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7]); + Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+8], dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15]); + Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+16],dest[idx+17],dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23]); + Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+24],dest[idx+25],dest[idx+26],dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31]); + Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35],dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39]); + Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44],dest[idx+45],dest[idx+46],dest[idx+47]); + Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53],dest[idx+54],dest[idx+55]); + Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]); + + code = bytebits_to_byte(dest+idx,32); + code2 = bytebits_to_byte(dest+idx+32,32); + + short version = bytebits_to_byte(dest+idx+14,4); + char unknown = bytebits_to_byte(dest+idx+19,8) ; + uint16_t number = bytebits_to_byte(dest+idx+36,9); + + Dbprintf("XSF(%02d)%02x:%d (%08x%08x)",version,unknown,number,code,code2); + if (ledcontrol) LED_D_OFF(); + + // if we're only looking for one tag + if (findone){ + LED_A_OFF(); + return; + } + } + WDT_HIT(); + } + DbpString("Stopped"); + if (ledcontrol) LED_A_OFF(); } /*------------------------------ @@ -794,14 +852,14 @@ void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol) */ /* T55x7 configuration register definitions */ -#define T55x7_POR_DELAY 0x00000001 -#define T55x7_ST_TERMINATOR 0x00000008 -#define T55x7_PWD 0x00000010 +#define T55x7_POR_DELAY 0x00000001 +#define T55x7_ST_TERMINATOR 0x00000008 +#define T55x7_PWD 0x00000010 #define T55x7_MAXBLOCK_SHIFT 5 -#define T55x7_AOR 0x00000200 -#define T55x7_PSKCF_RF_2 0 -#define T55x7_PSKCF_RF_4 0x00000400 -#define T55x7_PSKCF_RF_8 0x00000800 +#define T55x7_AOR 0x00000200 +#define T55x7_PSKCF_RF_2 0 +#define T55x7_PSKCF_RF_4 0x00000400 +#define T55x7_PSKCF_RF_8 0x00000800 #define T55x7_MODULATION_DIRECT 0 #define T55x7_MODULATION_PSK1 0x00001000 #define T55x7_MODULATION_PSK2 0x00002000 @@ -812,17 +870,17 @@ void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol) #define T55x7_MODULATION_FSK2a 0x00007000 #define T55x7_MODULATION_MANCHESTER 0x00008000 #define T55x7_MODULATION_BIPHASE 0x00010000 -#define T55x7_BITRATE_RF_8 0 -#define T55x7_BITRATE_RF_16 0x00040000 -#define T55x7_BITRATE_RF_32 0x00080000 -#define T55x7_BITRATE_RF_40 0x000C0000 -#define T55x7_BITRATE_RF_50 0x00100000 -#define T55x7_BITRATE_RF_64 0x00140000 +#define T55x7_BITRATE_RF_8 0 +#define T55x7_BITRATE_RF_16 0x00040000 +#define T55x7_BITRATE_RF_32 0x00080000 +#define T55x7_BITRATE_RF_40 0x000C0000 +#define T55x7_BITRATE_RF_50 0x00100000 +#define T55x7_BITRATE_RF_64 0x00140000 #define T55x7_BITRATE_RF_100 0x00180000 #define T55x7_BITRATE_RF_128 0x001C0000 /* T5555 (Q5) configuration register definitions */ -#define T5555_ST_TERMINATOR 0x00000001 +#define T5555_ST_TERMINATOR 0x00000001 #define T5555_MAXBLOCK_SHIFT 0x00000001 #define T5555_MODULATION_MANCHESTER 0 #define T5555_MODULATION_PSK1 0x00000010 @@ -832,32 +890,43 @@ void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol) #define T5555_MODULATION_FSK2 0x00000050 #define T5555_MODULATION_BIPHASE 0x00000060 #define T5555_MODULATION_DIRECT 0x00000070 -#define T5555_INVERT_OUTPUT 0x00000080 -#define T5555_PSK_RF_2 0 -#define T5555_PSK_RF_4 0x00000100 -#define T5555_PSK_RF_8 0x00000200 -#define T5555_USE_PWD 0x00000400 -#define T5555_USE_AOR 0x00000800 -#define T5555_BITRATE_SHIFT 12 -#define T5555_FAST_WRITE 0x00004000 -#define T5555_PAGE_SELECT 0x00008000 +#define T5555_INVERT_OUTPUT 0x00000080 +#define T5555_PSK_RF_2 0 +#define T5555_PSK_RF_4 0x00000100 +#define T5555_PSK_RF_8 0x00000200 +#define T5555_USE_PWD 0x00000400 +#define T5555_USE_AOR 0x00000800 +#define T5555_BITRATE_SHIFT 12 +#define T5555_FAST_WRITE 0x00004000 +#define T5555_PAGE_SELECT 0x00008000 /* * Relevant times in microsecond * To compensate antenna falling times shorten the write times * and enlarge the gap ones. */ -#define START_GAP 250 -#define WRITE_GAP 160 -#define WRITE_0 144 // 192 -#define WRITE_1 400 // 432 for T55x7; 448 for E5550 +#define START_GAP 30*8 // 10 - 50fc 250 +#define WRITE_GAP 20*8 // 8 - 30fc +#define WRITE_0 24*8 // 16 - 31fc 24fc 192 +#define WRITE_1 54*8 // 48 - 63fc 54fc 432 for T55x7; 448 for E5550 + +// VALUES TAKEN FROM EM4x function: SendForward +// START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle) +// WRITE_GAP = 128; (16*8) +// WRITE_1 = 256 32*8; (32*8) + +// These timings work for 4469/4269/4305 (with the 55*8 above) +// WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8); + +#define T55xx_SAMPLES_SIZE 12000 // 32 x 32 x 10 (32 bit times numofblock (7), times clock skip..) // Write one bit to card void T55xxWriteBit(int bit) { + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); - if (bit == 0) + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); + if (!bit) SpinDelayUs(WRITE_0); else SpinDelayUs(WRITE_1); @@ -866,16 +935,13 @@ void T55xxWriteBit(int bit) } // Write one card block in page 0, no lock -void T55xxWriteBlock(int Data, int Block) +void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode) { - unsigned int i; + uint32_t i = 0; - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); - - // Give it a bit of time for the resonant antenna to settle. - // And for the tag to fully power up - SpinDelay(150); + // Set up FPGA, 125kHz + // Wait for config.. (192+8190xPOW)x8 == 67ms + LFSetupFPGAForADC(0, true); // Now start writting FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); @@ -884,6 +950,11 @@ void T55xxWriteBlock(int Data, int Block) // Opcode T55xxWriteBit(1); T55xxWriteBit(0); //Page 0 + if (PwdMode == 1){ + // Pwd + for (i = 0x80000000; i != 0; i >>= 1) + T55xxWriteBit(Pwd & i); + } // Lock bit T55xxWriteBit(0); @@ -891,70 +962,264 @@ void T55xxWriteBlock(int Data, int Block) for (i = 0x80000000; i != 0; i >>= 1) T55xxWriteBit(Data & i); - // Page + // Block for (i = 0x04; i != 0; i >>= 1) T55xxWriteBit(Block & i); // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550, // so wait a little more) FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); SpinDelay(20); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); } -// Copy HID id to card and setup block 0 config -void CopyHIDtoT55x7(int hi, int lo) +// Read one card block in page 0 +void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode) { - int data1, data2, data3; + uint8_t *dest = mifare_get_bigbufptr(); + uint16_t bufferlength = T55xx_SAMPLES_SIZE; + uint32_t i = 0; - // Ensure no more than 44 bits supplied - if (hi>0xFFF) { - DbpString("Tags can only have 44 bits."); - return; - } + // Clear destination buffer before sending the command 0x80 = average. + memset(dest, 0x80, bufferlength); - // Build the 3 data blocks for supplied 44bit ID - data1 = 0x1D000000; // load preamble + // Set up FPGA, 125kHz + // Wait for config.. (192+8190xPOW)x8 == 67ms + LFSetupFPGAForADC(0, true); - for (int i=0;i<12;i++) { - if (hi & (1<<(11-i))) - data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10 - else - data1 |= (1<<((11-i)*2)); // 0 -> 01 + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + SpinDelayUs(START_GAP); + + // Opcode + T55xxWriteBit(1); + T55xxWriteBit(0); //Page 0 + if (PwdMode == 1){ + // Pwd + for (i = 0x80000000; i != 0; i >>= 1) + T55xxWriteBit(Pwd & i); } - - data2 = 0; - for (int i=0;i<16;i++) { - if (lo & (1<<(31-i))) - data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10 - else - data2 |= (1<<((15-i)*2)); // 0 -> 01 + // Lock bit + T55xxWriteBit(0); + // Block + for (i = 0x04; i != 0; i >>= 1) + T55xxWriteBit(Block & i); + + // Turn field on to read the response + TurnReadLFOn(); + + // Now do the acquisition + i = 0; + for(;;) { + if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { + AT91C_BASE_SSC->SSC_THR = 0x43; + LED_D_ON(); + } + if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { + dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; + ++i; + LED_D_OFF(); + if (i > bufferlength) break; + } } + + cmd_send(CMD_ACK,0,0,0,0,0); + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off + LED_D_OFF(); +} - data3 = 0; - for (int i=0;i<16;i++) { - if (lo & (1<<(15-i))) - data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10 - else - data3 |= (1<<((15-i)*2)); // 0 -> 01 +// Read card traceability data (page 1) +void T55xxReadTrace(void){ + uint8_t *dest = mifare_get_bigbufptr(); + uint16_t bufferlength = T55xx_SAMPLES_SIZE; + int i=0; + + // Clear destination buffer before sending the command 0x80 = average + memset(dest, 0x80, bufferlength); + + LFSetupFPGAForADC(0, true); + + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + SpinDelayUs(START_GAP); + + // Opcode + T55xxWriteBit(1); + T55xxWriteBit(1); //Page 1 + + // Turn field on to read the response + TurnReadLFOn(); + + // Now do the acquisition + for(;;) { + if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { + AT91C_BASE_SSC->SSC_THR = 0x43; + LED_D_ON(); + } + if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { + dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; + ++i; + LED_D_OFF(); + + if (i >= bufferlength) break; + } } + + cmd_send(CMD_ACK,0,0,0,0,0); + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off + LED_D_OFF(); +} - // Program the 3 data blocks for supplied 44bit ID - // and the block 0 for HID format - T55xxWriteBlock(data1,1); - T55xxWriteBlock(data2,2); - T55xxWriteBlock(data3,3); - - // Config for HID (RF/50, FSK2a, Maxblock=3) - T55xxWriteBlock(T55x7_BITRATE_RF_50 | - T55x7_MODULATION_FSK2a | - 3 << T55x7_MAXBLOCK_SHIFT, - 0); +void TurnReadLFOn(){ + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); + // Give it a bit of time for the resonant antenna to settle. + //SpinDelay(30); + SpinDelayUs(8*150); +} +/*-------------- Cloning routines -----------*/ +// Copy HID id to card and setup block 0 config +void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) +{ + int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format + int last_block = 0; + + if (longFMT){ + // Ensure no more than 84 bits supplied + if (hi2>0xFFFFF) { + DbpString("Tags can only have 84 bits."); + return; + } + // Build the 6 data blocks for supplied 84bit ID + last_block = 6; + data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded) + for (int i=0;i<4;i++) { + if (hi2 & (1<<(19-i))) + data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10 + else + data1 |= (1<<((3-i)*2)); // 0 -> 01 + } + + data2 = 0; + for (int i=0;i<16;i++) { + if (hi2 & (1<<(15-i))) + data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10 + else + data2 |= (1<<((15-i)*2)); // 0 -> 01 + } + + data3 = 0; + for (int i=0;i<16;i++) { + if (hi & (1<<(31-i))) + data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10 + else + data3 |= (1<<((15-i)*2)); // 0 -> 01 + } + + data4 = 0; + for (int i=0;i<16;i++) { + if (hi & (1<<(15-i))) + data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10 + else + data4 |= (1<<((15-i)*2)); // 0 -> 01 + } + + data5 = 0; + for (int i=0;i<16;i++) { + if (lo & (1<<(31-i))) + data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10 + else + data5 |= (1<<((15-i)*2)); // 0 -> 01 + } + + data6 = 0; + for (int i=0;i<16;i++) { + if (lo & (1<<(15-i))) + data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10 + else + data6 |= (1<<((15-i)*2)); // 0 -> 01 + } + } + else { + // Ensure no more than 44 bits supplied + if (hi>0xFFF) { + DbpString("Tags can only have 44 bits."); + return; + } + + // Build the 3 data blocks for supplied 44bit ID + last_block = 3; + + data1 = 0x1D000000; // load preamble + + for (int i=0;i<12;i++) { + if (hi & (1<<(11-i))) + data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10 + else + data1 |= (1<<((11-i)*2)); // 0 -> 01 + } + + data2 = 0; + for (int i=0;i<16;i++) { + if (lo & (1<<(31-i))) + data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10 + else + data2 |= (1<<((15-i)*2)); // 0 -> 01 + } + + data3 = 0; + for (int i=0;i<16;i++) { + if (lo & (1<<(15-i))) + data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10 + else + data3 |= (1<<((15-i)*2)); // 0 -> 01 + } + } + + LED_D_ON(); + // Program the data blocks for supplied ID + // and the block 0 for HID format + T55xxWriteBlock(data1,1,0,0); + T55xxWriteBlock(data2,2,0,0); + T55xxWriteBlock(data3,3,0,0); + + if (longFMT) { // if long format there are 6 blocks + T55xxWriteBlock(data4,4,0,0); + T55xxWriteBlock(data5,5,0,0); + T55xxWriteBlock(data6,6,0,0); + } + + // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long) + T55xxWriteBlock(T55x7_BITRATE_RF_50 | + T55x7_MODULATION_FSK2a | + last_block << T55x7_MAXBLOCK_SHIFT, + 0,0,0); + + LED_D_OFF(); + DbpString("DONE!"); } +void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT) +{ + int data1=0, data2=0; //up to six blocks for long format + + data1 = hi; // load preamble + data2 = lo; + + LED_D_ON(); + // Program the data blocks for supplied ID + // and the block 0 for HID format + T55xxWriteBlock(data1,1,0,0); + T55xxWriteBlock(data2,2,0,0); + + //Config Block + T55xxWriteBlock(0x00147040,0,0,0); + LED_D_OFF(); + + DbpString("DONE!"); +} + // Define 9bit header for EM410x tags #define EM410X_HEADER 0x1FF #define EM410X_ID_LENGTH 40 @@ -966,6 +1231,7 @@ void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) uint64_t rev_id = 0; // reversed ID int c_parity[4]; // column parity int r_parity = 0; // row parity + uint32_t clock = 0; // Reverse ID bits given as parameter (for simpler operations) for (i = 0; i < EM410X_ID_LENGTH; ++i) { @@ -1019,22 +1285,45 @@ void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) LED_D_ON(); // Write EM410x ID - T55xxWriteBlock((uint32_t)(id >> 32), 1); - T55xxWriteBlock((uint32_t)id, 2); + T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0); + T55xxWriteBlock((uint32_t)id, 2, 0, 0); // Config for EM410x (RF/64, Manchester, Maxblock=2) - if (card) + if (card) { + // Clock rate is stored in bits 8-15 of the card value + clock = (card & 0xFF00) >> 8; + Dbprintf("Clock rate: %d", clock); + switch (clock) + { + case 32: + clock = T55x7_BITRATE_RF_32; + break; + case 16: + clock = T55x7_BITRATE_RF_16; + break; + case 0: + // A value of 0 is assumed to be 64 for backwards-compatibility + // Fall through... + case 64: + clock = T55x7_BITRATE_RF_64; + break; + default: + Dbprintf("Invalid clock rate: %d", clock); + return; + } + // Writing configuration for T55x7 tag - T55xxWriteBlock(T55x7_BITRATE_RF_64 | + T55xxWriteBlock(clock | T55x7_MODULATION_MANCHESTER | 2 << T55x7_MAXBLOCK_SHIFT, - 0); + 0, 0, 0); + } else // Writing configuration for T5555(Q5) tag T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT | T5555_MODULATION_MANCHESTER | 2 << T5555_MAXBLOCK_SHIFT, - 0); + 0, 0, 0); LED_D_OFF(); Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555", @@ -1044,43 +1333,524 @@ void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) // Clone Indala 64-bit tag by UID to T55x7 void CopyIndala64toT55x7(int hi, int lo) { - //Program the 2 data blocks for supplied 64bit UID // and the block 0 for Indala64 format - T55xxWriteBlock(hi,1); - T55xxWriteBlock(lo,2); + T55xxWriteBlock(hi,1,0,0); + T55xxWriteBlock(lo,2,0,0); //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2) T55xxWriteBlock(T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | 2 << T55x7_MAXBLOCK_SHIFT, - 0); + 0, 0, 0); //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data) -// T5567WriteBlock(0x603E1042,0); + // T5567WriteBlock(0x603E1042,0); DbpString("DONE!"); - } void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7) { - //Program the 7 data blocks for supplied 224bit UID // and the block 0 for Indala224 format - T55xxWriteBlock(uid1,1); - T55xxWriteBlock(uid2,2); - T55xxWriteBlock(uid3,3); - T55xxWriteBlock(uid4,4); - T55xxWriteBlock(uid5,5); - T55xxWriteBlock(uid6,6); - T55xxWriteBlock(uid7,7); + T55xxWriteBlock(uid1,1,0,0); + T55xxWriteBlock(uid2,2,0,0); + T55xxWriteBlock(uid3,3,0,0); + T55xxWriteBlock(uid4,4,0,0); + T55xxWriteBlock(uid5,5,0,0); + T55xxWriteBlock(uid6,6,0,0); + T55xxWriteBlock(uid7,7,0,0); //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7) T55xxWriteBlock(T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | 7 << T55x7_MAXBLOCK_SHIFT, - 0); + 0,0,0); //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data) -// T5567WriteBlock(0x603E10E2,0); + // T5567WriteBlock(0x603E10E2,0); DbpString("DONE!"); +} + + +#define abs(x) ( ((x)<0) ? -(x) : (x) ) +#define max(x,y) ( x GraphBuffer[0]) { + while(i < GraphTraceLen) { + if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax) + break; + i++; + } + dir = 0; + } + else { + while(i < GraphTraceLen) { + if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin) + break; + i++; + } + dir = 1; + } + + lastval = i++; + half_switch = 0; + pmc = 0; + block_done = 0; + + for (bitidx = 0; i < GraphTraceLen; i++) + { + if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin)) + { + lc = i - lastval; + lastval = i; + + // Switch depending on lc length: + // Tolerance is 1/8 of clock rate (arbitrary) + if (abs(lc-clock/4) < tolerance) { + // 16T0 + if((i - pmc) == lc) { /* 16T0 was previous one */ + /* It's a PMC ! */ + i += (128+127+16+32+33+16)-1; + lastval = i; + pmc = 0; + block_done = 1; + } + else { + pmc = i; + } + } else if (abs(lc-clock/2) < tolerance) { + // 32TO + if((i - pmc) == lc) { /* 16T0 was previous one */ + /* It's a PMC ! */ + i += (128+127+16+32+33)-1; + lastval = i; + pmc = 0; + block_done = 1; + } + else if(half_switch == 1) { + BitStream[bitidx++] = 0; + half_switch = 0; + } + else + half_switch++; + } else if (abs(lc-clock) < tolerance) { + // 64TO + BitStream[bitidx++] = 1; + } else { + // Error + warnings++; + if (warnings > 10) + { + Dbprintf("Error: too many detection errors, aborting."); + return 0; + } + } + + if(block_done == 1) { + if(bitidx == 128) { + for(j=0; j<16; j++) { + Blocks[num_blocks][j] = 128*BitStream[j*8+7]+ + 64*BitStream[j*8+6]+ + 32*BitStream[j*8+5]+ + 16*BitStream[j*8+4]+ + 8*BitStream[j*8+3]+ + 4*BitStream[j*8+2]+ + 2*BitStream[j*8+1]+ + BitStream[j*8]; + } + num_blocks++; + } + bitidx = 0; + block_done = 0; + half_switch = 0; + } + if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0; + else dir = 1; + } + if(bitidx==255) + bitidx=0; + warnings = 0; + if(num_blocks == 4) break; + } + memcpy(outBlocks, Blocks, 16*num_blocks); + return num_blocks; +} + +int IsBlock0PCF7931(uint8_t *Block) { + // Assume RFU means 0 :) + if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled + return 1; + if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ? + return 1; + return 0; +} + +int IsBlock1PCF7931(uint8_t *Block) { + // Assume RFU means 0 :) + if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0) + if((Block[14] & 0x7f) <= 9 && Block[15] <= 9) + return 1; + + return 0; +} +#define ALLOC 16 + +void ReadPCF7931() { + uint8_t Blocks[8][17]; + uint8_t tmpBlocks[4][16]; + int i, j, ind, ind2, n; + int num_blocks = 0; + int max_blocks = 8; + int ident = 0; + int error = 0; + int tries = 0; + + memset(Blocks, 0, 8*17*sizeof(uint8_t)); + + do { + memset(tmpBlocks, 0, 4*16*sizeof(uint8_t)); + n = DemodPCF7931((uint8_t**)tmpBlocks); + if(!n) + error++; + if(error==10 && num_blocks == 0) { + Dbprintf("Error, no tag or bad tag"); + return; + } + else if (tries==20 || error==10) { + Dbprintf("Error reading the tag"); + Dbprintf("Here is the partial content"); + goto end; + } + + for(i=0; i= 0; ind--,ind2--) { + if(ind2 < 0) + ind2 = max_blocks; + if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found + // Dbprintf("Tmp %d -> Block %d", ind, ind2); + memcpy(Blocks[ind2], tmpBlocks[ind], 16); + Blocks[ind2][ALLOC] = 1; + num_blocks++; + if(num_blocks == max_blocks) goto end; + } + } + for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) { + if(ind2 > max_blocks) + ind2 = 0; + if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found + // Dbprintf("Tmp %d -> Block %d", ind, ind2); + memcpy(Blocks[ind2], tmpBlocks[ind], 16); + Blocks[ind2][ALLOC] = 1; + num_blocks++; + if(num_blocks == max_blocks) goto end; + } + } + } + } + } + } + } + tries++; + if (BUTTON_PRESS()) return; + } while (num_blocks != max_blocks); +end: + Dbprintf("-----------------------------------------"); + Dbprintf("Memory content:"); + Dbprintf("-----------------------------------------"); + for(i=0; i", i); + } + Dbprintf("-----------------------------------------"); + + return ; +} + + +//----------------------------------- +// EM4469 / EM4305 routines +//----------------------------------- +#define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored +#define FWD_CMD_WRITE 0xA +#define FWD_CMD_READ 0x9 +#define FWD_CMD_DISABLE 0x5 + + +uint8_t forwardLink_data[64]; //array of forwarded bits +uint8_t * forward_ptr; //ptr for forward message preparation +uint8_t fwd_bit_sz; //forwardlink bit counter +uint8_t * fwd_write_ptr; //forwardlink bit pointer + +//==================================================================== +// prepares command bits +// see EM4469 spec +//==================================================================== +//-------------------------------------------------------------------- +uint8_t Prepare_Cmd( uint8_t cmd ) { + //-------------------------------------------------------------------- + + *forward_ptr++ = 0; //start bit + *forward_ptr++ = 0; //second pause for 4050 code + + *forward_ptr++ = cmd; + cmd >>= 1; + *forward_ptr++ = cmd; + cmd >>= 1; + *forward_ptr++ = cmd; + cmd >>= 1; + *forward_ptr++ = cmd; + + return 6; //return number of emited bits +} + +//==================================================================== +// prepares address bits +// see EM4469 spec +//==================================================================== + +//-------------------------------------------------------------------- +uint8_t Prepare_Addr( uint8_t addr ) { + //-------------------------------------------------------------------- + + register uint8_t line_parity; + + uint8_t i; + line_parity = 0; + for(i=0;i<6;i++) { + *forward_ptr++ = addr; + line_parity ^= addr; + addr >>= 1; + } + + *forward_ptr++ = (line_parity & 1); + + return 7; //return number of emited bits +} + +//==================================================================== +// prepares data bits intreleaved with parity bits +// see EM4469 spec +//==================================================================== + +//-------------------------------------------------------------------- +uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) { + //-------------------------------------------------------------------- + + register uint8_t line_parity; + register uint8_t column_parity; + register uint8_t i, j; + register uint16_t data; + + data = data_low; + column_parity = 0; + + for(i=0; i<4; i++) { + line_parity = 0; + for(j=0; j<8; j++) { + line_parity ^= data; + column_parity ^= (data & 1) << j; + *forward_ptr++ = data; + data >>= 1; + } + *forward_ptr++ = line_parity; + if(i == 1) + data = data_hi; + } + + for(j=0; j<8; j++) { + *forward_ptr++ = column_parity; + column_parity >>= 1; + } + *forward_ptr = 0; + + return 45; //return number of emited bits +} + +//==================================================================== +// Forward Link send function +// Requires: forwarLink_data filled with valid bits (1 bit per byte) +// fwd_bit_count set with number of bits to be sent +//==================================================================== +void SendForward(uint8_t fwd_bit_count) { + + fwd_write_ptr = forwardLink_data; + fwd_bit_sz = fwd_bit_count; + + LED_D_ON(); + + //Field on + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); + + // Give it a bit of time for the resonant antenna to settle. + // And for the tag to fully power up + SpinDelay(150); + + // force 1st mod pulse (start gap must be longer for 4305) + fwd_bit_sz--; //prepare next bit modulation + fwd_write_ptr++; + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off + SpinDelayUs(55*8); //55 cycles off (8us each)for 4305 + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on + SpinDelayUs(16*8); //16 cycles on (8us each) + + // now start writting + while(fwd_bit_sz-- > 0) { //prepare next bit modulation + if(((*fwd_write_ptr++) & 1) == 1) + SpinDelayUs(32*8); //32 cycles at 125Khz (8us each) + else { + //These timings work for 4469/4269/4305 (with the 55*8 above) + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off + SpinDelayUs(23*8); //16-4 cycles off (8us each) + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on + SpinDelayUs(9*8); //16 cycles on (8us each) + } + } +} + + +void EM4xLogin(uint32_t Password) { + + uint8_t fwd_bit_count; + + forward_ptr = forwardLink_data; + fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN ); + fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 ); + + SendForward(fwd_bit_count); + + //Wait for command to complete + SpinDelay(20); + +} + +void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) { + + uint8_t *dest = mifare_get_bigbufptr(); + uint16_t bufferlength = 12000; + uint32_t i = 0; + + // Clear destination buffer before sending the command 0x80 = average. + memset(dest, 0x80, bufferlength); + + uint8_t fwd_bit_count; + + //If password mode do login + if (PwdMode == 1) EM4xLogin(Pwd); + + forward_ptr = forwardLink_data; + fwd_bit_count = Prepare_Cmd( FWD_CMD_READ ); + fwd_bit_count += Prepare_Addr( Address ); + + // Connect the A/D to the peak-detected low-frequency path. + SetAdcMuxFor(GPIO_MUXSEL_LOPKD); + // Now set up the SSC to get the ADC samples that are now streaming at us. + FpgaSetupSsc(); + + SendForward(fwd_bit_count); + + // // Turn field on to read the response + // TurnReadLFOn(); + + // Now do the acquisition + i = 0; + for(;;) { + if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { + AT91C_BASE_SSC->SSC_THR = 0x43; + } + if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { + dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; + ++i; + if (i >= bufferlength) break; + } + } + + cmd_send(CMD_ACK,0,0,0,0,0); + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off + LED_D_OFF(); +} +void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) { + + uint8_t fwd_bit_count; + + //If password mode do login + if (PwdMode == 1) EM4xLogin(Pwd); + + forward_ptr = forwardLink_data; + fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE ); + fwd_bit_count += Prepare_Addr( Address ); + fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 ); + + SendForward(fwd_bit_count); + + //Wait for write to complete + SpinDelay(20); + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off + LED_D_OFF(); }